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Abstract—One of the newest forms of serverless computing
is Function-as-a-Service (FaaS). FaaS provides a framework to
execute modular pieces of code in response to events (e.g., clicking
a link in a web application). The FaaS platform takes care of pro-
visioning and managing servers, allowing the developers to focus
on their business logic. Additionally, all resource management is
event-driven, and developers are only charged for the execution
time of their functions. Despite so many apparent benefits, there
are some concerns regarding the performance of FaaS. Past work
has shown that cold starts typically have a negative effect on
response latency (e.g., the initialization could add more than 10×
execution time to short Python FaaS functions). However, the
magnitude of the slowdown is subject to varying from language
to language. This paper investigates how containerization and
cold starts impact the performance of Java FaaS functions, and
compares with the findings from the prior Python study.

We find that containerization overhead slows Java FaaS
functions from native execution by 4.42× on average (geometrical
mean), ranging from 1.69× up to 15.43×. Comparing with
Python in warm containers, Java has more overhead on three
of the functions, but faster on the other functions (up to 27.08×
faster). The container initialization time for Java is consistently
less than half that of Python. However, Java has the additional
overhead due to Java Virtual Machine (JVM) warmup which
contributes varying amount of latency to the execution depending
on the Java function properties. Overall, Java has about 2.60×
(2.65×) speedup across seven FaaS functions over Python in cold
(warm) start scenarios, respectively.

Index Terms—Serverless Computing, Function-as-a-Service,
JVM, OpenWhisk

I. INTRODUCTION

Over the past several years, interest in serverless computing
has rapidly increased due to its flexibility and low cost.
Despite the name, serverless computing does not actually fully
remove the servers, it instead adds a layer of abstraction
to isolate the servers from the developers to some extent.
Eyk et al. [1] defines serverless computing as “a form of
cloud computing which allows users to run event-driven and
granularly billed applications, without having to address the
operational logic”. In this case, the user of the serverless
platform might be the developer of a web application, and
the operational logic could refer to bringing up the server,
spinning up virtual machines, managing memory, and so on. In
recent years, there have been many services such as Platform-

as-a-Service (PaaS [2]–[4]), Function-as-a-Service (FaaS [5]–
[8]), and Software-as-a-Service (SaaS [9], [10]), and they
all partially fit the aforementioned definition. The primary
factor that differentiates the three is the level of developer
control. PaaS allows a developer to rent hardware resources
and is billed by the hour. In this case, the developer has
full control over the allocated resources and is responsible
for managing them effectively. If servers sit idle due to a
workload decrease, the developer will still be charged. On
the other end of the spectrum is SaaS. SaaS is event-driven
and granularly billed but does not accept customized code.
Instead, the developer can run service code selected from the
preset. FaaS sits somewhere between PaaS and SaaS (as shown
in Figure 1). The infrastructure is shared, but the application
code is customizable. The developer is able to register modular
pieces of code with the FaaS provider and set up triggers which
will execute the code in response to an event, such as a user
clicking a button in a web application. The term serverless is
most commonly used to refer to FaaS [11], which is the model
we will focus on in this paper.
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Fig. 1: Level of developer control in serverless computing [11].

FaaS has a couple of advantages over the traditional ap-
plication development model. Resources are allocated by the
service provider as needed, and developers are only charged
for the execution time of their functions making it a highly
scalable and cost-effective solution for enterprise application
development [12]. This model is especially attractive due to
the recent shift of application architectures to containers and
microservices [11]. While Villamizar et al. [13] have shown
that there are clear financial benefits to using FaaS, it should be
noted that there are several limitations of FaaS. For example,
functions must be stateless and short. Most providers limit the
execution time to 10-15 minutes [4], [5], [14].



Few studies [15]–[18] have been conducted, attempting to
understand the primary factors affecting FaaS performance.
The earlier research [15], [16] focus more on the plat-
form level. For instance, Manner et al. [16] and Jackson et
al. [15] reveals that different FaaS providers optimize their
platforms/runtimes for different programming languages. In
contrast, Shahrad et al. [17] deployed an open-source FaaS
framework, Apache OpenWhisk [14], to a self-owned machine
and performed server-level profiling. Among a few hardware
implications that Shahrad et al. found, the containerization
slowdown of Python FaaS functions could go up to 20×, and
the cold start could add initialization time 10× more than the
actual function execution time. Those findings are based on
the experiments with FaaS functions written in Python (and
some NodeJS), so naturally it raises the questions about Java,
another very popular language in cloud computing. As pointed
by the prior study (more details in Section II), programming
language might change the FaaS performance significantly.
Here are the primary questions the paper wants to answer:

1) What is the containerization overhead for Java FaaS
functions?

2) What is the impact of a container cold start for func-
tions written in Java, and whether Java Virtual Machine
(JVM) plays a role in this scenario?

3) How does Java performance on OpenWhisk compare
with Python?

In order to find the answers for those questions, we design
a set of experiments using the same facilities from Shahrad et
al. [17], further investigating the overhead due to containeriza-
tion and cold starts for functions written in Java. Specifically,
we measure and break down the response latency of various
Java functions into container initialization plus function ex-
ecution time, expecting to see a significant slowdown over
the native execution, especially for cold start scenarios; we
repeat the same experiments for Python implementation for
comparison, anticipating a better performance from Java due
to the pre-compiled bytecode; we scale the Java FaaS function
data size in both cold and warm start scenarios, looking for a
constant overhead from JVM warmup [19].

This paper makes the following contributions:
1) We measure the response latency of Java functions

running on an open-source FaaS framework. For those
measured Java FaaS functions, we determine the con-
tainerization overhead (over native execution) causes
4.42× and 12.44× slowdown on average for cold and
warm starts, respectively.

2) From the analysis and comparison with Python imple-
mentation of the same FaaS functions, we show Java
has shorter (about 1/3) container initialization time than
Python and the overall performance is better on most
functions (on average 2.60× faster).

3) We also reveal cold starts would incur an additional
overhead, JVM warmup, for Java FaaS functions.

For the rest of the paper, we will give a brief introduction
on the related work (§ II), and describe our experimental

methodology in details (§ III), and present the results collected
from each test (§ IV), then discuss the future work (§ V) and
conclude the implications from the results (§ VI).

II. RELATED WORK

As shown in several studies, the primary factors which have
affect FaaS performance are cold start overhead, programming
language and FaaS provider, and containerization overhead.

FaaS Cold Start: For security reasons, a new container must
be started for each new function run on a particular machine.
Containers may be reused, but only for exactly the same func-
tion registered by the same developer. Idle containers are shut
down after a short grace period for better resource utilization.
This means that if functions are triggered infrequently, the
containers will have to be unpaused or restarted every time
the function is run. Past work [15], [16], [18] has shown
that cold starts typically have a negative effect on response
latency, but the magnitude of the slowdown varies depending
on provider and language and container image versions [20]–
[22]. All providers and languages exhibit a cold start latency
of at least 300ms, but in some cases the latency can be as long
as 24s [16]. This could be up to 10× the execution time of
extremely short functions [17].

Programming Language: Several studies [15], [16] has
shown the effect that programming languages have on FaaS
functions vary widely. Manner et al. [16] tested functions
written in Java and JavaScript on AWS Lambda and Microsoft
Azure. They found that in both cases Java incurred a larger
cold start overhead, but performed much better than JavaScript
in a warm container. They suggested that the larger cold
start overhead was due to the virtual machine warmup time
required by Java. On the other side, they also noticed that
Java outperforming JavaScript in a warm container, as that
Javascript is an interpreted language while Java uses pre-
compiled bytecode. Principally, bytecode could save runtime
since some of the work of translating high level code, is done
prior to execution.
Platform: It is also clear that different platforms provide
runtimes that are tuned for different languages. Jackson et
al. [15] also tested the effect of language runtime on AWS
Lambda and Microsoft Azure. They found that on AWS
Lambda Python outperformed all other languages, including
Java, on warm starts. Python is usually regarded as an in-
terpreted language (i.e., high-level language is not translated
into machine readable instructions until the line is executed),
so the result is an exception to the principle mentioned
above. They also found that C# .NET performed best on
Microsoft Azure, but performed badly, particularly in cold
start scenarios on AWS. NodeJS exhibited the exact opposite
behavior, performing well on AWS and poorly on Azure.
These differences are not surprising as providers are motivated
to improve the performance of the most popular languages
for their platforms. However, it is extremely important for
developers to understand how their choice of language and
platform may impact function performance.
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Fig. 2: OpenWhisk-FaaSProfiler architecture [17]

Containerization Overhead: On commercial FaaS platforms,
it is difficult to figure out the total slowdown caused by
FaaS when compared to native execution. Shahrad et al. [17]
developed a methodology that uses open-source FaaS frame-
work, OpenWhisk [14], and a tightly-integrated profiling tool,
FaaSProfiler, to study the containerization overhead (more
details of OpenWhisk and FaaSProfiler in Section III-A).
Shahrad et al. found that for functions written in Python,
there is a significant slowdown (up to 12×), and predicted
functions in other programming languages should suffer the
containerization overhead at the same order of magnitude.

III. METHODOLOGY

A. OpenWhisk and FaaSProfiler

Figure 2 illustrates the architecture of OpenWhisk [14] (the
dashed box on the right) and FaaSProfiler [17] (the left dash-
line box). Just like all other FaaS design, OpenWhisk [14]
executes function code provided by a developer in an isolated
environment, a docker container [23] for this case. Because
different FaaS functions are registered as the actions for differ-
ent events, a database, CouchDB [24], is used for storing those
mapping information. Whenever the frontend, NGINX [25]
for OpenWhisk, receives a request, the OpenWhisk controller
queries CouchDB to find the corresponding FaaS function,
then the pair of request and FaaS function is queued into
Kafka [26], which manages the resources and schedule the
actual execution of the FaaS function. Finally, a new docker
container is started, if necessary, and the invoker runs the
function. The result is returned to the database and the
requester application. Most academical experiments to date
have to reverse engineer the commercial FaaS system. This
makes it difficult to take reliable measurements due to the lack
of control of the entire system. The FaaSProfiler is developed
to study the server-level bahaviors of FaaS functions [17]
with the open-source FaaS framework OpenWhisk. As shown
in Figure 2, there are a few components in FaaSProfiler:
a Synthetic Workload Invoker takes a configuration written
in JSON in order to create the requests in a desired way
(e.g., specific Query-Per-Second, request length etc.); and a
Workload Analyzer module is hooked with the CouchDB
in OpenWhisk system to retrieve the first-hand execution

data (e.g., request queuing time, container initialization time,
function execution time and so on).

Based on the OpenWhisk and FaaSProfiler publicly avail-
able on GitHub [27], [28], we setup OpenWhisk-FaaSProfiler
facility as described above, and follow the instructions on the
GitHub pages to adjust the configurations properly (listed in
Table I). The blade server where we deploy this setup has
fairly modern specifications (Table II). As the system has only
a single worker node, the range of request arrival rate that the
system is capable to handle is relatively narrow, so we adjust
the configuration carefully to ensure the system is in a bal-
anced state [17]. It allows us to focus on the containerization
overhead and cold start effect, without worrying about other
latency factors (e.g., Kafka queuing latency).

B. Benchmarks and Experiments

We use four microbenchmarks (base64, http, json, primes)
from the FaaSProfiler repository [28], and five more bench-
marks from the the Java Microbenchmark Harness (JMH)
repository [29]. The four functions coming with FaaSProfiler
are written in Python, so we implement the corresponding
Java version by ourselves, and also write the corresponding
Python version implementations for the five JMH benchmarks.
Descriptions of each of the functions are given in Table III
along with a data size definition. One of our experiments scales
the data size as we will describe later.

We run each function on OpenWhisk in both cold and warm
start scenarios, achieved by shutting down the services and run
right after a warmup invocation of the same function, respec-
tively. FaaSProfiler records the container initialization time and
function execution time separately, so we can double check
that the warm start runs have zero initialization time while the
cold start runs have. In order to understand the containerization
overhead, we also measure the same functions running natively
using the Java Microbenchmark Harness (JMH) [29]. JMH
ensures that the benchmarks are run in a warm environment
and that no dead code is optimized out. We chose to collect
the native execution data in a warm environment because
this is more realistic to the traditional programming model,
which constructs and executes one monolithic application.
In contrast, FaaS never guarantee a warm environment as
containers are spun up and shut down frequently.



TABLE I: Configurations of OpenWhisk-FaaSProfiler.

Parameter Description Value Set
OpenWhisk

invocationPerMinute The maximum number of action invocations allowed per minute 60000
concurrentInvocations The maximum number of invokers allowed to run concurrently 30000
firesPerMinute The allowed trigger firings per minute 60000
sequenceMaxLength The maximum length of a sequence action 50000

FaaSProfiler

test name Name of tests to be run (can choose anything)
random seed Ensures run to run consistency 100
blocking cli True/false determines whether blocking CLI calls are used false
test duration in seconds Total duration of test in seconds, measurement stop after this time 15-90
instances Set of functions to run during measurement period
application Name of function (should be the exact name registered)
distribution Distribution of function invocations Uniform
rate Number of function invocations per second 1-30
activity window Range of time in seconds during which function invocations should occur [5,-5]
perf monitoring Set of scripts to be run during or after test
runtime script Monitoring script run during test default
post script Optional post processing script null

TABLE II: System Specifications

Processors 12× X86 64 cores @ 2.2 GHz, 2 hyperthreads/core

Cache 32KB private I-Cache, 32KB private D-Cache,
256KB private L2, 30 MB shared L3

Memory 56GB DDR4-2400
NIC PCIe 2.1 5GT/s GbE NIC
kernel version Linux 4.4.0-138-generic

TABLE III: Microbenchmarks

Name Description Data Size (n)
base64 Encodes and decodes a string Length of the string

http Performs API call to retrieve
current time

Number of API
invocations

json Reads a JSON object from a file,
averages values in common fields

Length of the JSON
object

primes Finds the number of primes
between 1 and n

Upper bound on range of
numbers for prime search

bigDec Creates array of BigDecimals and
compares all elements to element 0

Number of compare
operations performed

bigInt Creates array of BigIntegers and
multiplies each element together

Number of elements in
array

arrCpy Copies an array of bytes to an
empty array (deep copy) Length of byte array

intMax Rinds maximum value in an array
of integers Length of integer array

fileRW Writes to tmp file and then reads
data back

Number of bytes written
to file

For FaaS function, it is clear one of the cold start overheads
comes from the container initialization. Java FaaS function
running in a cold start scenario have additional overhead added
to the execution time. One of the possible sources for the extra
overhead is Java Virtual Machine (JVM) warmup, so we also
performed a data scaling experiment by varying the data size
as defined in Table III. If the difference in the execution times
(cold vs. warm start) is due to the JVM warming up, it should
be consistent for the same function across data sizes [19].

To make comparison between Python and Java, we measure
the container initialization time as well as the total response
latency (warm and cold starts) for the Python version of all
aforementioned FaaS functions (§ III-B) except fileRW, which
cannot reach a balanced state on a single worker server.

IV. RESULTS

A. Native vs. OpenWhisk Execution

Fig. 3: OpenWhisk response latency normalized by native
execution time for Java functions. Benchmarks are sorted by
the native execution time (the numbers above the black solid
bars are the absolute execution time in milliseconds).

Function execution on OpenWhisk is consistently slower
than native execution in both cold and warm start scenarios.
Figure 3 shows the response latency of each function on
OpenWhisk normalized by its latency in native environment.
The end-to-end latency for functions in warm containers is
1.6× to 15× longer than the native execution. Most functions
experience a 3× to 24× longer response latency (over native
latency) during cold starts. However, extremely short functions
such as bigInt and json suffer from much more slowdowns (up
to 57.64×). This is partially due to that the overhead caused
by container start up and initialization is relatively constant
(as we will show in Section IV-B). Across all 9 benchmarks,
the geometric average (GEOMEAN in Figure 3) of slowdown
is 4.42× for warm start, while cold start is 12.44×.

B. Cold Start

As shown in Figure 4a, container initialization time (the
cyan solid bars) remains about the same (266 ms) across all
Java FaaS functions. This is expected because the time to
start a container should not depend on which function it will
execute. Surprisingly, Figure 4a also indicates that container
initialization time is not the only factor contributing to the



(a) Java

(b) Python

Fig. 4: Java function cold start container initialization time,
which explains part of the overhead cold start has over warm
start. Python function container initialization time is about the
latency difference between cold start and warm start.

longer cold start response latency (compared with the warm
start latency). The differences (the hatched bars) between the
latency on cold and warm starts are more or less (but still
statistically) greater than the container initialization time.

We can see in Figure 4b that Python containers has very
stable initialization time (about 778 ms), nearly triple of Java
container initialization time. Python containers take longer
time than the Java ones to initialize, because OpenWhisk
launches Java container and Python container based on dif-
ferent docker images, and the Python image has much more
layers (preparing commands/actions) than the Java image.
Unlike Java FaaS function, Python version has a much simpler
answer for the cold start overhead. The difference of response
latency between cold start and warm start for Python FaaS
functions, perfectly match to the container initialization time,
meaning the container initialization is the only cold start
overhead for Python FaaS.

Based on the observations from Figure 4, we know there
must be some overhead in addition to the container initial-
ization in the cold start scenario that Java suffers but Python
avoids. It is likely Java Virtual Machine (JVM) warmup that
contributes more latency to the Java FaaS function execution,
after the container is up.

C. Data Scaling

As revealed in prior work [19] that loading Java classes
and interpreting bytecodes that JVM has not seen before are
the main sources to JVM warmup overhead. Therefore, JVM
warmup overhead should not scale with the input size. Based
on this theory, we scale the data size and monitor how the
difference between cold starts and warm starts changes. Fig-
ure 5 visualizes the results. For base64, http, and primes, the
cold start and warm start difference remains almost constant
as the overall response latency rise steeply. It is a bit different
for json (Figure 5c), where the gap between cold start and
warm start enlarges gradually. This is because json function is
relatively short and the function invocation rate is fairly high.

(a) base64 (b) http

(c) json (d) primes

Fig. 5: Java function cold start and warm start execution times
scale as the data size increases. The difference between cold
start and warm start execution times remains relatively stable.

A small increase in the response latency of json could lead
to the chained effect, that more requests are queued up and
the requests arrive later accumulate latency. In other word,
the server drifts from the balanced state to over-invoked state
similar to what was observed in Shahrad et al. [17].

D. Java vs. Python OpenWhisk Performance

(a) cold start

(b) warm start

Fig. 6: Java and Python OpenWhisk functions performance
comparison. The end-to-end execution time of Python func-
tions are normalized to the time of Java functions, whose
absolute values are labeled above the solid bars.

Figure 6 shows a comparison of Java vs. Python functions
in cold (Figure 6a) and warm (Figure 6b) execution environ-
ments. Both plots show total response latency (i.e., the sum of
function execution time and initialization time if cold start).
Due to the longer initialization time that Python has (§ IV-B),
the Java function is faster in all except base64 for the cold
start scenario. For the warm start scenario, Java is still faster
on average, but there is more variation between functions. On
average (geometric mean), Java function implementations



are 2.60× faster than Python in cold start scenarios and
2.65× faster than Python in warm start scenarios.

V. FUTURE WORK

We have shown that function length affects containerization
overhead, and that typically longer functions perform better
(§ IV-A). Further study could try to determine the optimal
function length for any language or FaaS architecture. Similar
optimization on memory consumption and invocation rate
should also be done. Most FaaS research to date has been
focused on the performance of very short functions. Under-
standing the FaaS overhead for larger applications would be
extremely helpful in determining the range of use cases where
FaaS can provide a cost or performance benefit.

VI. CONCLUSIONS

This study provides three key takeaways for the FaaS de-
velopers. First, function execution time should be significantly
longer than the container initialization time in order to keep
FaaS overheads low. In general, short functions have a higher
containerization overhead than long ones, and especially in
cold start scenarios. Writing functions with longer execution
time (breaking application code into larger pieces) can amor-
tize the constant container initialization time.

Second, pay special attention to cold start overheads for
functions which are not invoked frequently enough. The cold
start overheads of these functions will not be amortized
enough. The cost of these cold starts varies depending on
language. The results presented here show that the container
initialization time for Python functions is higher than that of
Java. However, Java functions typically incur an additional
slowdown (from JVM) in the function execution phase on cold
starts, while Python functions have consistent execution times
regardless cold or warm containers. Pre-warming and other
strategies could be explored to reduce these overheads.

Third, the same FaaS function written in different pro-
gramming languages could have quite different performance.
Pre-compiled languages (e.g., Java) tends to be faster than
interpreted languages (unless the platform has special op-
timizations). This is extremely important for developers to
understand as choosing the appropriate platform/language pair
can have a major impact on performance. In the case of Open-
Whisk, Java performs better, even considering the additional
overhead caused by JVM warmup during cold starts.
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