
Quantifying the Effectiveness of MMX in Native Signal Processing

Deependra Talla and Lizy K John
Laboratory for Computer Architecture, Dept. of ECE

The University of Texas at Austin, Austin, TX 78712, USA
{deepu, ljohn}@ece.utexas.edu

Abstract - Effectiveness of MMX for Digital Signal Processing on
general-purpose processors (often referred to as Native Signal
Processing) is evaluated. We benchmarked a variety of signal
processing algorithms and obtained speedup (ratio of execution
speeds) ranging from 1.0 to 4.0 by using MMX technology over
non-MMX code. Efficient, reliable and standard C code is also
evaluated with respect to NSP library assembly code from Intel.

I. INTRODUCTION

Digital Signal Processing (DSP) and multimedia applica-
tions are increasingly being implemented on general-purpose
microprocessors found in common desktop computers [1].
General-purpose microprocessors have entered the signal
processing oriented stream by adding DSP functionality to
the instruction set and also providing optimized assembly
libraries. Perhaps, one of the earliest and most visible exam-
ple of this approach was Intel’s Native Signal Processing
(NSP) initiative with the introduction of the MMX (com-
monly dubbed as MultiMedia eXtension) set for the Pentium
line of microprocessors. In addition to providing such a me-
dia extension, Intel also provides optimized C-callable as-
sembly libraries for signal and image processing [2]. Several
other processor vendors have responded similarly with media
extensions such as the Visual Instruction Set (VIS) for the
UltraSparc processors from Sun, AltiVec for the PowerPC
processors from Motorola, Motion Video Instructions (MVI)
for the Alpha processors from Digital/Compaq, etc. Also,
general-purpose processors have very high clock speeds and
advanced architectural features such as superscalar imple-
mentation, dynamic execution and branch prediction. In this
paper, we evaluate the benefits of MMX technology on a
suite of signal processing algorithms. Performance of NSP
assembly library versus industry standard C code is also pre-
sented.
 MMX technology is a single-instruction multiple-data
(SIMD) approach to exploit data parallelism in signal proc-
essing applications. One SIMD data type contains several
pieces of data that is simultaneously processed in the com-
putation unit. For example, processing of image signals typi-
cally involves manipulating matrices of 8-bit data. Each
MMX register is 64-bits wide. Eight pieces of the image data
can be packed into one MMX register and arithmetic or logi-
cal operations can be performed on the pixels in parallel with
the results being written back to a MMX register. By taking
advantage of such a technology, we can operate on 8-bit and
16-bit fixed-point data that is commonly used in speech,

audio, image, and other signal processing applications. Fig. 1
below shows an example of the multiply-accumulate opera-
tion as performed in MMX technology.

Previous efforts have analyzed the benefits of performing
native signal processing using multimedia extensions [3][4].
Performance benefits of MMX instructions over non-MMX
code for a Pentium processor were evaluated in [4] on a suite
of benchmarks. In addition to benchmarking filters and ma-
trix-vector arithmetic, applications such as JPEG, G.722
speech coding and Doppler radar were also evaluated. A
number of DSP and general-purpose processors have been
benchmarked by BDTI [5] including a Pentium processor
with MMX, however details on performance of individual
benchmarks are not publicly available. A Pentium II proces-
sor with MMX was compared with a C6x DSP processor in
[6]. Performance of NSP library code was also compared
with operating system effects included in the results in [6].

In this paper, we quantify the benefits of MMX technol-
ogy over a wide range of signal processing algorithms (not
benchmarked elsewhere in literature) provided in the NSP
library from Intel [2]. For quantifying the benefits of MMX
technology, we have two versions of each of the signal proc-
essing algorithms, one without MMX (non-MMX version)
and one with MMX instructions. Based on the number of
execution clock cycles taken by each version, we quantify a
speedup value taken as a ratio of the two versions. The rest of
the paper is organized as follows. Section 2 presents the suite
of signal processing algorithms/benchmarks evaluated in this
work. Section 3 discusses the methodology adopted. Section
4 reports and analyzes the results. Based on our observations,
we provide insight into NSP on general-purpose processors
and conclude the paper in Section 5.

Fig. 1. Matrix-Vector multiplication and add

V0 V1 V0 V1 V2 V3 V2 V3

m00 m01 m10 m11 m02 m03 m12 m13

First
Result

Second
Result

V0*m00 +
V1*m01

V0*m10 +
V1*m11

V2*m02 +
V3*m03

V2*m12 +
V3*m13

II. SIGNAL PROCESSING BENCHMARKS

To evaluate the benefits of MMX technology in signal
processing, we chose to obtain code that is well optimized
and vendor supplied. Intel provides a comprehensive library
of signal and image processing algorithms for use on the
Pentium line of processors. We benchmarked a majority of
the signal processing algorithms provided in the NSP library.
All of our benchmarks use 16-bit fixed-point data type, which
is common in digital signal processors. The rest of this sec-
tion provides some details on the benchmarks.

Signal Generation Functions are an integrated part of
many applications and are commonly used in various signal
processing algorithms for test inputs and equalization. Three
signal generation algorithms, Tone (cosine), Triangle, and
Gaussian (white noise) waves generating 4,096 samples each
were benchmarked.

Windowing is an operation that is typically performed to
narrow the frequency spectrum and eliminate ‘glitches’ that
result when certain operations such as the Fast Fourier Trans-
form (FFT) are done. In simplistic terms, windowing is mul-
tiplying two data vectors together after generating the win-
dow coefficients. Five different window functions were
evaluated on 16,384 data points each. We benchmarked
Hamming, Hanning, Kaiser, Bartlett, and Blackman win-
dows.

Filters have the capability to allow certain frequency
components in the input to pass unchanged to the output
while attenuating other components by desired amounts.
These are used in applications such as linear predictive cod-
ing, equalization and speech and audio processing. Finite
Impulse Response (FIR) and Infinite Impulse Response (IIR)
filters were evaluated. The FIR filter (35th order low-pass)
operates on a sample-by-sample basis for 6,000 samples
while the IIR filter (5th order high-pass) is a block-filter ap-
plied to 10,000 data points.

Three major transforms, the FFT, the discrete cosine
transform (DCT), and the discrete wavelet transform (DWT)
are benchmarked. The FFT converts a signal from the time
domain into the frequency domain. FFT-based applications
include radar processing, MPEG audio compression, ADSL
modems and spectral analysis. A 16,384-point complex FFT
was performed. The DCT is commonly used in JPEG and
MPEG coding standards. Both the forward and the inverse
DCT was performed on an image of 16,384 data elements.
The DWT is used in image processing and time-frequency
analysis. A 4th order Daubechies wavelet was applied to an
8,192 sized data vector. Both the forward and inverse DWT is
performed.

Convolution and Vector-Matrix operations are com-
monly performed in several signal processing and multimedia
applications. Two 512-data element vectors were convolved.
The matrix-vector operations include dot products and ma-
trix-vector multiplication performed on 256 length data
points.

III. METHODOLOGY

We compile the benchmarks using Intel C/C++ 2.0 com-
piler on a Pentium II processor (with MMX) running Win-
dows NT. All programs are compiled with the optimization
“Maximize for Speed”. Intel provides a different set of li-
braries, one for each of its Pentium line of processors. A
Pentium Pro processor is exactly the same architecture (P6
microarchitecture) as a Pentium II processor except that it
does not have MMX technology. Each of our benchmarks has
two versions, one non-MMX version and one MMX version.
The non-MMX algorithms were obtained from the Pentium
Pro library while the MMX versions were obtained from the
Pentium II library. We evaluated the NSP library version 4.0
(the latest available at the time of this work).

We create the benchmarks by taking reliable C programs
and then modifying them to use assembly libraries. Each of
the assembly library functions has a C-callable syntax. The
data to be processed is initialized in buffers and passed on as
arguments to the assembly NSP function. We measure the
number of execution cycles taken by each benchmark for
both the non-MMX and MMX versions. The Pentium line of
processors have in-built hardware performance counters for
measuring several execution statistics such as number of in-
structions, clock cycles, and MMX instructions. Gathering
information from the performance counters is simple and
non-obtrusive (the application is allowed to execute at the
normal speed), and allows us to make multiple runs and sta-
tistically average the results. We only measure the perform-
ance of the main algorithm/function and not the initialization
routines, reading from and writing to files and cleanup after
processing. Since input data for signal processing applica-
tions comes from sources like a sound card, a network card,
or an analog-to-digital converter, initialization and file rou-
tines are not measured to minimize distortion. Also we do not
include any operating system effects in the results. To mini-
mize the effects of cold caches, data is preloaded into the
cache before measuring the execution statistics.

We quantified speedup as the ratio of the execution cycles
of the MMX version over the non-MMX version. Since all of
the benchmarks use 16-bit fixed-point data type, there is an
available 4-way parallelism due to MMX (each MMX regis-
ter is 64-bits wide). But the measured speedup may differ
from the theoretical speedup of 4 due to several reasons. Not
all the instructions executed in the MMX version are MMX
instructions - non-MMX related instructions are still executed
and experimental speedup would be less than 4. There is an
overhead associated with packing and unpacking the four
pieces of data into an MMX register and memory. This con-
tributes to a detriment in the speedup. However, there are
factors that contribute to a superlinear speedup (speedup
greater than 4). MMX technology has advanced DSP instruc-
tions that are not available in the original instruction set such
as the multiply-accumulate instruction. Also the latency of
MMX instructions is far less than the corresponding non-
MMX instructions. For example, the scalar integer multiply

in the Pentium family takes 10 cycles, while the multiply-
accumulate instruction has only a 3 cycle latency. Further-
more, non-MMX instructions such as the integer multiply are
not pipelined and hence throughput is only one in 10 cycles,
while MMX instructions are fully pipelined with a throughput
of one.

IV. RESULTS

Table 1 below presents the results of the study with the
number of execution clock cycles taken by the non-MMX
and MMX versions. In addition the total number of instruc-
tions executed for the MMX version and the number of
MMX related instructions are also shown. Fig. 2 shows the
speedup and percentage of MMX instructions in each bench-
mark. Benchmarks not shown here did not have any MMX
instructions.

None of the three signal generation functions use any
MMX instructions. The MMX version of the NSP library is
the same as the non-MMX version for the signal generation
functions (do not take advantage of MMX). This is because
for all of the three benchmarks, floating-point data is inter-
nally used to generate the signals and converted to fixed-
point. MMX is used only for fixed-point data type and not
floating-point arithmetic. In fact, mixing MMX and floating-
point code is costly because MMX registers are aliased to
floating-point registers. Either MMX or floating-point in-
structions can be used at one time and not both.

Four of the five window functions except the Kaiser win-
dow (no MMX related instructions were executed for Kaiser
window) function exhibits an average speedup of 2.0 with
each of them executing over 80% MMX related instructions.
Each of the window functions involves generating the win-
dowing coefficients and then convolution with the data sig-
nal. The overhead associated with packing and unpacking of
MMX related instructions exceed the positive factors affect-
ing theoretical speedup.

The DWT did not use any MMX instructions like the sig-
nal generation functions. In fact, there is an internal conver-
sion to float data type from the 16-bit fixed-point data input
in the source code of the assembly library. The DCT has
around 62% MMX related instructions and shows a speedup

Table. 1. Execution times and instruction counts

Benchmark Non-MMX
cycles

MMX
cycle
count

No. of
dynamic

instrs.

No. of
MMX
instrs.

Hamming 127756 66134 114931 98296
Hanning 125570 68336 114296 98297
Bartlett 58890 50948 82082 65534
Blackman 166334 76268 131380 114682
DCT/IDCT 8203431 3220815 3816719 2383892
FFT 3146705 3099504 2731424 86018
Matrix-Vec 290406 106278 99115 90640
IIR 2171359 457600 620298 455006
FIR 1865746 1573396 1440093 270000

0

1

2

3

4

5

Ham Han Bar Bla DCT FFT M-V IIR FIR

S
p

ee
d

u
p

0

20

40

60

80

100

%
 o

f
M

M
X

in

st
ru

ct
io

n
s

Speedup % of MMX

Fig. 2. Speedup and % of MMX instructions

of 2.55. The DCT involves multiplication of an 8x8 DCT
coefficient matrix with an 8x8 data matrix. The DCT coeffi-
cients are generated internally by the NSP library function,
which is why the speedup is only 2.55 and not higher. Gener-
ating DCT coefficients earlier and measuring only the matrix-
matrix multiplication can achieve significant speedup. The
FFT has a very low quantity of MMX related instructions
(3% only) and shows a speedup of 1.02. Careful observation
of the assembly code for the FFT showed an internal conver-
sion from 16-bit data to floating-point data and hence uses
very few MMX related instructions.

The IIR filter has 73% MMX related instructions and ex-
hibited a maximum speedup of 4.75. This is the only bench-
mark where there is an experimental speedup that is greater
than the theoretical speedup. The benefits of shorter latencies
and pipelining of MMX execution units exceeds the packing
and unpacking overhead. The IIR filter we used is a block-
based filter operating on a large set of data stored in a buffer.
The FIR filter on the other hand has 19% MMX related in-
structions and shows a very low speedup of 1.20. The FIR
filter benchmarked is a sample-by-sample basis filter and
there is less parallelism available than a block-based filter.
Finally, the vector-matrix benchmark had the highest (91%)
percentage of MMX related instructions and showed a good
speedup of 2.5 over the non-MMX version.

Overall, MMX implementation does provide improve-
ments over non-MMX implementations of the DSP algo-
rithms. But, as was discovered in this work, not all algorithms
utilize MMX instructions. Sometimes, due to precision con-
straints, 16-bit data width may not be sufficient. Floating-
point arithmetic is required for certain applications – general-
purpose processors have floating-point hardware unlike many
digital signal processors that perform floating-point arithme-
tic in software. Therefore, we benchmark the performance of
floating-point versions of the benchmarks. Many times C
code is used for several signal processing applications, par-
ticularly on general-purpose processors due to the availability
of excellent code developing tools. We also evaluated the
performance of industry standard C code obtained from [7][8]
versus the NSP library.

For the same benchmark suite described in Section 2, we
have four versions of each benchmark. A C code version us-
ing float data type (single precision floating-point), a NSP
float version, a NSP double version (double precision float-

ing-point) and a NSP short version (same as the MMX ver-
sion if available or non-MMX version if the benchmark does
not use any MMX related instructions). Figs. 3, 4 and 5 show
the results obtained for this comparison.

Speedup in this case is quantified as the ratio of execution
clock cycles for each version with the C code as the baseline
(speedup of C version is always 1). Performance improve-
ment is obtained when using NSP assembly code over C code
in a number of benchmarks. Slowdown is seen in Gaussian
and Triangle wave generation functions, Kaiser window
function and FIR filter. It is interesting to note that the short
versions for DWT, Gaussian, Triangle and Kaiser are slower
than the float and double versions. This is because in the as-
sembly code from the NSP library, there is an internal con-
version from short to float. Computation is being performed
on floating-point data and results converted back to 16-bit
data. To provide robustness, NSP library code has a lot of
error-checking routines that slow down the execution per-
formance. As expected the double versions of the bench-
marks are slower than the float versions because of higher
latency for floating-point operations in double-precision than
single-precision on the Pentium II processor.

0
1
2
3
4
5
6
7
8

FFT DCT DWT FIR IIR

S
p

ee
d

u
p

C (single-precision FP) NSP Float (single-precision FP)
NSP Double (double-precision FP) NSP Short (16-bit data)

Fig. 3. Speedup for NSP library over C code

0
1
2
3
4
5
6

Ham Han Kai Bar Bla

S
p

ee
d

u
p

Fig. 4. Speedup for NSP library over C code

11 11 24.5

0

1

2

3

Gau Tri Ton V-M Con

S
p

ee
d

u
p

Fig. 5. Speedup for NSP library over C code

V. CONCLUSION

We quantified the effectiveness of MMX technology in
native signal processing. Results show a speedup ranging
from 1.0 to 4.7 over the wide range of benchmarks. But not
all signal processing algorithms take advantage of MMX
technology. Moreover, one has to resort to the NSP library to
exploit the benefits of MMX because C compilers to date
cannot generate MMX instructions adequately. Unless known
earlier for each algorithm, potential of MMX in NSP library
cannot be fully realized. C code from industry standard
sources and assembly code with different data types was also
benchmarked. In general using NSP library code offers an
improvement over C code because the assembly code is
highly optimized. But in some algorithms the NSP code is
slower than C code. Furthermore, 16-bit processing is slower
than floating-point processing in some cases because there is
an internal conversion from short to float data types and vice
versa. Such anomalies make it difficult to predict the per-
formance of an algorithm when using NSP library code.

ACKNOWLEDGMENTS

This work is supported in part by the State of Texas Ad-
vanced Technology Program grant #403, the National Sci-
ence Foundation under Grants CCR-9796098 and EIA-
9807112, and by Dell, Intel, Microsoft and IBM. We would
like to thank Numerix Co. Ltd for providing a free copy of
Siglib, an industry standard C library for DSP.

REFERENCES

[1] G. Blalock, “Microprocessors Outperform DSPs 2:1”, Micro-
Processor Report, vol. 10, no. 17, pp. 1-4, Dec. 1995.

[2] Intel, “Performance Library Suite”.
http://developer.intel.com/vtune/perflibst/index.htm.

[3] R. B. Lee, “Multimedia Extensions for General-Purpose Proc-
essors”, Proc. IEEE Workshop on signal Processing Systems,
pp. 9-23, Nov. 1997.

[4] R. Bhargava, L. John, B. Evans and R. Radhakrishnan, “Evalu-
ating MMX Technology Using DSP and Multimedia Applica-
tions”, Proc. IEEE Int. Sym. on Microarchitecture, pp. 37-46,
Dec. 1998.

[5] BDTI. http://www.bdti.com.
[6] D. Talla and L. John, “Performance Evaluation and Bench-

marking of Native Signal Processing”, Proc. European Conf. on
Parallel Processing, Sep. 1999, “in press.”

[7] Siglib version 2.4. http://www.numerix.co.uk.
[8] P.M. Embree, “C algorithms for Real-Time DSP”, NJ: Prentice

Hall, 1995.
[9] R.B. Lee, “Accelerating Multimedia with Enhanced Microproc-

essors”, IEEE Micro, vol. 15, no. 2, pp. 23-32, Apr. 1995.
[10] D. Bhandarkar and J. Ding, “Performance Characterization of

the Pentium Pro Processor”, Proc. HPCA-3, pp. 288-297, Feb.
1997.

[11] J. Bier and J. Eyre, “Independent DSP Benchmarking: Method-
ologies and Latest Results"” Proc. Int. Conf. on Signal Proc-
essing Applications and Technology, Sep. 1998.

