
Copyright

by

Jiajun Wang

2019

The Dissertation Committee for Jiajun Wang
certifies that this is the approved version of the following dissertation:

Reuse Aware Data Placement Schemes For Multilevel

Cache Hierarchies

Committee:

Lizy Kurian John, Supervisor

Earl E. Swartzlander Jr

Andreas Gerstlauer

George Biros

Mohit Tiwari

Reuse Aware Data Placement Schemes For Multilevel

Cache Hierarchies

by

Jiajun Wang

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2019

Dedicated to my family

Acknowledgments

I would like to express my special appreciation and thanks to my advisor

Prof. Lizy Kurian John for her tremendous guidance of my PhD study. I would

like to thank her for the endless patience and encouragement to allow me grow

up my research interest, for the immense knowledge to guide me in all the

time of research, and for continuous support to help me in not only writing of

this dissertation and all the other research papers. I could not have imagined

having a better advisor and mentor for my PhD study, and my respect goes

to her.

Besides my advisor, I would like to thank the rest of my dissertation

committee: Prof. Earl E. Swartzlander, Prof. Andreas Gerstlauer, Prof.

George Biros and Prof. Mohit Tiwari, for their insightful comments and con-

structive criticism to help me widen my research from diverse disciplines and

improve this dissertation. I would also like to express sincere gratitude for the

opportunity to collaborate with my internship mentors at ARM memory re-

search team, Wendy Elsasser and Prakash Ramrakhyani. Thank you for your

constructive comments and unfailing feedback in improving my research topic.

My PhD time will lose so much fun without the interaction with other

graduate students. I would like to thank all the member of LCA research

group: Dr. Jee Ho Ryoo, Dr. Michael Lebeane, Dr. Reena Panda, Shuang

v

Song and Qinzhe Wu. Specifically, thanks Reena for helping me develop many

research ideas as well as the countless coffee chats we had together. I am

also grateful for the course projects and leisure activities with others: Dr.

Zhuoran Zhao, Dr. Yazhou Zu, Dr. Wooseok Lee, Mochamad Asri and Kishore

Punniyamurthy.

I would like to thank my mom and dad for making the start of my PhD

journey possible. I can not be more grateful for their unwavering support of

my decisions on the turning points in life. Thanks for sharing both joy and

worries and always having faith in me.

Lastly, I will not reach the destination of this PhD journey without the

support of my husband, Lu Zhang. Thanks for patiently proof reading every

single word of my research paper and be the loyal and critical audience of my

presentation. Thanks for always staying late with me till the last minute of

paper submission, regardless of whether the deadline is at midnight or early

morning. Thanks for giving me both encouraging words and agreeable melan-

choly during the most difficult time of my PhD. This doctorate is as much his

as mine.

vi

Reuse Aware Data Placement Schemes For Multilevel

Cache Hierarchies

Publication No.

Jiajun Wang, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Lizy Kurian John

Memory subsystem with larger capacity and deeper hierarchy has been

designed to achieve the maximum performance of data intensive workloads.

What grows with the depth and capacity is the amount of data movement hap-

pened between different levels of caches and the associated energy consump-

tion. Prior art [65] shows that the energy cost of moving data from memory

to register is two orders higher than the cost of register-to-register double-

precision floating point operations. As the cache hierarchy grows deeper, the

energy cost on the large amount of data movement between cache layers has

become non-negligible. Energy dissipation of future systems will be dominated

by the cost of data movement. Thus, reducing data movement through ex-

ploiting data locality becomes essential to build energy-efficient architectures.

A promising technique to improve the energy efficiency of modern mem-

ory subsystem is to adaptively guide data placement into appropriate caches

vii

with the performance benefit and energy cost of data movement in mind. An

intelligent data placement scheme should only move data blocks with future

re-reference into cache. As the working set size of emerging workloads ex-

ceeds cache capacity and the number of cores and IPs sharing caches keeps

increasing, a data movement aware data placement scheme can maximize the

performance of cache-sensitive workloads and minimize the cache energy con-

sumption of cache-insensitive workloads.

Researchers have noticed that exclusive caches have better performance

compared to inclusive caches. However, high performance improvement is

always at odds with low energy consumption. The amount of data movement

and energy consumption of exclusive caches is higher than inclusive ones. A

few state-of-the-art CPU caching insertion/bypass policies have been proposed

in literature. However these techniques are either at great expense of metadata

overhead when adapting to exclusive caches, or they focus on reducing data

movement at the sacrifice of performance. On the GPU side, designing efficient

data placement schemes also faces great challenge. CPU caching schemes do

not work for GPU memory subsystems, because the SRAM capacity per GPU

thread is far smaller than the number per CPU threads. The capacity of

GPU on-chip SRAMs is too small to hold large data structures in the GPU

workloads. Data with frequent reuse is evicted before it is re-referencedwhich

results in high GPU cache miss rate. Keeping the above shortcomings of prior

work and key limitations in mind, this dissertation focuses on improving the

performance and energy efficiency of modern cache subsystems of CPU and

viii

GPU by proposing performance and energy sensitive data placement schemes.

This dissertation first presents a data placement for multilevel CPU

caches to guide data placement into appropriate cache layers based on data

reuse patterns. PC is utilized as the prediction heuristic based on the obser-

vation of good correlation between memory instruction and the locality of the

data accessed by the instruction. Unlike prior art that includes great over-

head for meta-data (e.g., PC) transmission and storage, a holistic approach to

manage data placement is presented, which leverages bloom filters to record

the memory instruction PC of data blocks. The proposed scheme incorpo-

rates quick detection and correction of stale/incorrect bypass decisions and

an explicit mechanism for handling prefetches. This leads to energy efficiency

improvement by cutting down wasteful cache block insertions and data move-

ment.

To overcome the challenges on the GPU side, an explicitly managed

data placement scheme in GPU memory hierarchy is presented in this dis-

sertation. In order to improve data reuse of a popular HPC application and

eliminate redundant memory accesses, data access sequence is rearranged by

fusing multiple GPU kernel execution. Bank level fine-grained on-chip SRAM

data placement and replacement is designed based on the microarchitecture

of GPU memory hierarchy to maximize capacity utilization and interconnect

bandwidth. The proposed scheme achieves the best performance and least

energy consumption through reducing memory access latency and eliminating

redundant data movement.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1. Problem Description . 4

1.1.1. Challenges in CPU memory subsystems 4

1.1.2. Challenges in GPU memory subsystems 8

1.2. Limitations of Prior Research Work 11

1.3. Overview of Proposed Research 15

1.4. Thesis Statement . 18

1.5. Dissertation Contribution . 18

1.6. Dissertation Organization . 20

Chapter 2. Related Work 22

2.1. Schemes for Measuring Spatial and Temporal Locality 22

2.2. Exclusive Caches and Data Replacement Policies 24

2.3. Data Placement Involving Software Level Management 28

Chapter 3. Methodology 30

3.1. Simulation Infrastructure and Power Measurement 31

3.1.1. CPU performance and power measurement 31

3.1.2. GPU performance and power measurement 32

3.2. Workload Description . 33

3.2.1. CloudSuite . 33

x

3.2.2. SPEC CPU2006 benchmarks 36

3.2.3. Kernel summation . 36

Chapter 4. Data Locality Analysis and Micro-architectural In-
sights 38

4.1. Experimental Setup . 40

4.1.1. Temporal locality profile 41

4.2. Analysis of Temporal Locality 42

4.2.1. Micro-architectural insights 44

4.3. Analysis of Spatial Locality . 47

4.4. Summary . 50

Chapter 5. Multicore CPU Data Placement Optimization 52

5.1. Proposed Scheme . 52

5.1.1. Handling demand requests 56

5.1.1.1. Applying bloom filter 57

5.1.1.2. Prediction Learning table 58

5.1.1.3. Result table . 60

5.1.1.4. Learning from bypass decisions using empty blocks 61

5.1.2. Handling prefetch requests 63

5.2. Evaluation . 65

5.2.1. Evaluation results . 67

5.2.1.1. Energy efficiency 68

5.2.1.2. Data movement 73

5.2.1.3. Performance . 74

5.2.1.4. Comparison with RAP 78

5.2.2. Hardware cost and design decisions 80

5.2.2.1. Hardware overhead comparison 80

5.2.2.2. Bloom filter analysis 81

5.2.2.3. Impact of ”Utilize empty blocks” rule 82

5.3. Summary . 83

xi

Chapter 6. GPU Data Placement Optimization 86

6.1. GPGPU background . 87

6.2. Kernel Summation application 89

6.3. Proposed Scheme . 91

6.3.1. Data placement in GEMM 94

6.3.2. Shared memory data mapping 98

6.3.3. Kernel summation fused with GEMM 101

6.4. Evaluation . 105

6.4.1. Influence on data movement 110

6.4.2. Energy . 112

6.5. Summary . 114

Chapter 7. Conclusion and Future Work 116

7.1. Summary . 117

7.2. Future Work . 119

Bibliography 147

Vita 148

xii

List of Tables

4.1. System Configuration . 40

4.2. Workload characteristics . 40

5.1. Simulation parameters . 66

5.2. Workload mixes in Figure 5.5 70

5.3. Workload mixes in Figure 5.7 76

5.4. Comparison between FILM and RAP enhanced with FILM-like
training on prefetch relative to TC-UC 79

5.5. FILM hardware budget (per core) 80

5.6. Overhead Comparison (per core) 80

6.1. Configuration . 104

6.2. FLOP Efficiency . 108

6.3. Energy Savings of Fused compared to cuBLAS-Unfused 113

xiii

List of Figures

1.1. Percentage of L1 evicted cache blocks getting reused at L2 and
L3 in SPEC CPU2006 (average) 6

1.2. L2 MPKI of kernel summation problem, with N=1024 in all cases 9

1.3. Performance of inclusive cache orientated and PC-correlated al-
gorithms deteriorate if LLC is exclusive. 11

1.4. Normalized performance and LLC traffic of state of the art
caching schemes over TC-UC. 13

4.1. Temporal locality analysis: The figure shows the approximate
reuse distance panel. Y-axis presents percentage of memory
references and x-axis presents the reuse distance. 41

4.2. Prefetching Sensitivity of LLC Size. 44

4.3. Spatial locality analysis: Global/Local stride patterns in LLC
access streams . 48

5.1. Percentage of memory instructions with stable data locality . 54

5.2. Overview of the proposed FILM system 55

5.3. Training of FILM on demand-fetched blocks. One Prediction
Learning table entry update at two different cycles. 59

5.4. Training on prefetched blocks. Showing two different scenarios
at two different cycle. 64

5.5. Energy efficiency(IPC/J) of FILM and other schemes. Results
normalized to TC-UC. The higher the better. 69

5.6. The traffic and energy of shared memory resource (LLC and
DRAM) of FILM and other schemes. Results normalized to
TC-UC. The lower the better. 73

5.7. IPC of FILM and other schemes. Results normalized to TC-UC.
The higher the better. 75

5.8. Lowest normalized IPC of any co-running program. IPC reduc-
tion due to negative interference is least for FILM. 78

5.9. Rate of multiple entry matches reported by FILM’s bloom filter. 81

xiv

5.10. Performance sensitivity to the number of bloom filters. IPC
normalized to 16 bloom filters. 83

5.11. Energy efficiency of FILM and FILM without ”utilize empty
block rule”. Results normalized to TC-UC. The higher the better. 84

6.1. GPGPU memory hierarchy . 87

6.2. GEMM algorithmic view . 95

6.3. Data-thread mapping when loading tileB into shared memory 98

6.4. Execution time and speedup of the fused kernel summation in
comparison with unfused implementations. 106

6.5. Reuse distance profile of CUDA-Unfused and Fused approach
at shared L2. M=N=131072 107

6.6. Execution time comparison of different GEMM implementations 109

6.7. L2, DRAM transaction number normalized to cuBLAS-Unfused. 111

6.8. Power comparison between CUDA-Unfused and Fused approach.
M=N=1024,K=256 . 111

6.9. Energy consumption breakdown into Compute, Shared memory,
L2, and DRAM . 112

xv

Chapter 1

Introduction

In the era beyond the end of Denard’s scaling, scaling throughput has

become the driven force to scale microprocessor performance due to the in-

ability to scale frequency. Performance improves by processing more threads

concurrently using increased core counts and by employing micro-architectural

techniques like SMT/SIMD. The number of threads in modern microproces-

sor SoCs is increasing as exemplified in 48 thread Arm based solutions [18]

and 36 thread recently announced Intel solutions [43]. However, improving

throughput by putting more cores together is not sustainable due to power

and thermal management challenges. High energy bills of large data centers

and limited battery life of edge devices have prompted efforts to make modern

computer systems more energy and power efficient.

From the field of exascale supercomputer systems to the market of mo-

bile edge devices, it has been commonly highlighted that energy dissipation of

future systems will be dominated by the cost of data movement. Prior art [65]

shows that the energy cost of moving data from memory to register is two or-

ders higher than the energy cost of register-to-register double-precision floating

point operations. In the server computing environment, around 28% to 40% of

1

total processor energy consumption of scientific applications is spent on data

movement [66]. Stories are similar to the domain of mobile application proces-

sors. The power consumption of solely working on fetching data from memory

is on par with the mobile processors busy executing arithmetic operations

under 100% utilization [107]. Prior art shows that as semiconductor process

technology scales from 45nm towards 7nm and beyond, the compute energy

scales down by 6X, whereas the energy associated with moving data across

chip through interconnect does not scale as much [89]. The ratio between the

energy cost of data movement and computation is expected to quickly grow in

the future [71, 78].

Cache systems have been designed to achieve maximum performance

for the workload. Still, the total cache capacity is often under-provisioned for

data intensive workloads and under-utilized for cache-insensitive workloads.

On energy efficient systems, maximizing performance at the cost of design-

ing large caches is still desired for cache-sensitive workloads. Meanwhile, the

energy consumption of large caches should not be wasted when running cache-

insensitive workloads. As the working set size of emerging workloads keeps

growing, modern processors employ multiple levels of caches to address the

“Memory Wall” between high speed processors and orders of magnitude slower

main memory. In order to bridge this gap, the computer architecture field has

witnessed the growing depth of cache hierarchy from adding a second level

cache as the back up of L1 cache, to the three-level cache model widely used

in modern commercial CPU chips, to inserting an L0 level between the pro-

2

cessor and L1 as in line buffers [40] or filter caches [70], to another more level

of system cache serving different IPs on the same SoC package, to innovative

ideas of DRAM caches [115] (e.g., die-stacked DRAM). What grows with the

depth and capacity of cache hierarchy is the amount of data movement that

happens between different levels of caches and the associated energy consump-

tion. It is common that caches account for more than 50% of on-chip die area

and consume a significant fraction of static and dynamic power.

Scratchpads are fast on-chip RAMs mapped into the processors address

space at a predefined address range. Scratchpad RAM is explicitly managed at

software level, either by programmer or compiler. Compared to cache RAM,

scratchpad RAM requires smaller chip area thanks to its simplicity in the con-

trol logic and hence it consumes less energy [14]. Software using scratchpad

RAM has higher memory performance predictability compared to cache RAM

which is highly dynamic. Because of this feature, scratchpad is popular on

safety-critical embedded systems which have to meet certain real-time con-

straints [144]. Scratchpads are widely used in hardware accelerators as well.

GPU chips from both NVIDIA and AMD provide programmers with scratch-

pad memory, which is called as “shared memory” in NVIDIA’s term and “local

data store” in AMD’s term. Scratchpad memory enables efficient GPU thread

communication within the same thread block, whereas thread communication

through hardware managed caches usually causes frequent misses. Scratchpad

is also used in other domain specific architectures to communicate interme-

diate results, e.g., input and output of hidden layers in neural network [63].

3

In order to achieve high performance from using scratchpads, it requires pro-

grammers to restructure their code and reorder data access sequences with

hardware characteristics in mind.

1.1 Problem Description

1.1.1 Challenges in CPU memory subsystems

Recent years have witnessed the rise of code and data footprints from

emerging applications, whereas the CPU cache capacity per thread/core has

reached limits due to the power and die area constraints. From the the first

generation of Intel Core i7 chip to the most recent Intel Core i9 design, the

LLC capacity has been held to a maximum of 2MB per core during the past

ten generations. Due to the diminishing return of performance on allocating

larger caches [117], the performance benefit is negated by the increasing dy-

namic and static cache power. To improve the performance of data intensive

workloads, prior research has looked at redistributing the available SRAM ca-

pacity across the various levels in the cache hierarchy and shown that many

emerging workloads benefit from a larger L2 size [51, 72, 19]. Several recently

announced microprocessor products appear to have conformed to this recom-

mendation [148, 147]. Opting for larger L2 sizes however, implies that there

would be greater overhead to maintain the inclusive property. In prior work,

relaxing the inclusion requirement of LLCs has been shown to be beneficial

with 3-12% improvements reported [51, 39]. This observation motivates ex-

clusive caches in modern CPU cache hierarchy.

4

Performance and power consumption are always at odds while opti-

mizing cache hierarchies. While exclusive caches will be high-performance as

suggested above, due to the inherent difference of data block placement be-

tween an exclusive hierarchy and an inclusive hierarchy, the amount of data

movement in exclusive hierarchy is generally larger than that of inclusive hi-

erarchy [126]. Please note that in this dissertation, the terminology “inclusive

hierarchy” is used to describe both strictly inclusive hierarchy and the non-

strictly inclusive hierarchy (which is also called as non-inclusive hierarchy in

prior arts). The data movement within the non-strictly inclusive hierarchy is

the same as the strictly inclusive hierarchy, except that when a data eviction

happens in the lower level of cache, the same clean copy (if exists) in the upper

level cache is not invalidated in the non-strictly inclusive hierarchy, whereas

a back-invalidation is demanded in the strictly inclusive hierarchy. Different

from inclusive hierarchies, only the top level cache of the multi-level exclusive

caches is filled with LLC miss data, and the remaining levels serve as victim

caches [64], which get filled upon evictions from the upper cache level regard-

less of cacheline dirty status. When a cache block is evicted from its current

cache level, it is written back into the next lower level cache, evicting another

block if necessary. If a cacheline in a non-top level cache receives a hit, the

cacheline is invalidated from current level before fetched into the top level to

maintain uniqueness as well as to make room for cachelines evicted from its

upper level cache. A ping-pong trip between L1 and L3 includes all three

levels of caches, as an L1 evict is typically inserted into L2 first and then into

5

Figure 1.1: Percentage of L1 evicted cache blocks getting reused at L2 and L3
in SPEC CPU2006 (average)

L3. Large amount of on-chip bandwidth is consumed as data moves around

the different levels of the cache hierarchy. There are two major causes of data

movement in exclusive cache hierarchies, one is data moving from lower levels

of cache to L1 due to cache hit, and the other is data moving from current level

to its next level due to the eviction caused by cache replacement. Constraining

data movement to L1 usually results in performance degradation because it

sacrifices good L1 cacheline spatial locality and the high L1 hit rate, whereas

reducing the data movement caused by eviction can be a good target for energy

saving.

In order to quantify the (in)efficiency of data movement, data reuse

of a dynamic cache block experiences at L2 and L3 is recorded. A dynamic

data block is assumed to be a 64B (or other block size) block residing in

the cache hierarchies. Dynamic cache blocks are categorized into four groups

based on whether its reuse after gets evicted out of L1. The four groups are

“onlyL2”, “onlyL3”, “L2 and L3”, “neither L2 nor L3”. Figure 1.1 illustrates

6

the distribution of reuse across all dynamic cache blocks for SPEC CPU2006

suite. From the figure it is seen that among all the dynamic cache blocks

evicted out of L1, only 20% get reused in both L2 and L3. Another 5% of

data blocks only get reused in L2 but no further reuse after evicted out of

L2. Approximately 20% of data blocks never get reused by the time they are

evicted out of L2, but are reused in L3. More than 50% of dynamic cache

blocks are never reused after they are evicted out of L1. This suggests that

80% of the workload working set has optimal cache location whereas insertion

into other cache levels will not bring any additional benefit. Specifically, cache

blocks in the “onlyL3” category should bypass L2 when evicted out of L1 and

should directly insert into L3, and cache blocks in the “Neither L3 or L2”

category should write back to main memory once they are evicted from L1.

Apart from reducing non-beneficial data movement between various

levels of caches, another major source of improving memory subsystem energy

efficiency is to reduce main memory (DRAM) accesses. The access latency of

off-chip DRAM accesses is often 5-7X of LLC access latency [43] and DRAM

energy has been reported to account for more than 25% of the energy in

data centers [92]. While the LLC latency can be hidden with instruction level

parallelism (ILP) and out of order execution, accesses to off-chip memory incur

stalls in the compute pipeline. To improve memory performance and save

repeated data movement between DRAM and compute logic, various cache

insertion/replacement policies have been proposed to improve cache hit rate.

7

1.1.2 Challenges in GPU memory subsystems

GPU has traditionally been an accelerator for graphics processing.

In the past decades, due to the large amount of parallelism in the high-

performance computing applications, GPU has been adopted as a general high-

performance computing device (which is called as General Purpose GPU). The

SRAM resource contention in GPU is extremely severe. The amount of SRAM

capacity per GPU thread is less than 1KB, which is far smaller than the ca-

pacity of around 2MB SRAM per CPU thread. This is because GPU has much

more threads than CPU but also much less on-chip SRAM capacity. There

could be at maximum tens of thousands threads sharing GPU memory sub-

system (e.g., 26624 threads in Maxwell architecture [7]), whereas the number

of threads sharing the memory subsystem is limited by the number of CPU

cores which can not be large. It is common that the LLC capacity per CPU

core is around 2MB, and the total LLC capacity scales with the number of

cores. On contrary, the capacity of GPU LLC (which is usually L2) is around

2MB large which is shared by all the GPU cores (i.e., “Streaming Multiproces-

sor” in NVIDIA terminology) and all the GPU threads. The design ideology

behind the difference of CPU and GPU SRAM capacity per thread is that

GPU, which is designed as a throughput-oriented machine, uses massive par-

allelism to hide latency; whereas the latency-oriented CPU uses large caches

to hide latency. However, the current cache subsystem for GPU is inefficient

for general purpose GPU computing. The first reason is because it results in

high L2 miss rate. Although the performance loss is made up by parallelism,

8

Figure 1.2: L2 MPKI of kernel summation problem, with N=1024 in all cases

the energy consumption is still huge. The second reason is because the GPU

caches are too small to hold large data structures in the GPGPU workloads

and the data with frequent reuse can be evicted before re-referenced due to

the high contention between threads. Therefore, the data placement in the

GPU cache hierarchy should be carefully handled.

Many widely used high performance computational kernels involve matrix-

matrix multiplication (GEMM) and matrix-vector multiplication (GEMV)

computational primitives [69]. These kernels can be decomposed into a serious

of GEMM and GEMV calls with data dependencies between two calls. Basic

Linear Algebra Subprograms (BLAS) provide a user-friendly interface to com-

pute GEMM and GEMV. Different vendors provide their own highly optimized

9

BLAS libraries for users, including the Intel’s MKL [47] and the NVIDIA’s

cuBLAS [102] library. These BLAS libraries are often hand-optimized with

assembly code and achieve over 80% of the peak performance. Although these

are good options, they still have limitations. It is observed that using black-box

BLAS libraries results in performance degradation when the geometric dimen-

sion of data set size is small. The first reason is because the performance of

BLAS library becomes memory bound with small data size [95]. The second

reason is that state-of-the-art GPU solutions which apply cuBLAS library can-

not exploit much of the data locality. Using vendor-provided libraries brings

performance benefit through the highly optimized BLAS, but it also sacrifices

data locality because the intermediate matrix, as the return value of GEMM

call, is written back to main memory due to its huge size not fitting into caches.

Figure 1.2 illustrates the number of L2 misses per kilo instructions (MPKI)

when applying the cuBLAS library in a kernel summation problem. There is

high L2 MPKI number in dimension K = 32. Since L2 is the last level cache of

GPU memory hierarchy, memory performance suffers a lot from high DRAM

access latency and energy is wasted on redundant DRAM accesses. The kernel

summation problem typically involves large data sets, and the long memory

access latency is the crucial bottleneck of program execution. Redundant and

slow intermediate value accesses to main memory suggests opportunities in

performance and energy optimization.

10

Figure 1.3: Performance of inclusive cache orientated and PC-correlated algo-
rithms deteriorate if LLC is exclusive.

1.2 Limitations of Prior Research Work

The majority of state-of-the-art CPU caching insertion/bypass/replacement

policies [52, 150, 50, 58, 33] are tuned for inclusive caches. PC-correlated algo-

rithms are popular and yield high-performance in the field of inclusive cache de-

sign. However, a direct adaptation of PC-correlated cache bypass/replacement

algorithm is ineffective. Figure 1.3 illustrates the performance comparison of

three recently proposed PC-correlated schemes SHiP, Hawkeye and MPPPB [52,

150, 50, 58] between their original proposal tailored for inclusive LLC and the

same design put under exclusive LLCs. The figure shows performance degra-

dation when LLC is changed from inclusive to exclusive, which is largely due to

the following two reasons. Firstly, the predictors that assume inclusive proper-

ties capture the reuse behavior of cacheline at certain cache level by observing

11

subsequent hits in the same level. It is non trivial to apply such techniques to

an exclusive hierarchy because upon observing a hit, cachelines in exclusives

caches are evicted from the lower level and promoted to the upper level. Sec-

ondly, when making an insertion/bypass/replacement decision these schemes

index into their predictors using the PC of the instruction that initiated the de-

cision. For inclusive caches this PC corresponds to the instruction that causes

the cachelines to be fetched from memory, but for exclusive caches, where lines

are inserted into the lower level caches upon eviction, the only available PC is

the one corresponds to the instruction that causes the eviction from the upper

level. This does not have a good correlation with reuse behavior of the line

that is being demoted, and so the efficacy of these schemes suffers.There are no

PC-correlated algorithms tailored for exclusive caches because the required PC

information is not available in exclusive caches. For exclusive caches, where

lines are inserted into the lower level caches upon eviction, the PC information

gets lost unless it is passed along with the cacheline across all the levels in the

hierarchy. This can lead to inefficient use of space and also further exacerbate

the problem of data movement.

To make the performance matches with what was claimed in prior art,

exclusive cache adaptations of the PC-correlated algorithms tailored for inclu-

sive caches are devised by allowing unlimited hardware overhead to store train-

ing data (e.g., PC). The performance and data movement of three bypass and

insertion algorithms for exclusive last level caches, CHAR [19], MPPPB EX [58]

and Hawkeye EX [50], are compared using workload mixes from SPEC CPU2006

12

(a) Performance. (b) LLC traffic.

Figure 1.4: Normalized performance and LLC traffic of state of the art caching
schemes over TC-UC.

suite. The comparison result is shown in the Figure 1.4, with IPC and LLC

traffic normalized over TC-UC [39]. MPPPB EX and Hawkeye EX show bet-

ter performance compared to CHAR, whereas CHAR generates less LLC traffic

than MPPPB EX and Hawkeye EX. Specifically, Hawkeye EX demonstrates

a 9% performance improvement compared to CHAR in mix-d by exploiting

the data locality of lbm workload, whereas CHAR shows as large as 50% less

LLC traffic than Hawkeye EX and MPPPB EX in mix-e due to reduced data

movement from L2 to LLC (i.e., L2 eviction installed in LLC) of bwaves work-

load. The high-performance of MPPPB EX and Hawkeye EX are certainly

13

desirable, but the low data traffic of CHAR is also advantageous.

Several designs on GPU selective data placement have been proposed [153,

55, 156]. GPU L1 cache is good candidate for bypassing because of the low

L1 cache hit rate, low per-thread cache capacity and severe cache contention.

Prior art uses the PC of memory instructions as indexes to predict dead blocks

in L1, because the number of distinct memory instructions in a GPGPU work-

load is much smaller than the data size and the SIMD style instruction ex-

ecution pattern makes it easy to learn data access pattern by sampling few

thread groups. While these proposals save energy by preventing streaming

data structure from burning cache power and hence improve performance by

reducing cache pollution, they have performance limitations in the area of high

performance computing applications, especially dense linear algebra problems.

The first limitation is that prior art fails to exploit the temporal locality of

large frequent accessed data structures. Scientific computing applications gain

performance and energy efficiency by applying fast linear algebra libraries such

as GEMM routine. As the majority of scientific computing applications are de-

signed to use GEMM as much as possible, they can be decomposed into three

major phase with data input output dependencies, which are pre-GEMM data

preparation, GEMM computation, and post-GEMM data processing. Due to

the data intensive nature of the scientific computing applications, the size of

the intermediate data passing between the application phases is usually too

large to be stored on chip. While bypassing schemes could save energy by di-

rectly moving data between computation units and the main memory without

14

storing data into caches, performance is not improved as bypassing algorithms

do not help intermediate result to be reused in cache. The second limitation is

that there is little performance improvement potential left for cache bypassing

scheme on the GEMM computation, which is usually the most time consum-

ing part and is calculated by calling BLAS libraries (e.g., cuBLAS library on

NVIDIA GPU). BLAS library has been heavily hand optimized with assembly

language by applying hierarchical blocking on all memory levels, even includ-

ing register blocking. With temporal locality being maximized in GEMM, it

becomes performance insensitive to the hardware cache bypassing scheme.

1.3 Overview of Proposed Research

Facing the challenge of reducing data movement and increasing memory

subsystem energy efficiency, this dissertation focuses on developing techniques

that can address above challenges via intelligent data placement, which yields

the performance of state-of-the-art caching schemes, but with much reduced

data movement, data traffic and energy consumption.

Analyzing and understanding the inherent patterns in the memory ac-

cess streams of emerging applications is essential to design efficient data place-

ment algorithms that minimize the off-chip memory traffic and improve overall

memory performance. Through analyzing the temporal and spatial locality be-

havior of modern scale-out workloads, it is learned that data access pattern

of emerging workloads exhibit a wide range of data reuse distance. At the

capacity limits, memory sub-system is under-provisioned for data intensive

15

workloads and over-provisioned for streaming workloads. Placing data blocks

via untangling data reuse patterns saves system energy by preventing stream-

ing data structure from moving around to waste cache capacity and burn cache

power, and improves workload performance by allocating saved cache capacity

to keep large frequently used data structures in cache. With the presence of

prefetching scheme, workloads with long reuse distance and whose working

set just fitting in cache benefit from increasing cache capacity, because large

caches have high tolerance of the waste capacity on useless prefetch requests

and enlarges the lifetime of early-fetched prefetch requests stayed in cache.

Most of the prior state-of-the-art data placement schemes target on

improving the cache performance of inclusive caches, and they use the PC

of the memory instructions as heuristics. In recent years there is a trend of

moving from inclusive caches to exclusive caches because of the high perfor-

mance advantage of exclusive caches. Applying prior arts on exclusive caches,

however, requires PC information stored in every single cache block over the

entire cache hierarchy, which costs a significant amount of training data stor-

age and additional data movement energy as the PC moves along with the

data block through interconnect. Aimed at addressing the energy cost of data

movement and to devise an effective predictor for an efficient and scalable

multi-level CPU exclusive cache hierarchy, this dissertation proposes a FIL-

tered Multilevel (FILM) caching policy, which achieves good performance with

reduced levels of data movement. As data blocks move around different level

of caches, FILM uses centralized structure to store the PC of the access that

16

causes DRAM fetch, rather than holding the PC along with data blocks which

requires additional overhead at every level of the cache hierarchy. Specifically,

bloom filter is used to overcome the challenges associated with capturing PC-

based information in exclusive caches in an efficient manner. When there is free

space in the bypassed cache layer, FILM overrides the initial prediction and al-

lows cache block insertion into the cache level achieving more low latency hits.

FILM also incorporates an explicit mechanism for handling prefetches, which

allows it to train differently for data from demand requests versus prefetch

requests. By incorporating quick detection and correction of stale/incorrect

bypass decisions, FILM significantly reduces cache block installations and data

movement,

However, this approach is not sufficient to unveil the potential of reusing

large intermediate data structure in GPU memory subsystem, because the

GPU on-chip SRAM capacity is fairly small in the massive multithreading

environment and the intermediate result between two software phases is often

too large to fit into GPU on-chip SRAM. Redesigning application source code

with data reuse and data placement across GPU cache hierarchy in mind is

the solution to this problem. In this dissertation, kernel summation is selected

as an example to illustrate the performance and energy benefit of managing

data placement using scratchpad in GPU. GPU utilizes fast explicitly man-

aged scratchpad memories, which is also called as shared memory in NVIDIA

GPU, to enable inter-thread communications and hide long memory access

latency. The proposed data placement scheme yields both high performance

17

and low energy consumption by fusing all steps of kernel summation into the

GEMM code structure and optimizing memory access ordering to make good

use of shared memory and cache hierarchy. Specifically, the kernel summa-

tion problem is decomposed into individual tasks with few dependencies and

strike a balance between finer grained parallelism and reduced data replica-

tion. Thread to data mapping is organized in an interleaved way to achieve

full memory bandwidth utilization, and the orders of accessing matrix elements

from scratchpad ram is managed to avoid shared memory load and store bank

conflicts.

1.4 Thesis Statement

Intelligent data placement across memory hierarchy based on their lo-

cality can reduce the amount of data movement and insertions over the mem-

ory hierarchy. This saves memory subsystem energy, reduces cache misses,

and significantly improves system energy efficiency.

1.5 Dissertation Contribution

This dissertation makes several contributions to improve the energy

efficiency of computing systems via intelligent data placement across multiple

cache layers by taking the performance and energy effect of data movement

into account. The key contributions of this dissertation are summarized below.

• The first contribution of this dissertation is a detailed memory access

18

pattern analysis of emerging computer workloads. It is observed that

data access patterns of emerging workloads exhibit a wide range of data

reuse distances. It is difficult to optimize a memory hierarchy for multiple

reuse distances, as different optimizations may be needed for large or

small reuse distances. Large reuse distance patterns can interfere with

optimizations done for small reuse patterns. This observation motivates

filtering and untangling of data reuse patterns to reduce data movement

and system energy. System energy is saved by preventing streaming

data structures from moving around and wasting cache capacity and

cache power. Workload performance is improved by allocating saved

cache capacity to keep large frequently used data structures in cache.

• The second contribution of this dissertation is a FILtered Multilevel

(FILM) caching policy for exclusive cache hierarchies. A locality filter-

ing mechanism with bloom filters and predictors is presented to capture

PC-based guidance in a multi-level exclusive cache hierarchy with min-

imal hardware overhead. The proposed solution learns about the cor-

rectness of bypass decisions and adaptively guides data placement into

appropriate cache layers based on data reuse patterns. The solution

also makes prefetch aware training/learning of bypass/placement deci-

sions. The proposed scheme demonstrates significant energy efficiency

improvements and reduction in on-chip data movement. FILM improves

overall energy efficiency by 9%, compared to the second highest of 4%

from CHAR.

19

• The third contribution of this dissertation is a code fusion technique

for improving GPU data locality. It involves fusing of a series of GPU

kernels in order to reduce data movement. With an example of kernel

summation problem, this dissertation presents a fused technique that

maximizes data locality using scratchpad memory. Data access sequence

and placement is manually optimized based on the microarchitecture of

GPU memory hierarchy to maximize GPU memory subsystem utilization

via eliminating redundant data movement and main memory accesses. In

order to optimize data accesses sequence, threads are mapped to matrix

elements in an interleaved way, and matrix elements are reordered to

avoid any load and store bank conflicts. The proposed scheme provides

up to 1.8X performance speedup and 33% of total energy saving.

1.6 Dissertation Organization

This dissertation is organized as follows. Chapter 2 provides back-

ground about prior data placement schemes. Chapter 3 presents the evalua-

tion framework used in this dissertation and explains the set of benchmarks

and high-performance computing kernels that were used. Chapter 4 presents

a detailed analysis of memory access pattern on modern scale-out workloads.

Chapter 5 presents details of PC-correlated locality filtering approaches for

exclusive cache hierarchies by exploiting data temporal locality. Chapter 6

presents an explicitly managed data placement scheme in GPU memory hier-

archy for reducing data reuse distance of high-performance computing kernels

20

on the state-of-the-art GPU. Chapter 7 concludes this dissertation with a

summary of the contributions of the dissertation and suggestions for future

research opportunities.

21

Chapter 2

Related Work

This chapter briefly describes the metrics used to capture data local-

ity and provides an overview of the state-of-the-art research underlying this

dissertation.

2.1 Schemes for Measuring Spatial and Temporal Lo-
cality

Broadly, temporal locality and spatial locality are captured using reuse

distance and stride patterns respectively in this dissertation. Good temporal

locality indicates short time period between adjacency accesses to the same

address (i.e., if a particular memory location is referenced, then it is highly

possible that the location will be re-referenced in a near future). Good spatial

locality indicates accessing neighboring memory locations within a short time

period (i.e., if a particular memory location is referenced, then it is highly

possible that its nearby locations will be re-referenced in a near future).

Data Reuse distance, also known as Mattson’s stack distance [96] is

a powerful metric to capture the temporal locality of programs. The reuse

distance of a reference in a memory address trace is defined as the number of

22

distinct memory references between two successive references to the same loca-

tion. Essentially reuse distance captures the number of intervening references

between reuse of an address. If references are put into a stack, it indicates the

depth at which some reused data can be located in the stack. The percent-

age of data references that exhibit a specific reuse distance can be computed.

The distribution of such a metric for a variety of reuse distances provides an

excellent picture of the potential performance of the workload with various

cache sizes. Capturing the stack distance distribution essentially captures the

performance of multiple cache sizes in one simulation using a single very large

fully associative cache-like model. By doing so, the stack distance approach

not only provides performance of caches with different sizes but indicates the

total memory footprint of each workload. For example, if the workload has

a combined instruction and data footprint smaller than the stack depth, the

amount of valid data in the cache (assuming the cache is invalid at simulation

start) represents the total memory footprint of the workload.

Strides per memory instruction (local) and memory reference stream

(global) are used to characterize the spatial locality of data accesses. Local

stride is defined as the difference between consecutive effective memory ad-

dresses localized per memory instruction. Local stride a good estimation of

the most frequently used stride values per memory instruction and the num-

ber of memory references that it was used for. Global stride is defined as

the difference between consecutive memory addresses and is used to analyze

the stride-based behavior when seen across the entire global stream of memory

23

accesses. This approach of characterizing and portraying the stride access pat-

terns in terms of 64-byte blocks is similar to the approach adopted by Joshi,

et al. [60] for SPEC CPU2000 benchmarks. Both local and global strides are

computed at the granularity of 64-byte cache blocks.

2.2 Exclusive Caches and Data Replacement Policies

There have been several studies on intelligent cacheline bypass/placement.

A group of researchers have studied the energy and performance impact of

cache bypass on the first level cache [25, 10, 32, 135, 53], while another group

of researchers focus on the last level [9, 31, 68, 82, 152, 88]. All these tech-

niques only target single level of cache without addressing the problem from

the perspective of the entire cache hierarchy. Wu, et al. propose Signature

based Hit Predictor (SHiP) [150], a sophisticated cache insertion mechanism.

SHiP predicts whether the incoming cache line will receive a future hit by cor-

relating the re-reference behavior of a cache line with a unique signature, such

as memory region, program counter, or instruction sequence history based sig-

natures. The SHiP implementation compared in this dissertation uses program

counter as the signature. Jain, et al. propose Hawkeye [50], a cache replace-

ment policy which learns from Belady’s algorithm by applying it to past cache

accesses to inform future cache replacement decisions. Hawkeye is consisted

of an OPTgen algorithm which uses the notion of liveness intervals to recon-

struct Belady’s optimal solution for past long cache accesses, and a predictor

which learns OPT’s behavior of past PCs to inform eviction decisions for future

24

loads by the same PCs. Jimenez, et al. propose Multiperspective Placement,

Promotion, and Bypass (MPPPB) [58], a technique that predicts the future

reuse of cache blocks using seven different types of features to capture various

program properties and memory behavior. MPPPB optimizes three aspects

of cache management block placement, replacement, and bypass. The set of

features used in MPPPB include data address, last miss, offset and program

counter.Its predictor is organized as a hashed perceptron predictor indexed by

a diverse set of features, and the final prediction result is an aggregation of

many predictions taking into account each prediction’s confidence.

LRU policies have been generally seen to be ineffective [15] for exclusive

caches. Invalidating lower level cachelines on hit poses challenges on replace-

ment policies which are designed with non-exclusive hierarchies in mind and

make replacement structure update based on the number of cache hits. For

example, RRIP [52] replacement policy learns re-reference behavior of a cache-

line through attaching an RRPV per cacheline whose value implies whether

the cacheline will be re-referenced in near future or distant future. Rerefer-

ence Prediction Value (RRPV) indicates the distance of a block from its next

access. An RRPV of zero implies that a cache block is predicted to be re-

referenced in the near-immediate future. Hawkeye [50] adopts the idead of

RRPV in its algorithm as well. However, these replacement policies can not

be directly applied to exclusive caches, because the cacheline is invalidated on

hit and the information of such re-reference is lost along with the invalidation.

In the original RRIP proposal, RRPV is gradually decremented when a cache-

25

line sees a hit; or gets steadily incremented during victim selection till one of

RRPV in the same set reaches the maximum. As RRPV value is lost on a

cacheline hit due to invalidation, an exclusive LLC is unable to preserve cache

lines that have been re-referenced. Jaleel, et al. [51] presented modifications

required for RRIP to be applied to exclusive LLC (DRRIP EX) by adding an

SFL3 bit per cacheline and condensing the re-reference information into the

SFL3 bit. Specifically, the SFL3 bit is set when a cacheline gets hit at L3. On

LLC insertion, if the line was originally served from memory (SFL3 is zero), it

is predicted as reuse in distant future; if the line was originally served from L3

(SFL3 is one), it is predicted as reuse in near future. This paper extends this

idea to both exclusive L2 and exclusive LLC by adding an SFL2 bit. SFL2

and SFL3 are set when a cacheline sees a hit and serves the data request from

L2/L3, and are reset when the cacheline is evicted from L2/L3 to make room

for new blocks.

Gaur, et al. explore insertion and bypass algorithms for exclusive LLCs

and propose a number of design choices for selective bypassing and insertion

age assignment (TC-UC). LLC bypass and age assignment decisions are based

on two properties of a block, trip count and use count.

Chaudhuri, et al. propose CHAR [19], cache hierarchy-aware replace-

ment algorithms for inclusive LLCs and applies the same algorithms to imple-

ment efficient bypass techniques for exclusive LLCs in a three-level hierarchy.

The CHAR algorithm learns the reuse pattern of the blocks residing in the L2

cache to generate selective replacement hints to the LLC.

26

Sim, et al. propose FLEXclusion [126] which dynamically switches be-

tween exclusion and non-inclusion depending on workload behavior. FLEXclu-

sion shows significant data traffic reduction compared with exclusive caches

and moderate performance improvement with non-inclusive caches. While

FLEXclusion dynamically changes between the exclusive and non-inclusive to

get the benefit of high performance of exclusive caches and low data traffic of

non-inclusive caches, FILM’s goal is to improve exclusive caches performance

and reduce data traffic by learning bypass hints.

Sembrant, et al. present a Reuse Aware Placement (RAP) policy [123]

to optimize data movement across the entire cache hierarchy. RAP dynami-

cally identifies data sets and measures their reuse at each level in the hierarchy.

Each cache line is associated with a data set and consults that data set’s pol-

icy upon eviction or installation. RAP selects a group of cachelines (called

learning blocks) to help adapt changes in application and instruction behav-

ior by ignoring bypass decisions upon installation. RAP changes placement

decision from bypass to install when the number of reuse of these learning

blocks reaches a threshold. RAP experiences performance degradation as an

incorrect bypass decision may have caused additional cache misses before it is

corrected. Another factor leading to RAP’s low performance is the absence

of making special training effort on the prefetch requests. Moreover, RAP

involves huge hardware overhead as it requires every cache block in the cache

hierarchy to maintain a 12-bit large instruction pointer field.

27

2.3 Data Placement Involving Software Level Manage-
ment

In addition to hardware support data placement, there are special ISA

support for cache bypassing in commercial processors. X86 ISA provides by-

pass instructions for reads/writes with no temporal locality [99]. For example,

MOVNTI (Store Doubleword Using Non-Temporal Hint) instruction performs

an operand store operation using a non-temporal hint to minimize cache pol-

lution during the write to memory. When executing the MOVNTI instruction,

the processor does not write the data into the cache hierarchy, nor does it fetch

the corresponding cache line from memory into the cache hierarchy. Similarly,

ARM ISA provides LDNP and STNP instructions (non-temporal load and

store) that perform a read or write of a pair of register values. They also give

a hint to the memory system that caching is not useful for this data. There

are similar ISA supports such as the ld.cg instruction in the GPU architecture

as well. ld.cg specifies that a load bypasses L1 cache and is cached only in L2

cache and below.

Software programmers can either encode data placement hints in the

application code to directly inform hardware about future data access pattern,

or precisely control when to fetch a new data block and where to place data us-

ing scratchpad memory. Scratchpads are fast on-chip RAMs mapped into the

processors address space at a predefined address range. Scratchpad RAM is

explicitly managed at software level, either by programmer or compiler. Com-

pared to cache RAM, scratchpad RAM requires less chip area thanks to its

28

simplicity in the control logic and hence consumes less energy [14]. Software us-

ing scratchpad RAM has higher memory performance predictability compared

to cache RAM which is highly dynamic. Because of this feature, scratchpad

is popular on safety-critical embedded systems which have to meet certain

real-time constraints [144]. Scratchpads are widely used in hardware acceler-

ators as well. GPU chips from both NVIDIA and AMD provide programmers

with scratchpad memory, which is called shared memory in NVIDIA’s term

and local data store in AMD’s term. Scratchpad memory in GPU enables

threads within a thread block to communicate with each other efficiently, as

communicating through hardware managed caches usually leads to frequent

misses. Scratchpad is also used in other domain specific architectures to com-

municate intermediate results, e.g., between neural network layers [63]. While

scratchpads provide powerful tool to help programmer achieve high memory

performance, in order to make full use of scratchpads it often requires pro-

grammers to restructure their code and reorder data access sequences with

hardware characteristics in mind.

29

Chapter 3

Methodology

To evaluate the effectiveness of proposed data moving management

schemes proposed in this dissertation, a combination of techniques involving

measurements on real hardware systems and simulations is used. The CPU

and GPU simulators used in this dissertation include ChampSim, which is a

trace-based cycle-accurate simulator derived from the 2nd Cache Replacement

Championship (CRC2) simulator [28], and GPGPU-Sim [13], which is a widely

popular research GPU simulator. Traces feed into the ChampSim simulator

is taken using PIN [90], a program analysis tool with dynamic instrumen-

tation. Measurements of cuda application performance is performed on real

hardware systems and the performance data is get from performance coun-

ters with the nvprof [6] profiling tool provided by NVIDIA. Dynamic power

and energy consumed by the various policies is estimated using McPAT [84]

and GPUWattch [79]. In terms of workloads, this dissertation uses a wide

variety workloads, ranging from big-data workloads like CloudSuite [103], to

high-performance scientific kernels, to general-purpose benchmarks suites like

SPEC CPU2006 [42]. The rest of this chapter presents an overview of each

tool and also a description of the different workloads/benchmark suites used

to evaluate the proposed schemes.

30

3.1 Simulation Infrastructure and Power Measurement

3.1.1 CPU performance and power measurement

This dissertation uses ChampSim, a cycle-level architecture simulator.

It models the detailed out-of-order pipeline stages and memory system includ-

ing cache-hierarchy and memory controller. ChampSim uses Intel’s Pin tool

to generate instructions traces with instruction pointer, register reads/writes,

memory addresses and other information such as branch. Pin is a dynamic

binary instrumentation tool and performs instrumentation at run time on the

compiled binary files. The instruction traces are feed into the back-end sim-

ulation engine. The cache hierarchy of ChampSim can be configured with

various levels and different parameters (e.g., cache capacity, associativity, ac-

cess latency), and each caches can be configured with its different prefetching

schemes and replacement policies. The default cache inclusivity of ChampSim

is non-inclusion, but can be modified to exclusion. Similarly, the number of

tenants sharing one cache can also be modified. ChampSim can be configured

for both single core and multicore environment, and it gathers detailed statis-

tics counters including IPC, branch performance (e.g., misprediction rate),

cache performance (e.g., insertions, hits and misses of each access type) and

memory performance (e.g., row buffer hits and misses per DRAM channel).

Except for using ChampSim to evaluate the performance of proposed

schemes, the performance statistics gathered from ChampSim are fed into Mc-

PAT to generate power and area number. McPAT is an architectural integrated

power, area and timing modeling framework with a design constraint of target

31

clock rate. It specifically targets on the area and power modeling framework

for manycore processor, with a wide configurable range of core types (e.g.,

in-order or out-of-order, homogeneous or heterogeneous), uncore (e.g., inter-

connect and LLC), system I/O and memory controller components. McPAT

provides XML interfaces to set up parameters of target architecture designs,

and performance statistics captured by a performance simulator.

3.1.2 GPU performance and power measurement

This dissertation uses nvprof [6], an easy-to-use command line inter-

face to access the processor performance counters on real GPU machines, to

measure the performance of proposed schemes. NVIDIA GPU’s nvprof is a

profiling tool which enables data collection of a timeline of CUDA-related ac-

tivities on both CPU and GPU. This profiling tool collects kernel execution,

memory transfers, memory set and CUDA API calls and events or metrics for

CUDA kernels.

Directly measuring power via hardware sensors is generally considered

the most accurate way to measure power consumption. However, this approach

is not available as the GPU related work in this dissertation is performed on

the cloud server and neither external nor internal hardware power sensors are

available. Therefore, this dissertation uses GPUWattch to evaluate the energy

efficiency of proposed scheme. GPUWattch is a configurable cycle-level GPU

power model built on top of a well-developed GPU performance simulator,

GPGPU-Sim. GPUWattch estimates the power of GPU micro-architectural

32

components based upon the corresponding power model in McPAT simulators

and incorporates new micro-architectural simulated components by extending

McPAT.

3.2 Workload Description

3.2.1 CloudSuite

Cloud computing is gaining popularity due to its ability to provide

infrastructure, platform and software services to clients on a global scale. Using

cloud services, clients reduce the cost and complexity of buying and managing

the underlying hardware and software layers. CloudSuite is a benchmark suite

for cloud services. It includes six major benchmarks.

Data Serving - There has been a significant increase in the number

and diversity of NoSQL database solutions since recent years. Compared with

SQL, NoSQL database provides a more flexible storage model and stronger

scalability to higher data set sizes/cluster sizes. Several NoSQL data storage

solutions [1, 5, 8] are used as back-ups for large Web applications such as

Google Earth and Facebook Inbox. In this workload, the 15GB Yahoo! Cloud

Service Benchmark (YCSB) data set is used to evaluate the performance of

the Cassandra 0.7.3 database. The server load is generated using YCSB 0.1.3

client [27], which sends requests with a 95: 5 read to write request ratio in

Zipfian distribution.

MapReduce - MapReduce is the computational model that is able to

handle large-scale analysis, cluster/filter large amounts of data processes, and

33

spread computation among a group of machines. These machines first perform

a map function in which data are filtered, and then conduct a reduce function

in which results from different machines are aggregated. This workload bench-

marks a node of a four-node Hadoop 0.20.2 cluster. A Bayesian classification

algorithm, which attempts to guess the country tag of each article in a 4.5GB

set of Wikipedia pages, runs on it. One map task is started on one core with

2GB Java heap assigned.

Media Streaming - Thanks to high-bandwidth internet connectivity,

recent years have witnessed an explosion in the accessibility to media streaming

services such as YouTube and NetFilx, etc. Such streaming services take

advantage of large computing clusters to process and transmit media files in

diverse formats in a high speed. In this workload, the Darwin Streaming Server

6.0.3 is used. It serves videos of varying duration (from 1 min (1.6GB) to 10

min (>10 GB)) by using the Faban driver [2] to simulate the clients. The

benchmark setup uses a low bit-rate video stream to shift stress away from

network I/O.

SAT Solver - Symbolic execution is heavily used in hardware and soft-

ware verification. Due to the complexity of this algorithm, it becomes tractable

when the computation is partitioned into smaller sub-problems and distributed

to the cloud where a large number of SAT solver processes are hosted. Since

modern data center consists of heterogeneous machines, a worker-queue model

with centralized load balancing is usually applied to re-balance tasks across

a dynamic pool of unequal computer resources. Large scale computation is

34

adapted to the worker-queue model meanwhile minimizing communication

overhead. Klee SAT Solver is an important component of the Cloud9 parallel

symbolic execution engine [24]. It is set up as one instance per core. Input

traces are generated by Cloud9 by symbolically executing the command-line

printf utility from the GNU CoreUtils 6.10 using up to four 5-byte and one

10-byte symbolic command-line arguments.

Web Frontend - Web services should be fault-tolerant, widely-available

and be of dynamic scalability. Such requirements necessitate web services to

be hosted in the cloud. There are typically three roles within the web ser-

vice architectures: a load balancer to distribute independent client requests,

a web server to serve client requests, and middleware to store the state in

the back-end database. We characterize a front end machine serving Olio, a

Web 2.0 web-based social event calendar. Nginx 1.0.10 - with a built-in PHP

5.3.5 module and APC 3.1.8 PHP opcode cache - runs on the front-end ma-

chine. A backend dataset (12GB on-disk) is generated using the Cloudstone

benchmark [128]. The Faban driver [2] is used to simulate clients as usual.

Web Search - Web search engines get information through indexing,

which is a process associating terabytes of data found from on-line resources

to their domain names and HTML-based fields. An index serving node (ISN)

of the distributed version of Nutch 1.2/Lucene 3.0.1 is analyzed with content

crawled from the public internet, which has an index size of 2GB and data

segment size of 23GB. It mimics real-world setups by making sure that the

search index fits in memory, eliminating page faults and minimizing disk activ-

35

ity. Clients are simulated using the Faban driver and are configured to achieve

the maximum search request rate while ensuring that 90% of all search queries

complete in less than half a second.

3.2.2 SPEC CPU2006 benchmarks

The Standard Performance Evaluation Corporation (SPEC) CPU2006

suite are widely used in both industry and academia. This suite covers vari-

ous aspects of system design, including CPU, memory systems, and compiler

optimizations. SPEC CPU2006 is made of benchmarks representing real life

applications rather than synthetic kernels or benchmarks. CPU2006 has 29

benchmarks, in which 12 are integer benchmarks and 17 are floating point

benchmarks. All these benchmarks are single-threaded written in C, C++ and

Fortran. In a simulation infrastructure with multicores, the multi-programmed

workloads are formed by running one individual instance of one CPU2006

benchmark on one core.

3.2.3 Kernel summation

Kernel summation is a technique used to approximate the interactions

between two sets of points in a high dimensional space. The need for fast ker-

nel summation methods first appeared in computational physics, for example,

computing the 3D Laplace potential (reciprocal distance kernel) and the heat

potential (Gaussian kernel). Kernel summations are also fundamental to non-

parametric statistics and machine learning tasks such as density estimation,

36

regression, and classification [41, 44, 98, 121]. Linear inference methods such

as support vector machines [130] and dimension reduction methods such as

principal components analysis [98] can be efficiently generalized to non-linear

methods by replacing inner products with kernel evaluations [11]. Problems

in statistics and machine learning are often characterized by very high dimen-

sional inputs.

There are numerous studies that have proposed scalable algorithms

and high-performance implementations of fast kernel summation schemes such

as treecodes [94][16], fast multipole methods [22][73], particle-mesh methods

[120], Ewald sums [30], etc. These algorithms can scale to billions or trillions

of points for problems in two or three dimensions. However, they do not scale

to higher dimensions because they depend linearly or super-linearly on the

dimension size.

37

Chapter 4

Data Locality Analysis and

Micro-architectural Insights

The world is entering the era of big data and machine learning. A

growing number of applications are working with very large data sets. Cloud

computing is gaining popularity due to its ability to provide infrastructure,

platform and software services to clients on a global scale. Using cloud services,

clients reduce the cost and complexity of buying and managing the underlying

hardware and software layers. Popular services like web search, data analytic

and data mining typically work with big data sets that do not fit into top

level caches. Popular DNN models have weights with size of tens to hundreds

of MB [131]. Emerging RMS (recognition, mining, and synthesis) workloads

have large working-set sizes greater than 16 MB on average [87].

Emerging applications typically work with significantly larger data sets

and do not fit into the typical processor’s top level (L1/L2) caches. With the

emergence and growing relevance of several big-data application domains, an-

alyzing and understanding the inherent patterns in the memory access streams

of emerging applications is essential to design efficient memory hierarchies to

optimize application performance. There have been several studies on charac-

38

terizing the micro-architectural and memory system performance (cache miss

rates, TLB miss rates, etc.) behavior of big data workloads [35, 38, 69] on

modern computer systems. Prior arts have concluded that big-data workloads

form a distinct workload class from desktop workloads, and current computer

systems are inefficient to run those workloads. For example, Ferdman, et al.

observe that simple hardware prefetching schemes in the current commercial

computer systems do not work for cloud workloads [35]. However, there is no

analysis or understanding of why hardware prefetching schemes do not work,

and what micro-architectural improvements can be made to increase memory

performance efficiency. Jaleel, et al. notice that small L2 caches degrade the

performance of server workloads whose working set size is a few multiples (e.g.

2-4x) larger than the L2 cache capacity [51], and hence advocate for large L2

caches and relaxing cache inclusiveness.

In this chapter1, CloudSuite is taken as an example of modern scale-out

workloads to present a detailed analysis of memory access pattern. This work

focuses particularly on the behavior of memory accesses at the last-level cache

and beyond. Spatial and temporal data locality of CloudSuite are computed

to understand what is the reason that prevents certain prefetching schemes

from improving CloudSuite performance, how would large caches help increase

prefetch accuracy and coverage, and how to efficiently manage cache resources

based on the data locality.

1Contents of this chapter was previously published at the International Symposium on
Performance Analysis of Systems and Software (ISPASS) in 2017 [140]. I am the principle
author of this work.

39

4.1 Experimental Setup

Table 4.1: System Configuration

Processor 16 cores,
L1 cache 64KB, 4-way associative, 64B cacheline, LRU
L2 cache 256KB, 8-way associative, 64B cacheline, LRU,
L3 cache 8MB, 8-way associative, 64B cacheline, LRU, 16 MSHR
Main Memory DDR3 1600K, 4 channels, 1 rank/channel

Table 4.2: Workload characteristics

Benchmarks Simulation length LLC accesses LLC misses
Data Serving 4 billion instructions 36,134,150 14,993,597
MapReduce 4 billion instructions 38,119,693 16,644,104
SAT Solver 4 billion instructions 33,271,637 23,254,707
Web Frontend 4 billion instructions 10,311,403 2,277,452
Web Search 4 billion instructions 22,613,857 3,830,574
Media Streaming 4 billion instructions 65,596,871 7,303,085
mcf 1 billion instructions 79,490,811 47,682,507
bwaves 1 billion instructions 23,176,132 22,677,841
tonto 1 billion instructions 158,098 35,737

A multicore system is configured with private L1 and L2 caches, and

a shared last level cache (LLC). Detailed system configuration is listed in

Table 4.1. The simulation infrastructure collects the program counter of each

instruction that triggers the LLC access, as well as the corresponding physical

memory access address, access type (e.g., Load/Store/Eviction), and the inter-

instruction distance information of the LLC accesses. Six applications from the

CloudSuite and three SPEC CPU2006 benchmarks with most LLC activity are

chosen to illustrate differences between address patterns in SPEC workloads

and CloudSuite. The representative phases of these workloads are captured

40

and are used to generate LLC access traces with our tracing infrastructure.

Table 4.2 summarizes the simulation intervals as well as the number of LLC

accesses and LLC misses of each workload.

4.1.1 Temporal locality profile

Figure 4.1: Temporal locality analysis: The figure shows the approximate
reuse distance panel. Y-axis presents percentage of memory references and
x-axis presents the reuse distance.

41

4.2 Analysis of Temporal Locality

Processor caches are designed to exploit the temporal reuse of indi-

vidual memory elements to minimize the number of accesses to the off-chip

DRAM memory. Temporal locality of a program dictates how the miss rate

of a processors cache will change as its capacity is varied. Often the miss rate

does not decrease linearly with cache capacity, but stays at a certain level and

then makes a sudden jump to a lower rate when the capacity becomes large

enough to hold the next important data structure. This temporal locality

characterization information is represented on the reuse distance graphs for

the big-data workloads and SPEC CPU2006 applications in Figure 4.1. The

x-axis shows the reuse distance (from 0 to 256000, note that each x-axis point

refers to a reuse distance value between itself and its previous point) and the

y-axis represents the percentage of LLC accesses that have a corresponding

reuse distance. Correlating the reuse distance values with an approximate

cache size configuration yields that the percentage of references which have a

reuse distance of say, less than 512, 8000 and 32000 will fit into a last-level

cache of size 32 KB, 512 KB and 8 MB respectively.

Based on the reuse distance distribution, the nine workloads in Fig-

ure 4.1 are categorized into three types. The Web Frontend, Web Search,

Media Streaming and tonto benchmarks fall into the first category, where

majority of reuse distances are less than 8K. Dominant working set size of

applications in the first category fits within a 2-4MB LLC. This implies that

these applications have high tolerance to cache pollution from prefetching,

42

when used with an 8MB LLC.

The Data Serving, MapReduce and mcf benchmarks fall into the second

category, where more than half of the reuse distances fall between 8K and

256K. Although more than 80% of working set fits within an 8MB LLC, cache

pollution can have a detrimental impact on performance. Prefetching causes

additional cache block evictions compared with no prefetching. Under non-

MRU replacement policy, the chance of a cache block with longer reuse distance

to become the victim block is higher than a cache block with shorter reuse

distance. That is to say, when LLC capacity is just enough to hold a block

with a long reuse distance in the cache until it gets reused, prefetching prevents

the cache block reuse by replacing it with a prefetched line. The number of

cache misses increases with the number of useless prefetch requests.

The SAT Solver and bwaves benchmarks fall into the third category,

where at least half of data accesses have reuse distance larger than 256K. Ap-

plications belonging to this category have instruction and data working sets

significantly large which do not fit even in a 16MB LLC. The performance

impact of prefetching on SAT Solver and bwaves are completely different.

Prefetching schemes can still capture address pattern of bwaves and signifi-

cantly improve performance. The reuse distance in bwaves is actually infinite,

indicating that there are few LLC access reuse in bwaves, and there is little

negative impact on cache misses from useless prefetching.

43

Figure 4.2: Prefetching Sensitivity of LLC Size.

4.2.1 Micro-architectural insights

Previous work shows that the LLC capacity in modern processors is

over-provisioned for cloud workloads and suggests reducing capacity for power

and performance [35]. However, it is observed that workloads with long reuse

distance and with a working set just fitting in cache (i.e. the second category

discussed in previous subsection) can benefit from increasing cache capac-

ity. The state-of-the-art SMS prefetching algorithm is implemented as LLC

prefetcher with various LLC cache capacity of 8M, 16M and 32M. The perfor-

mance improvement compared to no-prefetching case is demonstrated in Fig-

ure 4.2. It can be observed from the figure that the performance of MapReduce

is improved by 26% when LLC capacity doubled from 16M to 32M, whereas

no performance benefit is shown when capacity increases from 8M to 16M.

According to Figure 4.1, a 16MB LLC is large enough to hold 95% of MapRe-

duce working set size, and around 60% has reuse distance longer than 8K.

This indicates that a useless prefetch request has a high probability to cause

44

additional cache misses, because the prefetch request may evict a cacheline

which becomes LRU due to the long reuse distance but is to be accessed in the

future, and there is a large portion of cache blocks with long reuse distances

in MapReduce. Whereas when cache capacity goes up, the chance that any

cache block gets evicted decreases, and MapReduce has a higher tolerance for

useless prefetch requests.

By analyzing the temporal locality of address patterns, it is discovered

that there is a correlation among temporal data reuse distance of workloads,

cache capacity, and system tolerance of useless prefetching. Workload per-

formance is prone to be negatively impacted by useless prefetching when the

workload has the following two characteristics. One characteristic is that the

workload has a large percentage of data accesses with long temporal reuse

distance. The other characteristic is that the working set of the workload is

comparably large to the cache capacity. This observation can be proved on

the performance increase due to cache capacity increment on a system with

prefetcher making lots of early prefetch requests. Early prefetch requests are

those prefetch requests which correctly predicts the future data accesses but

fetches data too early into caches to be used. For example, SMS requires larger

cache capacity to show the benefit of prefetching on CloudSuite workloads. As

LLC capacity increases from 8M to 32M, SMS is able to bring additional 20%,

29% and 28% performance improvement for Web Frontend, MapReduce and

Media Streaming respectively. Performance gain comes from an increase in

the number of useful prefetch requests. Since the training and prediction pro-

45

cesses are irrelevant to cache capacity, the increase in useful prefetch requests

is due to fact that prefetched blocks stay longer in a larger cache as compared

to a smaller cache. Therefore, the chance that a prefetched block is accessed

before getting evicted goes up. For an inefficient prefetcher, e.g. a prefetchers

with lower accuracy, larger cache size helps to avoid performance degradation

by mitigating the performance degradation and preventing useless prefetched

lines from evicting useful blocks.

Another micro-architectural insight from temporal locality analysis is

the potential to optimize data placement by untangling data reuse patterns.

Prior research has looked at redistributing the available SRAM capacity across

the various levels in the cache hierarchy and shows that many emerging work-

loads benefit from a larger L2 size [51, 72, 19]. Several recently announced mi-

croprocessor products appear to have conformed to this recommendation [148,

147]. Opting for larger L2 sizes however, implies that there would be greater

overhead to maintain the inclusive property. This further motivates the neces-

sity of relaxing cache hierarchy inclusive property to exclusive property. One

observation from Figure 4.1 is that the data access pattern of CloudSuite work-

loads exhibit a wide range of data reuse distance. For example, around 20%

to 40% of data accesses in Data Serving and SAT Solver have reuse distance

of either infinite distance or too long to be captured by LLC cache, whereas

the rest of data accesses have short reuse distance. The data blocks residing

in each level of cache hierarchies becoming mutually exclusive, and the global

memory access stream consisting of data streams with different re-reference

46

patterns, these two factors together inspire a thought of treating cache hierar-

chy as a sea of RAMs where data with short reuse distance is placed in smaller

caches and data with long reuse distance is places in larger caches. One ben-

efit of such reuse-aware data placement is to save energy by installing data

only in levels where it will be reused. It is common that caches account for

more than 50% of on-chip die area and consume a significant fraction of static

and dynamic power. Regardless of whether the large cache is fully utilized by

workloads or not, saving the cache energy and power cost is always benefi-

cial. The other benefit is to improve cache utilization by preventing streaming

or useless data insertion from thrashing caches. While cache capacity is at

its design limit due to the power and area constraints, the capacity demand

from modern workloads have been steadily increased. It becomes essential to

improving cache utilization by freeing cache spaces from storing unused data.

4.3 Analysis of Spatial Locality

Spatial locality is an important characteristic of memory access pat-

terns that is exploited heavily by prefetchers. This section presents an analy-

sis of the spatial locality in LLC access streams of the CloudSuite workloads.

A spatial locality profile is demonstrated via cumulative distribution of the

most frequently used stride values and the percentage of total memory refer-

ences that they make. Figure 4.3b shows the local stride distribution of the

CloudSuite and SPEC workloads at a granularity of a 64-byte block, binned

into categories 0, 1, 2, etc and no dominant stride categories. Figure 4.3a

47

(a) Global stride pattern Distribution

(b) Local stride pattern Distribution

Figure 4.3: Spatial locality analysis: Global/Local stride patterns in LLC
access streams

48

shows the global stride distribution of the CloudSuite and SPEC workloads

at a granularity of a 64-byte block, binned into categories 0, 1, 2, etc and no

dominant stride categories.

It can be observed that most of the big-data workloads do not have

good spatial locality at either global or per-memory instruction granularity.

In terms of global locality, the most common global stride is 1, but it occurs

rather infrequently (less than 15% of the time). Similarly, the local stride

characterization shows that the Web Search and Data Serving workloads have

a local stride of 1 for approximately 10% of the memory references, while other

workloads do not possess any significant dominant local stride patterns. This

behavior is expected as most cloud applications either work on data structures

that have irregular memory layouts or act on random queries. On the other

hand, bwaves and tonto benchmarks (both from the SPEC CPU2006 suite)

have very dominant local and global stride patterns. As a result, they are very

suitable candidates for prefetching solutions.

Based on the above analysis, prefetching schemes relying on detecting

stride patterns of each instruction (e.g., Stride-3 [20]) are not effective for

CloudSuite workloads. Such simple schemes are only able to keep track of small

local strides (e.g. less than 32), which account for less than 15% of local strides

in CloudSuite. Moreover, this small percentage determines the upper bound

of performance improvement that stride prefetcher could achieve in an oracle

situation, i.e., assuming data accesses with stride less than 32 are all missed

in the baseline and prefetcher makes timely prefetching without polluting the

49

cache. As simple stride-based prefetching schemes fail to exploit data locality

within each memory instruction, the number of prefetch requests generated

are relatively small. The lower prefetch coverage brings negligible performance

speedup. Hence the nature of the workloads exposes the insufficiency of those

prefetching schemes.

4.4 Summary

To understand the inherent memory access behavior of scale-out work-

loads and provide micro-architectural insights for further memory sub-system

design, this chapter includes a detailed analysis of the temporal and spatial

locality of modern scale-out workloads. Data reuse distance is used to capture

the temporal locality of programs. Spatial locality of data memory access pat-

terns is characterized in terms of strides per memory instruction and memory

reference stream. By analyzing the temporal locality of address patterns, the

correlation among temporal data reuse distance of workloads, cache capacity,

and system tolerance of useless prefetching is discovered. I also discovered that

some cloud workloads exhibit both good spatial and temporal locality, i.e., they

have dominant stride patterns which can be exploited by prefetching and the

majority of their data accesses are with short temporal reuse distances. These

workloads gain significant benefits from prefetching. Previous work shows that

the LLC capacity in modern processors is over-provisioned for cloud workloads

and suggests reducing capacity for power and performance [35]. However, it is

observed that prefetching requires large cache capacity to show its performance

50

benefits, and there is a correlation between larger cache and better prefetch-

ing performance. While large cache capacity helps improve performance, it is

also noticed that cache capacity per core is at its limit. Improving the per-

formance and energy efficiency of cache system requires untangling different

types of locality/reuse and identifying appropriate locations for each piece of

data.

51

Chapter 5

Multicore CPU Data Placement Optimization

Optimizing a multilayer cache hierarchy involves a careful balance of

data placement, replacement, promotion, bypassing, prefetching, etc. to cap-

ture the various properties of access streams. Often getting good performance

involves aggressively orchestrating movement of the data to be available at the

appropriate layers of the cache hierarchy. However it has been popularly rec-

ognized that aggressive movement of data results in high energy consumption.

State-of-the-art caching policies such as Hawkeye and MPPPB yield excel-

lent performance but incur more data movement compared to policies such

as CHAR, and Flexclusion. Considering the energy cost of data movement,

this dissertation proposes a FILtered Multilevel (FILM) caching policy, which

yields good performance with reduced levels of data movement.

5.1 Proposed Scheme

This section introduces FILM which adapts PC-correlated locality fil-

tering approaches for exclusive cache hierarchies. FILM predicts the reuse of

cache blocks at each cache level, and guides evicted cache blocks to insert into

the right level rather than trickle down through the various layers in the cache

52

hierarchy.

PC is selected as the training heuristic because good correlation be-

tween memory instruction and the locality of the data accessed by the instruc-

tion is observed. Figure 5.1 shows that the majority of active instructions

which make intensive data requests in the SPEC CPU2006 workloads have

stable data locality behavior at L2 and L3 of exclusive caches. A memory

instruction is defined to have stable data locality at a specific cache level if

more than 90% of data blocks accessed by the instruction are within the same

range of reuse distance (e.g., always hit or always miss in the cache). This

observation suggests that if historical data accesses made by an instruction

do not benefit from caching at a given level, then future accesses from the

same instruction can bypass that cache. Although PC-correlated algorithms

have been proposed in prior work [50, 150, 58], they focus on inclusive cache

hierarchies, where the memory instruction information is available during the

data block insertion. A direct adaptation of prior art requires storing memory

instruction PC along with cachelines, which introduces a significant amount of

storage overhead. FILM overcomes this challenge of building the one-to-one

relationship between a data block and its instruction using bloom filters as

shown in Section 5.1.1.1.

Figure 5.2 illustrates how FILM is integrated into the cache hierarchy

and how it closely interacts with all levels. As data blocks move around dif-

ferent level of caches, FILM uses centralized structure to store the PC of the

access that causes DRAM fetch, rather than holding the PC along with data

53

Figure 5.1: Percentage of memory instructions with stable data locality

blocks which requires additional overhead at every level of the cache hierarchy.

Although FILM is a single centralized component, it is not on the critical path.

A data block queries FILM about L2 and LLC bypass hints on LLC misses

(activities 1©) and stores hints along with the cacheline at the cost of 2-bit

overhead. The access latency of FILM is orders-of-magnitude lower than the

long DRAM access latency and thus can be overlapped with DRAM access

latency. Training process of FILM , which does not require instant feedback,

is also off the critical path. FILM’s training process is triggered by the three

types of cache activities shown in the Figure 5.2, 1© data block installs from

main memory to the top level cache due to LLC misses, 2© data block hits at

lower level caches, and 3© data evictions from lower level caches. By leverag-

ing cacheline address and cacheline reuse behavior, FILM trains its prediction

model to get the optimal cache insertion decision.

As shown in Figure 5.2, FILM is composed of two hardware structures,

a Prediction table and a Training Result table. The Prediction Learning ta-

54

Figure 5.2: Overview of the proposed FILM system

ble learns data locality of an individual memory instruction through its data

accesses history and makes bypass decisions for future data. The Result table

provides bypass hints for a data block based on its memory instruction. It also

records the latest training result of the instruction evicted out of the Predic-

tion Learning table, and provides an initial value for the Prediction Learning

table when an instruction is reallocated back to the table. FILM can be ap-

plied together with other cache replacement policies as FILM only provides

bypass/insertion hints. The SRRIP [51] optimized for exclusive caches is used

as replacement policy.

55

5.1.1 Handling demand requests

FILM leverages the observation that data blocks touched by the same

memory instruction tend to have similar caching behavior. Thus, by learn-

ing the caching behavior of a memory instruction through access history, the

caching behavior of future data blocks from the same instruction can be pre-

dicted. Building this one-to-one relationship between a data block and its

instruction is not easy for exclusive cache hierarchies. One may suggest that

only keeping the instruction information along with the sampled set (training

set) can be a solution. However, the overhead of storing PC in sampled set

is still dramatic. It requires the instruction pointer to be maintained at every

cache level, and the overhead increases as the depth of the cache hierarchy

grows deeper in future. For example, to sample 256 out of 8192 sets in an

8MB LLC, it requires every single core sharing the LLC to dedicate additional

storage at its private L1 and L2 sets whose cacheline addresses map to the 256

LLC sampled sets. This accounts for all the L1 blocks in a 256-set 4-way 64KB

L1 cache and a quarter of the L2 blocks in a 1024-set 4-way 256KB L2 cache.

Secondly, it is not sufficient to store PC only in the sampled set. Because PC is

required not only during the training procedure, but also during the inference

(applying training result) where PC is used as an index to the Result table

to get replacement/bypass hints for the cachelines belonged to non-sampled

sets. Therefore, how to efficiently store the memory instruction information

of data blocks becomes a crucial problem in designing PC-correlated schemes

for exclusive caches.

56

5.1.1.1 Applying bloom filter

To address this challenge, FILM applies a bloom filter [17], a space-

efficient probabilistic data structure which can rapidly determine whether a

data element belongs to a data set or not. This work uses the most basic design

of a bloom filter, which is in the form of a bit vector. To add an element to the

bloom filter, the element is hashed a few times, and the bits in the bit vector

at the index of those hashes are set to 1. To test for membership, an element

is hashed with the same hash functions. The element is not in the set if any

value at index bits is not set, otherwise it could be in the set.

Due to constrained training storage budget, the Prediction Learning

table keeps track of a limited number (e.g.,16) of memory instructions, and

every tracked instruction is assigned to a separate bloom filter. When reach-

ing the Prediction Learning table entry limit, the instruction with the least

frequent memory behavior would be evicted to make room for new instruction.

The bit vector of bloom filter has a fixed size (e.g., 4098 bits). Since there is

no way to delete an element from bloom filter, the chance of bloom filter re-

porting false positive membership increases as the number of inserted elements

grows. Therefore, bloom filter is reset periodically (e.g., every 256 insertions)

in order to maintain a low false positive rate. the bloom filter is named as the

local memory footprint container, as what it records is essentially the memory

footprint of an instruction.

On LLC misses, the data address is shifted by the size of a cacheline

to form a cacheline address, and the cacheline address is inserted into the

57

bloom filter. On training events triggered by demand request hit, the PC

of the memory instruction is used to index Prediction Learning table. On

training events triggered by unused data eviction, FILM retrieves the PC of

the memory instruction which causes the LLC miss by looking for the cacheline

address among all the local memory footprint containers in a time multiplexed

fashion. The searching process can be pipelined and is not on the critical

path. If a single membership is reported for a cacheline address, then FILM

constructs the one to one mapping between the data and the instruction, and

starts the training process. Alternatively, training activities are not performed

for the following two situations: one is when no residency is detected, which

is possible because FILM tracks a limited number of memory instructions

and local memory footprint containers get reset periodically; and the other

situation is one when the address is found in more than one bloom filter due

to false positive membership reports. In the latter case, FILM decides not to

train to avoid training noise.

5.1.1.2 Prediction Learning table

FILM selects data blocks mapped to few LLC sampled sets as its train-

ing set. Once FILM is able to retrieve the memory instruction information of

a training data block, it trains bypass heuristics for this memory instruction

at all cache levels except for L1.

FILM uses a multiported table based training structure, where each

entry corresponds to one memory instruction. As illustrated in Figure 5.3, each

58

Figure 5.3: Training of FILM on demand-fetched blocks. One Prediction
Learning table entry update at two different cycles.

table entry contains a Tag field which is used to index the Result table, a Local

Memory Footprint Container, ReuseCnt fields for L2 and L3 respectively, and

Fill fields to record current L2 and L3 insertion decisions. FILM ’s Prediction

Learning table updates are triggered by two activities, data reuse (hits) or

block eviction with no reuse. FILM leverages SFL2 (Serviced From L2) and

SFL3 (Serviced From L3) bits to indicate whether a data block has been reused

during its stay at L2 and L3. Jaleel, et al. [51] presented how these bits are

required for RRIP if it has to be applied to exclusive caches.

To train the prediction model, FILM requires information including PC

if it is cache hits, cacheline address, reuse behavior (i.e., updated SFL2 and

SFL3) and the level from which the data block gets hit or evicted. For every

59

instruction in the Prediction Learning table, FILM counts the number of data

reuses at L2 and L3 in the table entry fields L2ReuseCnt and L3ReuseCnt

respectively. The ReuseCnt field is initialized with the maximum value (e.g.,

7). L2ReuseCnt and L3ReuseCnt are fixed width saturating counters, which

get incremented when FILM observes the SFL2/SFL3 bit of the training in-

put block is one, or get decremented when the SFL2/SFL3 bit is zero. The

SFL2/SFL3 bit gets reset when a block is inserted into the next level of cache

(i.e., L3 and memory). L2Fill and L3Fill fields record the latest training re-

sult, a bypass/insert hint. They are initialized according to the value in the

Result table. An L2ReuseCnt/L3ReuseCnt value reaching the maximum value

triggers the L2Fill/L3Fill field to change to “Insert”, whereas value decrement

to zero triggers changes to “Bypass”. These operations are illustrated in Fig-

ure 5.3, where I show one example of an L2 data hit at cycle N and another

example of an L3 unused data eviction at cycle M.

5.1.1.3 Result table

Upon LLC miss, data blocks consult FILM about whether to bypass L2

or LLC in future. FILM relies on the Result table to handle cases where data

blocks cannot receive bypass hints from the Prediction Learning table. The

Result table is a direct-mapped structure indexed by the hashed instruction

pointer. Each table entry has two bits, representing L2 and L3 bypass hints

separately, and their initial value are set to be “Insert”. When there is an

LLC demand miss, the PC of the demand request is used to index the Result

60

table and read the L2 and L3 fill decision. Once the data block is installed

directly into L1, the decision is kept with the data block along with other

metadata. The 2 bit overhead per cacheline is acceptable, and it helps guide

data insertion as a complement to the Prediction Learning table. Another

important function of the Result table is to provide initial Fill value for a

newly allocated Prediction Learning table entry. When a Prediction Learning

table entry is evicted, the trained bypass hints of the instruction are stored

into its corresponding Result table entry, and such that next time when this

instruction gets reallocated to the Prediction Learning table, it has warmed-up

bypass hints.

5.1.1.4 Learning from bypass decisions using empty blocks

The optimal bypass hints dynamically change along with the program

execution. The reason is because cache bypass of one group of data blocks

changes the reuse distance of other groups. A previous bypass decision may

not work in the future as the reuse distance profile changes dynamically. One

example is the case when cache accesses exhibit a thrashing access pattern,

e.g., a memory instruction repetitively reading K data blocks which happen

to map to the same set of an N -way associative (N < K) cache. The optimal

solution is to keep N data blocks in the cache and bypass the rest (K−N). An

algorithm without error detection will predict that none of future data blocks

from the same instruction should be inserted into cache. Whereas an optimal

algorithm should allow at least N data blocks to be inserted to guarantee data

61

reuse at the best effort.

Wrong bypass hints are difficult to detect because the data block fol-

lowing the bypass hint is discarded, leaving no chance to prove its locality

from cache hits. Thus, FILM is designed with a ”utilize empty blocks” rule

to provide opportunities to detect stale bypass decisions. The rule works as

follows. Take L2 cache as an example, a data block is inserted into L2 due

to available free space even if FILM suggests bypass L2. The bypass hint is

stored along with this block. On a subsequent hit to the same block at L2,

FILM trains its model and considers the L2 “Bypass” hint as stale after seeing

that a blocked marked as bypass gets reused. In addition to increasing the

L2ReuseCnt counter, FILM would immediately flip the L2 fill hint from “By-

pass” to “Insert” based on the single error. Prior art either does not have error

detection scheme and always perform data bypassing based on prediction, or

inserts blocks if there is free space cache without any further activities on error

detection.

Although the “utilize empty blocks” rule would cause useless data block

insertion (which is why FILM suggests bypass), it does not cause additional

performance degradation due to two reasons. One is that it does not pollute

caches as it uses free cache space without causing any eviction. The other

reason is that high performance cache replacement policy protects cache blocks

with frequent reuse and selects cache blocks with less or no reuse as victim,

such that wasted insertions from the “utilize empty blocks” rule are evicted

to make room for new blocks.

62

5.1.2 Handling prefetch requests

FILM’s training on prefetched blocks is performed at the granularity

of a prefetcher. For example, for a system with L1 and L2 prefetchers, FILM

sets up two entries in the Prefetch Prediction Learning table, with each entry

representing one prefetcher. The local memory footprint container field is

not required, because each cacheline can pinpoint which prefetcher initially

fetched the block by storing prefetch level information (PfLevel) in the tag

store. Prefetch level helps to distinguish prefetched blocks from regular blocks

(whose PfLevel is zero). When a prefetched block serves a demand request, it is

promoted from a prefetched block to a regular block and the PfLevel is reset to

zero. The future training process on this block is handled the same as a regular

block. Note that a prefetched block serves prefetch requests from upper levels

does not change the PfLevel value of the block. Basically, the prefetch level

of a cache block provides three hints to FILM. Firstly, it indicates whether

the training target is a regular memory instruction or certain data prefetcher.

Secondly, if the target is a data prefetcher, PfLevel points to the prefetcher for

which FILM is to be trained. Thirdly, PfLevel being non-zero indicates that

a prefetched block has not served a demand request yet.

Training on prefetch requests occurs when a prefetched block is hit

by either prefetch requests or demand requests, and when a prefetched block

is evicted. When a prefetched block sees a demand request hit, FILM per-

forms three operations. Firstly, the L2ReuseCnt or L3ReuseCnt of the cor-

responding prefetcher is incremented based on whether the hit occurs at L2

63

Figure 5.4: Training on prefetched blocks. Showing two different scenarios at
two different cycle.

or L3. Secondly, the cacheline address of the hit block is added to the lo-

cal memory footprint container of the demand request, making preparation

for future training on this instruction. PfLevel of this cache block is reset.

Thirdly, the demand request PC is used to consult the Prediction Learning

64

table and the Result table to get suggested L2 and L3 bypass hints, which

is sent back to the data. When a prefetched block serves a prefetch request

(hit), the L2ReuseCnt/L3ReuseCnt of the corresponding prefetcher is incre-

mented. When a regular block serves a prefetch request (hit), the regular block

is demoted to a prefetched block and has its PfLevel set, but there is no Pre-

diction Learning table updates. When a useless prefetch block is evicted, the

L2ReuseCnt or L3ReuseCnt of the corresponding prefetcher is decremented.

Making L2/L3 bypass decisions and correcting stale bypass decisions are the

same as handling demand requests. Figure 5.4 illustrates the above operation

using two different examples. In the first example at cycle M, a data block

prefetched by L2 services a demand request at L3. In the second example at

cycle N, a prefetched block initiated by L2 prefetcher gets evicted out of L2

without usage.

5.2 Evaluation

Simulations are performed on a cycle-accurate simulator, which is an

extended version of the 2nd Cache Replacement Champion (CRC2) simula-

tor [28]. Table 5.1 shows detailed simulator parameters. The memory subsys-

tem consists of a three level cache hierarchy and a detailed DRAM model.

Evaluations are conducted on multicore systems with prefetching enabled.

Hardware prefetching has been used for mitigating the high latency between

processor and memory [141, 139]. Both traditional data prefetcher designs

such as next-line prefetchers, as well as one of the state-of-the-art prefetching

65

Table 5.1: Simulation parameters

Four cores out-of-order cores, 4.5GHz, 6-wide pipeline,
72-entry load queue, 56 entry store queue
maximum 2 loads and 1 stores be issued every cycle

Branch Predictor bimodal branch prediction, 16384 entries,
20 cycle mispredict latency

Private L1 64KB, 8-way associative, 8 MSHR entries
RRIP replacement policy, nextline prefetcher,
4 cycle latency

Private L2 512KB, 8-way associative, 16 MSHR entries
RRIP replacement policy, VLDP prefetcher,
additional 8 cycle latency

Shared LLC 8MB, 16-way associative, 32 MSHR entries
RRIP replacement policy
additional 20 cycle latency

DRAM 4GB off-chip memory. 1 channel. 1600 MT/s
Read queue length 48 per channel
Write queue length 48 per channel
tRP = 11 cycle, tRCD = 11 cycle, tCAS = 11 cycle

schemes, VLDP [124] are applied in this simulation. Simpoint traces of SPEC

CPU2006 workloads provided by the 2nd Cache Replacement Contest [28] are

used in the simulation. In multi-core experiments, cores that finish execut-

ing early would restart execution from beginning in order to continue adding

pressure to shared cache and memory. In the multi-core experiments, each

core runs 250M instructions with a warm up length of 10M instructions. Mc-

PAT [84] is used to estimate the dynamic power and energy consumed by

the various policies. The system energy reported in this paper includes core

energy, fabric energy, shared LLC energy and DRAM energy.

66

The FILM design is compared to seven cache replacement and bypass

algorithms. TC-UC [39] and DRRIP EX [51] learn global caching prior-

ities for exclusive caches. Both policies use a three-bit re-reference counter

per cacheline. For TC-UC, it is implemented with bypass and aging poli-

cies, which corresponds to the ”Bypass+TC UC AGE x8” policy in their pa-

per [39]. Both FLEXclusion [126] and CHAR [19] focus on reducing on-chip

multi-level cache bandwidth via relaxing cache inclusion policy. For CHAR the

address space correlation scheme is used and the ”CHAR-C4” policy is imple-

mented which is tailored for an exclusive cache model and does not de-allocate

a block from LLC on hit. For FLEXclusion, it operates in both Aggressive and

Bypass mode. While above four schemes are address space correlated, code

space correlated schemes, namely SHiP++ EX [136], Hawkeye EX [50],

and MPPPB EX [58] are also included. These schemes are adopted for ex-

clusive caches by storing the instruction pointer information along with data

block and tailored their RRIP-based replacement policies for an exclusive cache

model based on Jaleel’s prior work [51]. The implementations are based on the

code submitted by the respective authors to the CRC2. Specifically, the imple-

mentation of SHiP++ EX is based on SHiP++ [136], which further improves

the performance of SHiP policy.

5.2.1 Evaluation results

FILM is evaluated on a series of 4-core multi-programmed workloads,

with a wide variation in the data reuse characteristics and cache capacity sen-

67

sitivity of the co-running programs. The workload mixes are made of both

streaming-oriented workloads and reuse-oriented workloads. The following

sections evaluate FILM and other policies from the perspective of energy effi-

ciency, data movement and performance. An early finished workload continues

executing and stressing shared resources(e.g., LLC and main memory) until

the slowest one completes, however, the energy and performance of a workload

is computed based on the data of first 250 million instructions. Throughput

(i.e., total IPC) over entire system energy is used as the metric to demon-

strate energy efficiency. LLC accesses and DRAM accesses are used as metrics

to evaluate the amount of data movement controlled by the evaluated policies.

LLC accesses (LLC traffic) consists of all kinds of LLC accesses, including

load/store access, prefetch requests and L2 evictions. DRAM accesses (DRAM

traffic) consists of all the LLC misses. IPC speedup is used to summarize the

performance impact of a policy on multicore workloads.

5.2.1.1 Energy efficiency

Figure 5.5 compares the energy efficiency of CHAR, FLEXclusion, DR-

RIP EX, SHiP++ EX, Hawkeye EX and MPPPB EX, with the number nor-

malized to the baseline TC-UC. The mixes are arranged in the increasing

order of FILM’s normalized energy efficiency. Details of the workload mixes is

listed in Table 5.2. The comparisons are demonstrated in two panels based on

whether the policies were originally proposed to handle exclusive caches or not.

The policies in the first class (CHAR, FLEXclusion, DRRIP EX) as well as

68

(a)

(b)

Figure 5.5: Energy efficiency(IPC/J) of FILM and other schemes. Results
normalized to TC-UC. The higher the better.

the baseline(TC-UC) are address-correlated. In contrast, all the policies in the

second class (SHiP++ EX, Hawkeye EX and MPPPB EX) are PC-correlated

69

Table 5.2: Workload mixes in Figure 5.5

1.gobmk,gromacs,perlbench,wrf 26.mcf,leslie3d,gcc,milc
2.libquantum,gromacs,omnetpp,wrf 27.GemsFDTD,soplex,bzip2,wrf
3.libquantum,gobmk,gromacs,zeusmp 28.soplex,astar,gobmk,omnetpp
4.GemsFDTD,bwaves,perlbench,wrf 29.mcf,milc,wrf,xalancbmk
5.astar,gobmk,gromacs,leslie3d 30.soplex,libquantum,mcf,perlbench
6.GemsFDTD,libquantum,omnetpp,xalancbmk 31.mcf,omnetpp,perlbench,xalancbmk
7.bwaves,gcc,gobmk,xalancbmk 32.mcf,astar,bwaves,milc
8.bwaves,gobmk,gromacs,leslie3d 33.mcf,bzip2,gromacs,milc
9.gobmk,omnetpp,wrf,xalancbmk 34.libquantum,sphinx3,bwaves,bzip2
10.GemsFDTD,bwaves,gcc,xalancbmk 35.mcf,soplex,leslie3d,milc
11.GemsFDTD,bwaves,bzip2,wrf 36.soplex,mcf,bzip2,wrf
12.GemsFDTD,libquantum,leslie3d,xalancbmk 37.GemsFDTD,sphinx3,leslie3d,wrf
13.mcf,omnetpp,leslie3d,wrf 38.mcf,soplex,astar,omnetpp
14.GemsFDTD,leslie3d,omnetpp,perlbench 39.GemsFDTD,mcf,soplex,milc
15.soplex,astar,leslie3d,wrf 40.sphinx3,bzip2,gobmk,perlbench
16.libquantum,gcc,milc,xalancbmk 41.soplex,mcf,gromacs,xalancbmk
17.soplex,astar,gobmk,wrf 42.soplex,gcc,omnetpp,xalancbmk
18.libquantum,bwaves,gcc,milc 43.libquantum,sphinx3,bwaves,wrf
19.mcf,bzip2,gobmk,perlbench 44.libquantum,sphinx3,bwaves,gobmk
20.GemsFDTD,mcf,leslie3d,perlbench 45.GemsFDTD,soplex,milc,wrf
21.soplex,bzip2,perlbench,wrf 46.GemsFDTD,lbm,sphinx3,gobmk
22.soplex,libquantum,astar,leslie3d 47.sphinx3,libquantum,astar,wrf
23.soplex,gobmk,leslie3d,wrf 48.sphinx3,gobmk,wrf,xalancbmk
24.libquantum,soplex,astar,omnetpp 49.sphinx3,gcc,bwaves,wrf
25.soplex,bwaves,leslie3d,wrf 50.sphinx3,cactusADM,gobmk,omnetpp

and require maintaining the program counter of the load/store instructions

along with the cacheline. Additionally, CHAR and FLEXclusion, from the

first group, and the baseline TC-UC policy have L2 eviction bypassing LLC

mode, whereas DRRIP EX and policies in the second group do not enable

data bypassing.

One observation is that FILM constantly achieves higher energy effi-

ciency than the baseline whereas the profile of other policies fluctuates dra-

matically. Compared to the baseline, the energy efficiency of FILM varies from

70

1% to a gain of 20%, whereas FLEXclusion shows the largest swing between a

loss of 8% to a gain of 16%. my second observation is that FILM has the high-

est average energy efficiency improvement of 9%, beating the second largest

value of 4% from CHAR by 5%. In other words, given the same amount of en-

ergy supply FILM is able to achieve 9% higher performance than the baseline,

compared to the range of -2% to 4% performance improvement from other

policies.

Compared to CHAR, which has the second highest average energy ef-

ficiency among all the evaluated schemes, there are only two workload mixes

(i.e., mix29 and mix32) where FILM is noticeably less energy efficient than

CHAR. The performance of CHAR and FILM are similar in both of the two

workload mixes. The energy efficiency benefit comes from CHAR’s ability

to save more LLC traffic and hence higher energy saving. One major reason

why CHAR has less energy consumption is that CHAR does not maintain

strict cache exclusiveness, whereas FILM follows the rule of exclusive caches.

Workload mixes 29 and 32 consist of some workloads which are cache capacity

insensitive and other workloads whose data get repeated hits on LLC. Accord-

ing to CHAR’s policy, a data block which has seen an LLC hit in the history

will not be de-allocated from LLC on all the future hits, which violates the

data exclusivity. As CHAR allows multiple copies of same data block staying

in the cache hierarchy, CHAR introduces less redundant LLC data insertion

of a same data block, which saves cache energy at the expense of cache capac-

ity. As the performance of co-running programs in mix29 and mix32 is cache

71

capacity insensitive, the energy saving benefits of CHAR’s keeping data valid

on hit becomes the dominant contributor to the high energy efficiency. Except

for workload mix29 and mix32, FILM has either equivalent or higher energy

efficiency than CHAR, with an average of 5% better than CHAR. Specifically,

FILM achieves a highest of 20% higher energy efficiency than CHAR on work-

load mix-46, which consists of both cache-capacity sensitive workload such as

sphinx3 and streaming workload such as lbm. In this workload mix-46, FILM

achieves both higher performance and lower energy compared to CHAR, be-

cause FILM enables more LLC data bypasses which on one hand saves LLC

energy and capacity and on the other hand improves the performance of the

cache-capacity sensitive workload. CHAR fails to explore as much bypass

opportunity as FILM explores in the lbm workload due to CHAR’s address-

correlated learning scheme. As an address-correlated scheme, CHAR divides

data into several categories based on data access type (e.g., prefetch fill, de-

mand fill, L1 writeback fill) and cache hit status, and performs learning within

each individual category. One drawback of CHAR is that data accesses of dif-

ferent reuse behavior can be put into the same category, impairing CHAR’s

learning scheme. On the contrary, FILM performs learning based on individ-

ual memory instructions. As illustrated in Figure 5.1, data accessed by the

same memory instruction have similar reuse behavior. Thus, FILM has less

training noise than CHAR, and is able to make more bypass decisions which

contributes to FILM’s higher energy efficiency.

72

(a) LLC traffic (b) DRAM traffic (c) LLC+DRAM energy

Figure 5.6: The traffic and energy of shared memory resource (LLC and
DRAM) of FILM and other schemes. Results normalized to TC-UC. The

lower the better.

5.2.1.2 Data movement

Data movement is a major factor contributing to the energy consump-

tion difference among all the policies as it affects both LLC energy and DRAM

energy. In order to understand why one policy consumes more/less energy than

another, we summarize the average normalized LLC and DRAM traffic as well

as the total energy of the two shared memory resources of all the workload

mixes in Figure 5.6a. From the figure we could observe that FILM consumes

the least amount of shared memory energy compared to other schemes because

it generates the smallest average number of LLC and DRAM traffic. It is also

noted that all the evaluated policies introduce more LLC traffic compared

to the baseline policy with less DRAM accesses. The reason is because the

73

baseline policy performs LLC bypass more aggressively compared to the other

schemes. Aggressive LLC bypassing helps reduce LLC energy, but results in

wasting more DRAM energy due to the increasing LLC misses.

Comparing to the policies with no LLC bypassing (DRRIP EX, Hawk-

eye EX, SHiP++ EX, and MPPPB EX), FILM saves LLC traffic by selec-

tively installing L2 evictions into LLC. The average normalized LLC traffic for

no-bypassing policies are around 1.22X, which is 0.12X more than the 1.1X

of FILM. The LLC bypass rate of FILM varies between 1% to 46% (with me-

dian value of 20%), which account for up to 0.3X less LLC traffic compared

to no-bypassing policies.

Compared with data-bypassing policies, FILM has similar average LLC

traffic compared to CHAR and 0.7X less than FLEXclusion, and FILM has

the lowest DRAM traffic(0.88X) compared to CHAR(0.9X) and FLEXclu-

sion(0.93X).

5.2.1.3 Performance

Figure 5.7 summarizes the performance speedup of various algorithms

normalized to the baseline TC-UC. The mixes are arranged in the increas-

ing order of FILM’s normalized throughput. Details of the workload mixes

is listed in Table 5.3. The average performance of FILM is generally bet-

ter than FLEXclusion and SHiP++, and looks on par with other schemes.

Specifically, FILM outperforms DRRIP EX on workload mixes with lbm and

sphinx3. FILM beats DRRIP EX in lbm and sphinx3 in terms of single core

74

(a)

(b)

Figure 5.7: IPC of FILM and other schemes. Results normalized to TC-UC.
The higher the better.

75

Table 5.3: Workload mixes in Figure 5.7

1.libquantum,bwaves,gcc,milc 26.soplex,astar,gobmk,omnetpp
2.bwaves,gcc,gobmk,xalancbmk 27.soplex,astar,leslie3d,wrf
3.gobmk,gromacs,perlbench,wrf 28.soplex,bwaves,leslie3d,wrf
4.mcf,omnetpp,perlbench,xalancbmk 29.soplex,libquantum,mcf,perlbench
5.libquantum,gobmk,gromacs,zeusmp 30.soplex,gobmk,leslie3d,wrf
6.GemsFDTD,bwaves,perlbench,wrf 31.GemsFDTD,libquantum,leslie3d,xalancbmk
7.gobmk,omnetpp,wrf,xalancbmk 32.soplex,gcc,omnetpp,xalancbmk
8.bwaves,gobmk,gromacs,leslie3d 33.libquantum,soplex,astar,omnetpp
9.libquantum,gromacs,omnetpp,wrf 34.GemsFDTD,mcf,leslie3d,perlbench
10.libquantum,gcc,milc,xalancbmk 35.GemsFDTD,leslie3d,omnetpp,perlbench
11.GemsFDTD,bwaves,gcc,xalancbmk 36.GemsFDTD,soplex,bzip2,wrf
12.mcf,bzip2,gobmk,perlbench 37.soplex,libquantum,astar,leslie3d
13.mcf,astar,bwaves,milc 38.mcf,soplex,leslie3d,milc
14.soplex,mcf,gromacs,xalancbmk 39.GemsFDTD,soplex,milc,wrf
15.astar,gobmk,gromacs,leslie3d 40.GemsFDTD,mcf,soplex,milc
16.mcf,bzip2,gromacs,milc 41.GemsFDTD,lbm,sphinx3,gobmk
17.mcf,milc,wrf,xalancbmk 42.sphinx3,bzip2,gobmk,perlbench
18.soplex,astar,gobmk,wrf 43.libquantum,sphinx3,bwaves,bzip2
19.mcf,omnetpp,leslie3d,wrf 44.sphinx3,gobmk,wrf,xalancbmk
20.GemsFDTD,bwaves,bzip2,wrf 45.libquantum,sphinx3,bwaves,wrf
21.soplex,mcf,bzip2,wrf 46.GemsFDTD,sphinx3,leslie3d,wrf
22.mcf,leslie3d,gcc,milc 47.sphinx3,gcc,bwaves,wrf
23.mcf,soplex,astar,omnetpp 48.libquantum,sphinx3,bwaves,gobmk
24.soplex,bzip2,perlbench,wrf 49.sphinx3,cactusADM,gobmk,omnetpp
25.GemsFDTD,libquantum,omnetpp,xalancbmk 50.sphinx3,libquantum,astar,wrf

performance by more than 10%. FILM shows its performance advantage on

cache capacity sensitive workloads by increasing the effective cache capacity

via reduced insertions, minimizing shared cache capacity contention in the

multicore scenario.

Among all the four PC-correlated policies, SHiP++ EX shares the most

common thoughts with FILM. The largest difference is that FILM relies on by-

passing dead blocks to avoid triggering the replacement policy and protecting

critical data, whereas SHiP++ EX (as well as Hawkeye EX and MPPPB EX)

always inserts dead blocks with the highest eviction priority. Take the mix50

76

in the Figure 5.7b as an example, FILM outperforms SHiP++ EX, Hawk-

eye EX and MPPPB EX in this workload mix, which consists of one cache

capacity sensitive workload (sphinx3), one streaming workload (libquantum),

and two workloads with small working set size (astar and wrf). FILM distills

the streaming pattern and minimizes the LLC data replacement due to this

workload, thus increasing the LLC hit rate of the data with reuse, which is re-

tained in the cache. Another difference is that FILM detects any stale bypass

decisions and updates its prediction model, whereas SHiP++ EX does not do

any error detection or correction.

There is no obvious performance winner among CHAR, Hawkeye EX,

MPPPB EX and FILM. Hawkeye EX outperforms FILM on a few workload

mixes, and its multicore throughput speedup comes from its performance im-

provement on one workload, lbm. However, even for the workload mixes with

8% performance difference between FILM and Hawkeye EX, FILM achieves

the same energy efficiency as Hawkeye EX as FILM generates 25% less LLC

traffic.

Co-running application could experience IPC reduction due to the neg-

ative interference between the multiple tenants contending for shared cache

resource. Compared to the baseline, FILM is able to restrict the performance

degradation of single application within 2%, whereas other policies lead to

single application performance degradation of 4% to 10%.

Figure 5.8 shows the fairness of all the evaluated policies relative to

the baseline. The minimum workload speedup is used as a conservative fair-

77

Figure 5.8: Lowest normalized IPC of any co-running program. IPC
reduction due to negative interference is least for FILM.

ness metric that captures any performance degradation (speedup < 1.0) of a

co-running workload in a mix. FILM is able to restrict the performance degra-

dation of single application within 2%, with the highest minimal speedup of

3%. The minimal speedup of other policies ranges from 0.90 to 0.96 (i.e.,

performance degradation of 10% to 4%).

5.2.1.4 Comparison with RAP

As both FILM and RAP [123] have the same goal of optimizing data

placement across the cache hierarchy, the evaluation of FILM scheme is com-

pleted in this section with comparison with RAP. RAP is compared separately

because it does not have special training mechanism for prefetched blocks.

With prefetching disabled, FILM’s performance on the multi-programmed

78

Table 5.4: Comparison between FILM and RAP enhanced with FILM-like
training on prefetch relative to TC-UC

Metric Enhanced RAP FILM
Hardware overhead per core 72KB 8.5KB
Energy efficiency (IPC/J) 0.96 1
DRAM traffic (access count) 1.06 1
LLC traffic (access count) 1 1
Performance (IPC) 0.98 1

mixes beats RAP by 7%. With prefetching enabled, the performance of the

original version of RAP on the system with prefetching enabled is poor, be-

cause RAP uses PC as its training metric and the PC of a prefetched block

is zero (prefetcher does not have PC). To make a fair comparison, RAP is

enhanced with FILM-like training schemes on prefetch. The result of the en-

hanced RAP is shown in Table 5.4. One difference between RAP and FILM

is that for cachelines with frequent accesses(hits), RAP learns from only the

first hit and evictions, whereas FILM learns from all the hits and evictions.

Another difference is that to avoid losing a global view of data movement un-

der heavily data bypassing, RAP dedicates few sets as learning sets which are

not affected by the RAP bypass algorithm, whereas FILM follows its ”utilize

empty line” rule. Enhanced RAP has a 72KB hardware cost as it extends

the metadata field of each cacheline in the cache subsystem with 12-bit PC.

With such significant overhead, the energy efficiency of Enhanced RAP is 4%

less than FILM. Both Enhanced RAP and FILM cut down LLC traffic due

to their support on cache level bypassing. RAP has 6% more DRAM accesses

79

Table 5.5: FILM hardware budget (per core)

Component Parameter Budget
Prediction Learning table 16 entries, 11-bit Tag, 4 KB
(Demand + Prefetch) 2048-bit footprint container

8-bit ReuseCnt+Fill
Result table 2048 entries, 2-bit entry 0.5KB

Table 5.6: Overhead Comparison (per core)

CHAR SHiP++ EX Hawkeye EX MPPPB EX FILM
2.25KB 77.5KB 86KB 97KB 4.5KB

and 2% less performance compared with FILM as its bypassing tends to get

overly aggressive.

5.2.2 Hardware cost and design decisions

5.2.2.1 Hardware overhead comparison

Table 5.5 shows the hardware budget of FILM’s two main memory com-

ponents, Prediction Learning table and Result table. FILM’s total hardware

budget is 8.5KB per core, which is 0.3% more SRAM than the three-level cache

hierarchy, in exchange of significant reduction in data movement and dramatic

improvement on energy efficiency. Table 5.6 compares the hardware budgets

for the evaluated replacement policies. TC-UC and DRRIP EX are not listed

because they, as well as other six schemes, share the common overhead of three

bits per cacheline to store re-reference counter. FLEXclusion is not listed be-

cause it leverages pre-existing data paths with only four registers overhead.

SHiP++ EX, Hawkeye EX and MPPPB EX have 72KB more overhead than

80

Figure 5.9: Rate of multiple entry matches reported by FILM’s bloom filter.

the number claimed in their paper due to the overhead of 14-bit PC-based

signature stored with cacheline.

5.2.2.2 Bloom filter analysis

As mentioned earlier, a bloom filter is used in FILM, to tie all cache

blocks fetched from DRAM by the same memory instruction to one table en-

try. When training, this bloom filter is used to identify which specific memory

instruction to train. FILM stops training on a data address when a multi-

ple match is detected. Figure 5.9 illustrates the false positive rate at which

FILM’s bloom filter reports multiple entries matched one address among SPEC

CPU2006 workloads. The false positive rate is greater than 10% for more

than half of the workloads. One may be surprised that FILM’s training accu-

racy is not seriously impacted even with such high rates of multiple matches.

For workloads like libquantum and bwaves, the valid training points are only

81

around 30% of the entire training set, and this observation suggests high in-

formation redundancy in the training set. In other words, although FILM is

not trained based on the entire history of data accesses generated by a given

instruction, a small portion of the history provides sufficient information to

train a decision that is as good as the one made with all the history. Further,

this observation adds confidence to the design choice of using a few sampled

cache sets for training FILM, as opposed to tracking all the sets.

Figure 5.10 illustrates the impact on performance as the number of

bloom filters in the Prediction Learning table increases from 8 to 64. The

performance number is normalised to 16 entries, which is the same number

showing in Table 5.5. A huge performance jump is seen when the number

of bloom filters increases from 8 to 16. Performance difference between 16

and 32 bloom filters are negligible. Performance increase by 2% as the num-

ber quadruples from 16 to 64. Thus, the least amount to use to maintain

performance is 16.

5.2.2.3 Impact of ”Utilize empty blocks” rule

The ”Utilize empty blocks” rule inserts evicted cache blocks into lower

caches when there is empty space in the cache, regardless of FILM’s bypassing

hints. If such blocks see hits in their new home, it guides FILM to dynami-

cally adjust its outdated bypass decisions. The CHAR algorithm uses empty

block as well. However, FILM uses empty blocks to create opportunities for

detecting stale bypassing hints, whereas CHAR does not perform any special

82

Figure 5.10: Performance sensitivity to the number of bloom filters. IPC
normalized to 16 bloom filters.

training on data inserted into empty blocks. Figure 5.11 compares normal-

ized energy efficiency over TC-UC between FILM and another FILM imple-

mentation which does not apply the ”Utilize empty blocks” rule and always

bypasses data block based on hints. Always bypassing reduces the number

of LLC installs and saves cache energy, at the cost of losing performance and

increasing DRAM energy. Figure 5.11 illustrates that ”utilize empty block”

rule contributes to an average of 4% energy efficiency improvement compared

to TC-UC.

5.3 Summary

Due to the inherent difference of data block insertion and movement

between an exclusive hierarchy and an inclusive hierarchy, prior work, which

is PC-correlated and is designed with inclusive caches in mind, cannot be

83

Figure 5.11: Energy efficiency of FILM and FILM without ”utilize empty block
rule”. Results normalized to TC-UC. The higher the better.

easily applied to exclusive caches. Moreover, a holistic approach to manage

data placement is essential for high cache performance and efficient resource

utilization. Therefore, FILM, a locality filtering mechanism is proposed to

adaptively guide data placement into appropriate cache layers based on data

reuse patterns. With a PC-based prediction scheme, FILM utilizes bloom

filters to record the memory instruction PC of data blocks, incurring minimal

cache overhead for meta-data transmission and storage. Besides, FILM is

able to quickly detect and correct any stale bypass decisions. FILM also does

special training on prefetch requests, and makes prefetch aware learning of

bypass/placement decisions.

Compared to a competitive baseline (TC-UC), FILM improves the av-

erage energy efficiency of multicore multi-programmed system by an of average

9% (maximum 20%), beating the second highest average energy efficiency im-

84

provement from CHAR by 5%, and is constantly more energy efficient than

other PC-correlated schemes. Moreover, FILM cuts down wasteful cache block

insertions and data movement, and generates on average 12% less LLC traffic

and 4% less DRAM traffic than other PC-correlated schemes.

85

Chapter 6

GPU Data Placement Optimization

GPU has traditionally been an accelerator for graphics processing, but

recently has seen large adoption as a general high-performance computing de-

vice. With the SIMT execution model and massive multithreading, GPU pro-

vides incredible speedups for embarrassingly data parallel applications. How-

ever, compared to the hundreds or thousands of threads running simultane-

ously on the GPU, GPU cache capacity of few mega-bytes is too small and

resource contention between threads is extremely severe. The cache capac-

ity per GPU thread and the data lifetime in GPU caches are both smaller

compared to CPUs. Cache management schemes proposed for CPUs can not

fully exploit the utilization of GPU memory subsystem. One solution to solve

the memory bottleneck of GPU applications is through explicitly managing

data placement using scratchpad memory. With the help of scratchpad RAM,

software programmers and compilers can encode data placement hints in the

application code to directly inform GPU memory subsystem about future data

access pattern, such that only data blocks with future reuse are stored on chip

to reduce off-chip data re-accesses. In this chapter1, a popular high perfor-

1Contents of this chapter was previously published at the International Conference on
Parallel Processing Workshops in 2016 [138]. I am the principle author of this work.

86

Figure 6.1: GPGPU memory hierarchy

mance computing application, kernel summation, is selected as an example

to illustrate the performance and energy benefit of managing data placement

using scratchpad memory in GPU.

6.1 GPGPU background

The GPGPU architecture studied in this dissertation is the NVIDIA

Maxwell architecture. It is composed of a set of compute units, a cooperative

thread array (CTA) scheduler, a unified L2 cache, and global memory. Each

compute unit, also called “Streaming Multiprocessor” (SM), contains a number

of arithmetic and logic units, a large register file, a shared memory, non-

coherent caches, and a scheduler for units of execution. The units of execution

are referred to as warps and each warp is composed of 32 scalar threads.

All threads within a warp are scheduled together, and thus are implicitly

87

synchronized. Those threads can exchange values using either shared memory

or the shuffle instruction.

A CTA or a thread-block is a group of warps that execute concurrently

on an SM. Threads executing on the same SM share a shared memory and are

explicitly synchronized using barriers or memory fences. The CTA scheduler

only allows a CTA to execute on an SM once the amount of required shared

memory and registers are available. Having a large number of CTAs and

scheduling warps concurrently on an SM allow the hardware to hide memory

latency. When a warp experiences a long memory stall due to cache misses,

bank conflicts or un-coalesced accesses, GPGPUs can hide latency by bringing

in other warps to concurrently execute compute instructions.

The memory hierarchy of the Maxwell architecture is shown in Fig-

ure 6.1. Each SM contains separate shared memory (SMEM) and unified L1

cache. Memory accesses of all SMs must go through a shared L2 cache. The

shared memory is a programmer managed cache, which is usually used in

conjunction with barriers, to communicate values between threads in a CTA.

Unlike the NVIDIA Fermi architecture [3], shared memory becomes an indi-

vidual unit in the Maxwell architecture and L1 cache is unified with texture

cache [7]. By default, the unified L1 and texture unit of the Maxwell archi-

tecture does not actually cache global loads, except for gather instructions,

texture fetches, and surface writes. However, a compiler flag can be used to

specify that all global loads must be cached at all levels.

The design of shared memory requires that shared memory is as large as

88

possible and provides bandwidth high enough to service 32 threads per cycle.

In order to provide high bandwidth, shared memory is laid out as a series of

banks (32 for the Maxwell architecture), where each bank is four bytes wide.

The width of bank is chosen to be the same as the size of float and RGBA data

types, which are frequently used in graphics applications. Bank conflict occurs

when different words in the same shared memory bank are accessed by threads

in the same warp. NVIDIA makes it known that good performance from shared

memory cannot tolerate bank conflicts. Programmers are encouraged to use

memory access patterns that do not cause a bank conflict. All threads in a

warp can issue a shared memory load in the same cycle. It is seen that all

32 banks share the same row select, which means that in order to avoid bank

conflicts, in addition to using different banks, threads need to access memory

within the same 128-byte region. If there is no bank conflict, 32 requests turn

out to be one shared memory transaction and exploit the high bandwidth of

the shared memory. The register file is also banked. Register bank conflicts

are usually avoided with the help of compiler, and are only likely to occur

when storing large vectors in registers.

6.2 Kernel Summation application

Kernel summation is a technique used to approximate the interactions

between two sets of points in a high dimensional space. It is widely used in

data analysis, electrostatics, and particle physics, most famously N-body sim-

ulations. There are numerous studies that have proposed scalable algorithms

89

and high-performance implementations of fast kernel summation schemes such

as treecodes [94][16], fast multipole methods [22][73], particle-mesh methods

[120], Ewald sums [30], etc. These algorithms can scale to billions or trillions

of points for problems in two or three dimensions. However, they do not scale

to higher values of K because they depend linearly or super-linearly on K.

Other algorithms which are efficient for high dimension K apply GEMM de-

fined in BLAS library [23]. Given αi, βj ∈ RK from a set of source points and

target points, a kernel K(αi, βj) describes the pairwise interaction between

two points. In this dissertation, K is denoted as the dimension of the space.

Gaussian kernel is selected as an example and is defined as

K(αi, βj) = exp−
‖αi−βj‖

2
2

2h2 (6.1)

where h is a constant. Solving the kernel summation problem is to compute

a scalar value Vj (associated with the target point βj) such that

Vj =
N∑
i=1

K(αi, βj)Wi (6.2)

where V ∈ RN is an N dimensional potential vector, and W ∈ RN is an

N dimensional weight vector. This dissertation focused on accelerating the

evaluation of the Equation 6.2, for modest N (O(10,000)).

Solving kernel summation problem requires computing the pairwise in-

teraction between every source point αi ∈ RN and every target point βj ∈ RN .

An efficient way to compute the N2 interactions is to use the following identity

for the Euclidean distance between two K dimensional points αi and βj:

‖αi − βj‖22 = ‖αi‖22 + ‖βj‖22 − 2αT
i βj (6.3)

90

An obvious way of evaluating all the pairwise interaction is to treat

the source point set and the target point set as two K by N input matrices

and to apply GEMM to compute the −2αT
i βj component for all i ∈ N and

j ∈ N . Each elements of the GEMM output matrix will be added to the

remaining components, ‖αi‖22 + ‖βj‖22. By performing an exponential function

(Equation 6.1) on the output matrix of the previous step, a temporal result

matrix K is generated with each element located at (row i, column j) represents

the pairwise kernel interaction between the source point αi and the target point

βj. In the end according to Equation 6.2, a GEMV is applied to the matrix K

and the weight vector W to get the result vector V.

A simplified kernel summation algorithm is shown in Algorithm 1. In-

puts A and B are M -by-K and K-by-N matrices separately, and W is an

N -dimensional weight vector. αi is a K-dimensional row vector representation

and βj is a K-dimensional column vector representation.

6.3 Proposed Scheme

Using vendor-provided libraries brings performance benefits through

the highly optimized BLAS, but it also sacrifices data locality because the

intermediate matrix, as the return value of GEMM call, is written back to

main memory due to its huge size not fitting into caches. The kernel summa-

tion problem typically involves large data sets, and the long memory access

latency is the crucial bottleneck of program execution. Except from losing

data locality, energy and power spent in memory access is another factor urg-

91

Algorithm 1 Basic kernel summation

1: Inputs:
A = [α0, α1, ..., αM−1]

T , M -by-K matrix
B = [β0, β1, ..., βN−1], K-by-N matrix
W = [ω0, ω1, ..., ωN−1]

T , N -by-1 vector

2: Outputs:
V = [ν0, ν1, ..., νN−1]

T , N -by-1 vector

3: vecα← [‖α0‖22, ‖α1‖22, ..., ‖αM−1‖22]T

4: vecβ ← [‖β0‖22, ‖β1‖22, ..., ‖βN−1‖22]
5: // duplicating vecα N times to form a M-by-N matrix

6: squareA← [vecα, vecα, ..., vecα]

7: // duplicating vecβ M times to form a M-by-N matrix

8: squareB ← [vecβ, vecβ, ..., vecβ]T

9: // GEMM

10: C ← A×B
11: R← squareA+ squareB − 2× C
12: for each element in R do

13: K(i, j)← exp{−R(i,j)
2h2 }

14: end for

15: // GEMV

16: V ← K ×W

ing a better solution. The increased power and energy consumption and the

resulting thermal issues have become major challenges. Memory, or DRAM,

operations usually take 20%-40% share of total energy consumption in many

applications. DRAM energy has been reported to account for 22% in Ultra-

SPARC T1 systems [48], more than 25% of data centers [92], and around 40%

in a mid-range IBM eServer machine [77].

To address the performance and energy challenges, fused kernel sum-

92

mation is proposed. The steps of kernel summation are fused into the GEMM

structure since most of the redundant memory accesses are coming from GEMM.

Fusion enables consumer operations to access data directly from registers and

caches right after producer completes, and thus increases data locality and

relieves memory burden. The problem is decomposed into parallel tasks with

minimal communication and synchronization, and assign each task to one GPU

thread block. The GEMM part of each task is fully parallel. When a thread

block completes the GEMM portion, it could go on to use intermediate value,

i.e. the GEMM output, stored in registers or shared memory to perform ker-

nel evaluation without waiting for other thread blocks. The only data that a

thread block stores back to main memory is the partial sum of the final result.

Communication between thread blocks happens only in the GEMV part where

all thread block outputs are accumulated to calculate a final result. Instead

of waiting for all the thread blocks to be ready before aggregating, the reduc-

tion operation is done through each thread block accumulating its output to

the latest reduction result in an atomic way. In other words, a thread block

immediately retires after updating the final result with its own output, and

only one thread block is allowed to update the final result at any time. The

problem size of these tasks and the size of thread blocks are selected to strike

a balance between higher device occupancy and less data duplication, which

infers less memory accesses.

93

6.3.1 Data placement in GEMM

The algorithmic view of my SGEMM is shown in Figure 6.2. Matrices

A and B hold coordinate table of the source point set and the target point

set respectively. For the remainder of this chapter, M denotes the leading

dimension of matrix A and K denotes the leading dimension of matrix B. So

the matrix A is of size M by K, and the matrix B is of size K by N . It is

assumed that the matrix A is in row major order and the matrix B is in column

major order. As shown in the figure, all the three matrices are divided into

sub-matrices. Ci,j denotes a submatrixC which has i submatrices to its left

and j submatrices on its top; Ai denotes a submatrixA which has i submatrices

on its top; and Bi denotes a submatrixB which has i submatrices to its left. A

thread block with a block ID (bx, by) is assigned to compute Cbx,by = Aby×Bbx,

and all thread blocks can be executed concurrently without race conditions.

submatrixA and submatrixB are partitioned into tiles of size 128 by 8 and

8 by 128 separately. A thread block performs rank-8 update across the K

dimension, i.e.,

submatrixC =

K/8∑
i=0

tileAi × tileBi

A submatrixC is divided further into 16x16 microtiles. microtileCi,j denotes

an 8 by 8 microtile which has i microtiles to its left and j microtiles on its top

within the range of a submatrixC. Threads are organized into a 16 by 16 grid

to form a thread block, and the thread with threadID (tx, ty) is correspond-

ing to the microtileCtx,ty. Therefore the task of a thread block computing

94

Figure 6.2: GEMM algorithmic view

tileA × tileB is decomposed into each thread computing microtileCtx,ty =

microtileAty ×microtileBtx

Based on the data access pattern of each thread block, a submatrixA

or a submatrixB will be accessed multiple time by different thread blocks.

Taking a submatrixA of size m by K as an example, it would be accessed

by N/m thread blocks, which indicates that the entire matrix A is repeatedly

loaded N/m times. Even though the shared L2 cache would serve data reuse

95

among thread blocks, it depends on the thread block scheduling policy to

ensure that thread blocks accessing the same range of memory are activated

at the same time. Besides, considering the limited size of L2 and the large

matrix size, average L2 size per thread block is not large enough to reduce

repeated memory accesses. Theoretically speaking, the value of m, which

is the leading dimension of both submatrixA and submatrixC, should be

sufficiently large to to reduce the N/m reloading times of matrix A. In other

words, the partition of matrix A and matrix B should be relatively coarse

grained in order to reduce reloading times, which directly influences the size

of submatrixC.

Factors like GPU limits, trade-offs between high SM occupancy and

less data locality, inter-influence between matrix size and matrix partition are

taken into consideration when determining the size of submatrixC and decom-

posing submatrixC computation to thread level tasks. In the best scenario of

experiments, a thread block of dimension 16 by 16 computes a submatrixC of

128 by 128, and each thread computes 8 by 8 elements.

The number of physical registers is one of the performance bottlenecks

of my solution. Programmers have the ability to choose how much shared

memory space is consumed using the CUDA C programming language, but

they can not explicitly control register usage without support from assembly,

which is not yet released by NVIDIA. The test machine, GTX970, provides

an upper bound of 65536 registers per SM. In other words, up to 255 registers

can be allocated to each thread when the thread block dimension is 16 by 16.

96

If nothing is limiting performance, larger number of registers used per thread

would lead to lower SM occupancy. In this solution, each thread takes 64

registers to hold 64 partial sums of microtileC in order to achieve the best data

locality. Each thread performs a rank-1 update to maximize the computation

to load ratio, hence vector operands from tileA and tileB take another 16

registers. Including miscellaneous essential demands like thread index and

control flow variables, 96 to 128 registers are consumed by each thread and this

leads to having up to two thread blocks executed simultaneously in the same

SM. Although the compiler option of “–maxregcount” helps achieve higher

occupancy, register spilling has a huge negative impact on performance because

of additional L1 transactions due to spilling.

In this implementation, partial sums of submatrixC are stored in the

thread register file, and tileA and tileB are loaded into the shared memory

sequentially. Double buffering is used to hide shared memory load latency.

Double buffering requires size of tiles to be restricted in such a way that shared

memory can hold at least two pairs of tiles at any moment. When one pair of

(tileAi, tileBi) are used in computation, next pair of (tileAi+1, tileBi+1) could

be loaded into shared memory. In the Maxwell assembly, each load is marked

by an integer. Explicit synchronization is inserted to guarantee that loading

a pair of tiles completes before being consumed in the next computation step.

In this solution, up to two thread blocks could be executed simulta-

neously in the same SM. Each thread computing more than 8x8 C elements

will reduce the occupancy to one thread block per SM due to the register

97

Figure 6.3: Data-thread mapping when loading tileB into shared memory

count limit. On the contrary, computing fewer C elements will transfer the

bottleneck to other parts. For example, if 128x128 elements of submatrixC

are computed by one thread block and 4x4 C elements per thread, it would

then require 1024 threads per block. Occupancy is still two thread blocks per

SM due to the device limit of 2048 threads per SM.

6.3.2 Shared memory data mapping

The shared memory in GPU serves like a scratchpad. Programmer is

directly responsible for all shared memory accesses. The shared memory per-

formance is a combined effect of the number of bank conflicts, the granularity

of access, and the total number of accesses. Larger granularity of access means

less load instructions and higher bus bandwidth utilization. For example, load-

ing four float values in one load instruction in the float4 data type rather than

98

four load instructions in the float type results in fewer load instructions. One

important consideration in using shared memory is to avoid bank conflicts.

When a bank conflict occurs, shared memory instructions are required to be

replayed for certain threads. There won’t be any shared memory bank con-

flicts when all threads in the same warp access the same data, because shared

memory does have some broadcast capabilities. For instance, if all 32 threads

access the same four bytes in a single bank, all requests can be serviced in a

single cycle. The broadcast capability also extends beyond a single broadcast,

such as the same value requested by eight threads within the same warp would

be served in one broadcast within single cycle.

When loading tileA and tileB into shared memory, one half of the

thread block (128 threads) loads tileA and the other half loads tileB. Threads

are carefully mapped to elements in memory to avoid shared memory store

bank conflicts. Figure 6.3 illustrates how to avoid both load and store bank

conflicts when bringing tileB into shared memory. Loading and placing tileA

is similar to tileB, and tileA is also divided similarly into 16 eight by eight

microtiles. The numbers illustrated on the figure are linear thread index and

they tell which thread is accessing that part of the main memory or writing

that bank of shared memory. A tile in main memory is partitioned into 16

eight by eight microtiles, and each microtile is further divided into eight eight

by one tracks, each of which is accessed by a different thread. In the shared

memory, tileB is stored in a two-dimensional array data structure in which

each row consists of 32 elements sitting in the 32 banks of shared memory.

99

Intuitively, each of the all 32 threads within a warp would load a track

from a group of eight neighboring microtiles, and store the track to one bank of

shared memory. However such track placement would not solve the problem of

load bank conflicts. Since thread with threadId (tx, ty) will touch microtileAty

and microtileBtx during multiplication, a warp needs to load all 16 microtiles

of tileB, and evenly spread them among 32 banks to get rid of load bank

conflicts. Therefore, the placement of tileB in shared memory need to be re-

arranged to avoid load bank conflicts, and the match between a thread and a

track is not that intuitive.

As shown in the figure, in order to spread 16 microtiles among 32 banks,

an eight by eight microtile in main memory is reconstructed as 32 by two. A

warp loads 32 tracks from main memory by picking two tracks per microtile,

and places them side by side in shared memory. It takes collaboration of four

warps to store one microtile. For example, microtileB0 is divided into four

groups of tracks. Thread 0, 1 in warp 0 will store data of group 0 to location

(bank 0-1, row 0-7); and thread 32, 33 belonging to warp 1 will write group

1 tracks into location (bank0-1, row 8-15), and so on. This guarantees that

the 32 threads in the same warp are writing to 32 different banks in shared

memory and no load bank conflicts would occur. Generally speaking, a thread

will touch track [tx mod 2 + 2 × (ty mod blockDim.y
2

)] of microtileBb tx
2
c, and

store the track into bank[tx mod 32], row (8ty to 8ty+7).

100

Algorithm 2 Fused kernel summation pseudo code for each thread block

1: Inputs:
matrix subA(128 by K), subB(K by 128), subA2(128 by 128),
subB2(128 by 128).
vector subW (128 by 1), subV (128 by 1). blockId(bx, by)

2: Outputs:
vector partialV (128 by 1)

3: Initialize:
j ← 0, i← 0, declare sharedA0, sharedB0, sharedA1 and sharedB1

as arrays in shared memory
temporal matrix T (128 by 8), T = [τ0, τ1, ..., τ127]T , τ is an 8 by 1
row vector,
γ is T ’s 8-dimensional column vector,
γi,j = [T [8i, j], T [8i+ 1, j], ..., T [8i+ 7, j]]T

4: parfor each thread with threadId (tx, ty) do
5: load-nonblocking(sharedAj ← tileAi, sharedBj ← tileBi, tx, ty)
6: syncthreads();
7: for i from 1 to K

8 − 1 do // GEMM. subC = subA× subB
8: j ← j ⊕ 1 // ⊕ is Exclusive OR operator
9: load-nonblocking(sharedAj , sharedBj , tileAi, tileBi, tx, ty) // Memory access

10: microtileCtx,ty+ = microtileAty×microtileBtx // Hide memory access latency
with Computation

11: syncthreads()
12: end for
13: microtileCtx,ty+ = microtileAty ×microtileBtx

14: subC[tx, ty] ← exp{− subA2[tx,ty]+subB2[tx,ty]−2×subC[tx,ty]
2h2 } // Gaussian Kernel

Evaluation
15: // Summation
16: γtx,ty ← microtileCtx,ty × subWtx // Intra-thread level reduction.
17: syncthreads()
18: if ty ≤ blockDim.y

2 then
19: tid← ty × blockDim.x+ tx
20: partialV [tid]← rowReduction(τtid) // Intra thread block level reduction
21: atomicAdd(subV [tid], partialV [tid]) // Inter thread block level reduction
22: end if

23: end parfor

6.3.3 Kernel summation fused with GEMM

Steps of kernel summation are fused into the GEMM framework as

described above. The pseudo code shown in the Algorithm 2 demonstrates an

101

overview of the fused kernel summation routine executed by each thread block.

There are seven inputs: subA and subB are 128 by K and K by 128 matrices

separately; subA2 and subB2 are 128 by 128 matrices, which are submatrices

of the squareA and squareB computed in the Algorithm 1; subW is part of

the weight vector W ; subV frames the final result V of the kernel summation

problem; and two-dimensional thread block index (bx, by). The output of each

thread block is vector partialV . A representation of (tx, ty) refers to the two-

dimensional thread index. The same partitioning scheme of matrices A, B,

and C from the previous part is followed. Additionally squareA and squareB

are divided into sub-matrices the same way as C and the same denotation

rule. Both vector W and V are evenly split into sub-vectors of dimension

blockDim.y. The variables sharedA0, sharedA1, sharedB0, sharedB1 and T

are declared per thread block and their sizes are the same as tileA and tileB.

Matrix T is used to store thread level reduction result in shared memory. In

my implementation code, T explicitly reuses the shared memory spaces of

sharedA0 in order to limit the amount of shared memory resources required

per thread block and to increase SM occupancy. Denotation X[i, j] represents

the element in the i-th column and j-th row of matrix X, and Y [k] represents

the k-th element of vector Y . The mapping of thread blocks to the first element

of their input matrices and input vectors are shown below. For example, when

matrix A and B are partitioned into blocks and indexed in the same way as

the one shown in Figure 6.2, a thread block whose index is (bx,by) will load

the by-th block of matrix A as its program input subA and bx-th block of

102

matrix B as subB.

subA = A+ 128× by

subB = B + 128× bx

subA2 = squareA+N × by + 128× bx

subB2 = squareB +N × by + 128× bx

subW = W + 128× by

subV = V + 128× by

Line 5-13 in Algorithm 2 are the same GEMM structure as I de-

scribed in the previous part. In the function load-nonblocking (sharedAj,

sharedBj, tileAi, tileBi, tx, ty), each thread in the first half of thread block

(i.e. ty ≤ blockDim.y
2

) would load a track from the tileAi into the shared mem-

ory variable sharedAj, and each thread in the other half would load a track

from the tileBi into the shared memory variable sharedBj. The mapping of

threads to tracks and data placement are already discussed before. At the

end of the GEMM routine, each thread completes updating a microtileC, and

this intermediate product is held in thread registers. The kernel evaluation

according to Equation 6.1 becomes embarrassingly parallel. In order to make

full use of the benefit brought by register locality, each thread performs kernel

evaluation in the next step (line 14).

There are three levels of reductions during kernel summation: intra-

thread level, intra-thread-block level, and inter-thread-block level. Synchro-

nization needs to be carefully taken care of in the last two levels. During the

103

Table 6.1: Configuration

Number of Multiprocessors 13
Maximum number of threads per block 1024
Warp size 32
Maximum number of resident threads per multiprocessor 2048
Number of 32-bit registers per multiprocessor 64K
Maximum number of 32-bit registers per thread 255
Maximum amount of shared memory per multiprocessor 96KB
Shared Memory Bank Size 4B
Number of shared memory banks 32
Number of warp schedulers 4
L2 size 1.75MB

intra-thread level summation, each thread performs row reduction on its eight

by eight microtile, and stores the result in shared memory. The intra-thread-

block level reduction needs to wait until all threads complete its own reduction

work. A thread block level synchronization function, syncthreads(), is called

to ensure function correctness. In my case since there are 16 threads in the x-

dimension of thread block, intra-thread-block level summation reduces results

of every 16 threads in the row to form a partial result of that thread block.

Because there are 128 rows in subC, only half of the thread block (i.e. 128

threads) is required to perform intra-thread-block reduction, with each thread

responsible for one row. Notice that the output partialV of each thread block

is not the subvector of final result V . Instead subV is the sum of partialV

distributed across thread blocks with the same by. Data communication be-

tween thread blocks is done through main memory, and requires waiting for

all thread blocks to finish execution. In order to avoid synchronization latency

104

between thread blocks and to prevent accessing memory twice to store and

reload partialV , an atomic add operation is chosen to update subV whenever

partialV is ready.

6.4 Evaluation

The kernel summation application is run on a desktop system equipped

with a Corei5-4960K connected to an NVIDIA GTX970 Maxwell GPU (4GB

of GDDR5 video memory) over a PCIe interconnect. Technical specifications

of the GTX970 are listed in Table 6.1, and all numbers are based on the latest

compute capability of 5.2. All the performance metrics and events in this

work are measured with the nvprof [6] profiling tool provided by NVIDIA.

The cuBLAS library used in this work is version 7.0.

Three different implementation of kernel summation problem are run

and compared, which are denoted Fused , CUDA-Unfused and cuBLAS-

Unfused . Fused is the kernel fusion implementation discussed in the previous

section. Two unfused versions of kernel summation were programmed. One is

to pair self-implemented SGEMM with the kernel evaluation and the summa-

tion routine, denoted by CUDA-Unfused. Another one is to call the SGEMM

function provided in the cuBLAS library followed by the kernel evaluation and

the summation routine, denoted by cuBLAS-Unfused. All runs are repeated

multiple times to ensure the repeatability and consistency of the results. The

different kernel summation solution were tested and compared with four groups

of different K value, which are 32, 64, 128, and 256.

105

Figure 6.4: Execution time and speedup of the fused kernel summation in
comparison with unfused implementations.

The advantage of fused kernel summation is seen from both perfor-

mance and energy perspectives. Energy model is built based on GPUWattch.

Figure 6.4 demonstrates normalized execution time of the Fused and

the CUDA-Unfused implementations with respect to the cuBLAS-Unfused im-

plementation on primary axis, as well as the speedup of the Fused kernel sum-

mation versus both cuBLAS-Unfused and CUDA-Unfused on secondary axis.

Fused approach beats cuBLAS-Unfused approach by up to 1.8X speedup when

dimension K is not extremely large, i.e. K < 128. Largest speedup of 1.8X

happens to the group of K = 32. Performance gain comes from reducing un-

106

 Unfused Unfused Unfused Unfused

 Fused Fused Fused Fused

 (a) K=32 (b) K=64 (c) K=128 (d) K=256

Figure 6.5: Reuse distance profile of CUDA-Unfused and Fused approach at
shared L2. M=N=131072

necessary main memory accesses. As dimension K increases the performance

degradation due to my inferior CUDA-C GEMM implementation outweighs

the benefits of fused computation. The speedup against CUDA-Unfused is a

projected speedup which suggests performance benefit of fusion when a GEMM

as good as the one in cuBLAS is applied in Fused. Fused shows much bet-

ter performance than CUDA-Unfused in all problem sizes. Compared to the

CUDA-Unfused implementation, Fused gains a maximum 3.7X performance

speedup when K = 32 and around 1.5X speedup when K = 256. This demon-

strates the benefits of fusing over an unfused implementation. It is noticed that

in lower dimension scenarios, performance benefit of fusion becomes more ob-

vious as the number of points (M,N value) increases. Figure 6.5 compares the

107

Table 6.2: FLOP Efficiency

cuBLAS-Unfused Fused
K=32
M=1024 19.92% 33.14%
M=131072 29.30% 50.86%
M=524288 29.02% 51.05%
K=64
M=1024 31.15% 41.86%
M=131072 45.22% 57.01%
M=524288 36.83% 56.26%
K=128
M=1024 44.32% 49.08%
M=131072 62.15% 60.03%
M=524288 61.76% 50.29%
K=256
M=1024 58.42% 53.75%
M=131072 74.02% 62.9%
M=524288 74.15% 62.05%

reuse distance distribution seen at GPU shared L2 before and after fusion al-

gorithm is applied. The figure shows that the fusion algorithm greatly reduces

the data reuse distance. More than 50% of data in the unfused algorithm have

data reuse longer than 32K, which accounts for 2MB cache. Fusion improves

data locality by maximize data reuse and reduce the data reuse distance of all

the L2 access to be less than 8K, which is equivalent of 512KB cache.

Table 6.2 demonstrates the ratio of achieved operations to peak single-

precision floating-point operations, which is essentially flop efficiency. Since

NVIDIA profiler reports efficiency value on the granularity of kernel launched,

the efficiency of cuBLAS-Unfused kernel summation is a weighted sum of the

108

Figure 6.6: Execution time comparison of different GEMM implementations

SGEMM kernel and the summation kernel based on their total cycle count.

Higher FLOP efficiency indicates better performance. When the efficiency of

fused kernel summation is lower than that of cuBLAS approach, the speedup

over cuBLAS drops below 1X.

Since GEMM dominates the performance of kernel summation, a com-

parison between the cuBLAS GEMM and my CUDA-C GEMM would be

helpful to better understand the overall performance. Figure 6.6 presents the

normalized run time of the two GEMM implementation. As expected, the

CUDA-C GEMM is two times slower than the cuBLAS GEMM. One of the

main reasons of performance deterioration is the coarse-grained control of the

CUDA-C language on hardware compared with assembly instructions. For

109

example, it is infeasible to avoid register file bank conflict when coding in the

CUDA-C programming language and the syncthreads() function is the pri-

mary synchronization method between threads, which is more expensive than

the low level synchronization instructions available in the Maxwell assembly.

Another reason that leads to inferior performance is that the part of storing

results back to main memory is not optimized since it is unnecessary in ker-

nel fusion. Apart from optimizing memory access ordering, rearranging the

data location in shared memory to avoid bank conflicts, and applying float4

type of load/store instructions as many as possible, there are still some un-

known optimization schemes in the cuBLAS library that contributes better

performance.

6.4.1 Influence on data movement

Analyzing the performance of Fused kernel summation involves dis-

cussing the trade-offs between its lower GEMM performance and reduction

in the number of memory accesses. The primary effect of the proposed code

optimizations is the reduction in memory transactions. Figure 6.7 compares

the number of L2 and DRAM transactions in both Fused and CUDA-Unfused

normalized with respect to cuBLAS-Unfused. In Figure 6.7a, the number of L2

transactions in the Fused approach is less than 50% of the cuBLAS-Unfused

approach in most cases, except for two configurations “M=N=1024, K=128”

and “M=N=1024, K=256”. In higher K-dimensional scenarios CUDA-C ver-

sion of SGEMM has more L2 transactions compared with the SGEMM in

110

(a) L2 Transaction (b) DRAM Transaction

Figure 6.7: L2, DRAM transaction number normalized to cuBLAS-Unfused.

Figure 6.8: Power comparison between CUDA-Unfused and Fused approach.
M=N=1024,K=256

cuBLAS library. In configurations where product of MN is small and K value

is large, the benefit of saving L2 transactions through kernel fusion is offset by

additional L2 transactions in SGEMM. As shown in Figure 6.7b, the number

of DRAM transactions in Fused is less than 10% of cuBLAS-Unfused in all

problem sizes.

111

Figure 6.9: Energy consumption breakdown into Compute, Shared memory,
L2, and DRAM

Reduction in L2 and DRAM accesses not only saves L2 and DRAM

power and energy, but also power to move data around. Figure 6.8 illus-

trates total power consumption of Fused and CUDA-Unfused with detailed

breakdown of various micro-architectural components. Fused kernel summa-

tion consumes 28% less power than unfused version. L2 cache and network on

chip (NoC) are the two major power saving contributors.

6.4.2 Energy

In addition to performance benefit, fused kernel summation brings con-

siderable energy savings thanks to reduction in main memory accesses. Ta-

112

Table 6.3: Energy Savings of Fused compared to cuBLAS-Unfused

M=1024 M=131072 M=524288
K=32 31.3% 32.5% 32.5%
K=64 18.7% 23.6% 23.4%
K=128 10.2% 14.8% 13.1%
K=256 3.5% 8.5% 7.2%

ble 6.3 summarizes energy savings of the Fused approach compared to the

cuBLAS-Unfused. Within in a group of same dimension K, there is a trend of

saving more energy when the value of dimension M increases, which is because

the number of redundant memory reads and writes are O(MN) in kernel sum-

mation problem. The amount of energy savings obtained from fusion is greatly

affected by the K value. Up to 33% of cuBLAS-Unfused energy is saved when

K = 32, and energy savings decreases as value K increases, around 8% is

saved when K = 256.

Figure 6.9 compares energy consumption of three different solutions,

and illustrates energy breakdown into computation, shared memory, L2, and

DRAM parts. Compared to the DRAM access energy in the cuBLAS-Unfused

approach, the Fused approach saves more than 80% which amounts to 8% to

24% of total energy. The largest energy saving which is up to 33% happens to

the group of K = 32. Out of 33%, DRAM access reduction contributes 26%

, and the remaining 7% comes from reduction in the number of executed in-

structions. This is consistent with the performance speedup. When the Fused

approach performance is better than the cuBLAS-Unfused approach, there

is additional energy savings. In high dimension scenarios, the energy benefit

113

from fusion is less. One reason is because DRAM access savings will balance

extra energy consumption from more shared memory accesses. Another rea-

son is because more than 80% of energy is spent on floating point computing

operations such as fused multiply add.

6.5 Summary

This chapter presents a fused approach of implementing kernel summa-

tion on the state of the art GPU. Various software optimizations to improve

performance and energy efficiency are implemented into the kernel summation

code. Fusing series of steps in the kernel summation leads to improvement

in locality and reduction of memory accesses. In addition to fusion, steps of

kernel summation are optimized to increase locality by adjusting the blocking

and panel sizes, and by tailoring the working set to fit in the fast on-chip

memory. Fusion is seen to improve overall performance of kernel summation

up to 1.8X. This chapter shows that my approach achieves higher performance

compared with the approach using the cuBLAS library in lower dimensions.

Performance loss in high dimensions is due to my less efficient SGEMM. If

an SGEMM as good as cuBLAS is applied, fused implementation is able to

achieve up to 3.7X performance improvement. From the energy perspective,

fused kernel summation shows 3% to 33% of total energy saving across vari-

ous experimented dimensions. This is because eliminating redundant memory

accesses via fusion results in less memory access energy. The fused approach

always brings energy saving benefits and demonstrate optimizations at the

114

CUDA-C level while further improvements can possibly be obtained by opti-

mizing the code at assembly level. Steps similar to those implemented in this

chapter can be applied to other algorithms.

115

Chapter 7

Conclusion and Future Work

High memory subsystem performance and low energy consumption is

the key to build energy efficient computing systems. Although there has been

prior art on cache optimization, they still suffer from several challenges. First,

the working set size of emerging applications has been continuing to grow and

exceeding on-chip SRAM capacity, meanwhile the SRAM capacity per tenant

is reaching its limit due to the power and area constraints. The increasing

cache resource contention leads to high cache miss rate and poor memory sub-

system performance. Second, as the cache hierarchy grows deeper, the energy

cost of the large amount of data movement between cache layers has become

negligible. Computation energy is almost free compared with data movement.

The energy spent on memory subsystem, especially on data movement, has be-

come the major source of system energy consumption. Third, with the trend

of moving towards exclusive caches in CPU cache hierarchy, prior art proposed

with inclusive caches in mind can not be directly applied without adding huge

storage and power overhead. Finally, as GPU emerges as popular platform for

high performance computing, proposed schemes in the filed of managing CPU

data placement can not be easily applied due to GPU’s extreme low per-thread

SRAM capacity.

116

This dissertation focuses on improving energy efficiency of modern

memory subsystem by proposing data movement sensitive data placement

schemes. The following section summarizes the key contributions made in

this dissertation.

7.1 Summary

The cache hierarchy is a highly contended resource in current multi-

core, multi-tenant systems. With large data sets of modern applications and

increasing core counts, the on-chip SRAM capacity per core is getting smaller.

Installing data blocks to appropriate cache level and bypass layers in between

contributes to energy saving, while better utilization of the free space in upper

low-latency levels of the hierarchy together with quick correction of prediction

errors is the key to performance improvement. In this dissertation, I present a

FILtered Multilevel (FILM) caching policy, which is a PC guided mechanism

to filter cacheline insertions based on data reuse with minimal cache overhead

for meta-data transmission and storage. The bloom filter helps to overcome

the challenges associated with capturing PC-based information in exclusive

caches. When there is free space in the bypassed cache layer, FILM over-

rides the initial prediction and allows cache block insertion into the cache level

achieving more low latency hits. FILM also incorporates an explicit mecha-

nism for handling prefetch, which allows it to train differently for data from

demand requests versus prefetch requests. As the locality behavior of memory

instructions changes during application execution, FILM incorporates quick

117

detection and correction of stale/incorrect bypass decisions helping to achieve

additional performance benefits.

Next, this dissertation investigates fine-grained data placement schemes

for GPUs. The GPU has emerged as a powerful computing device for high-

performance computing applications beyond graphics processing. While GPU

provides incredible speedups for embarrassingly data parallel applications, it

often requires extensive algorithm optimization effort for applications with

high communication demands to achieve similar performance improvements

as on other programs. Although many basic buildings blocks exist in CUDA

library helping port applications from CPU to GPU, often a much more pow-

erful solution is possible by tailoring these basic blocks to the specific ap-

plication. Kernel summation is a widely used computational kernel that in-

volves matrix-matrix multiplication (GEMM) and matrix-vector multiplica-

tion (GEMV) computational primitives. State of the art GPU solutions apply

cuBLAS library but cannot exploit much of the data locality because inter-

mediate results are written back to main memory in between key operations.

This dissertation presents an optimized implementation that yields better per-

formance and high energy efficiency. Data access sequence and placement is

manually optimized based on the microarchitecture of GPU memory hierar-

chy. All steps of kernel summation are fused into the matrix multiplication

code structure based on the temporal locality of data access pattern. The pro-

posed approach achieves the best performance and least energy consumption

via eliminating redundant data movement and main memory accesses.

118

7.2 Future Work

While this dissertation makes significant contributions to improve en-

ergy efficiency of memory subsystem via managing data placement, there are

still opportunities for future work. This section lists possible future work.

Integrated CPU-GPU heterogeneous system is becoming a popular

computing platform. Due to dramatic difference between the characteristics

of CPU and GPU memory subsystems, data placement schemes designed for

either CPU-only system or GPU-only system becomes inefficient for the CPU-

GPU integrated system. As GPU generates much more larger data requests

than CPU, any resources shared by CPU and GPU (e.g., LLC capacity, inter-

connect bandwidth, etc) will be dominated by GPU utilization, which leads

to significant performance degradation in the usually latency-sensitive CPU

workloads. A heterogeneous architecture aware data placement scheme is re-

quired to protect the cache performance of CPU from GPU pollution, mean-

while allocating enough resource to maintain the performance of bandwidth

sensitive GPU applications.

The future heterogeneous aware data placement scheme should differ-

entiate the cost of moving data within CPU or GPU cache hierarchy and the

cost of moving data between CPU and GPU, where the latter cost is usually

much higher than the former one. Besides, as CPU is much more latency

sensitive than GPU and GPU is able to hide latency by sending large amount

of data requests in consecutive cycles, the future scheme should protect data

blocks required by CPU compute units from being replaced by GPU-required

119

data blocks. Future schemes may benefit from marking each cache block with

its “owner” to be CPU or GPU.

120

Bibliography

[1] Cassandra. wiki.apache.org/cassandra/FrontPage.

[2] Faban Harness and Benchmark Framework. http://java.net/

projects/faban/.

[3] Fermi compute architecture whitepaper. http://www.nvidia.

com/content/pdf/fermi_white_papers/nvidia_fermi_compute_

architecture_whitepaper.pdf.

[4] Maxas. https://github.com/NervanaSystems/maxas.

[5] MongoDB. mongodb.org.

[6] Profiler user’s guide. http://docs.NVIDIA.com/cuda/profiler-

users-guide/#axzz3oNg3mHRn.

[7] Tuning CUDA applications for maxwell. http://docs.nvidia.com/

cuda/maxwell-tuning-guide/#axzz3op9EeX3M.

[8] VoltDB. http://voltdb.com.

[9] J. Ahn, S. Yoo, and K. Choi. Dasca: Dead write prediction assisted stt-

ram cache architecture. In IEEE 20th International Symposium on High

Performance Computer Architecture (HPCA), pages 25–36, Feb 2014.

121

wiki.apache.org/cassandra/FrontPage
http://java.net/projects/faban/
http://java.net/projects/faban/
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
https://github.com/NervanaSystems/maxas
mongodb.org
http://docs.NVIDIA.com/cuda/profiler-users-guide/#axzz3oNg3mHRn
http://docs.NVIDIA.com/cuda/profiler-users-guide/#axzz3oNg3mHRn
http://docs.nvidia.com/cuda/maxwell-tuning-guide/#axzz3op9EeX3M
http://docs.nvidia.com/cuda/maxwell-tuning-guide/#axzz3op9EeX3M
http://voltdb.com

[10] M. A. Z. Alves, , E. Ebrahimi, V. T. Narasiman, C. Villavieja, P. O. A.

Navaux, and Y. N. Patt. Energy savings via dead sub-block prediction.

In 2012 IEEE 24th International Symposium on Computer Architecture

and High Performance Computing, pages 51–58, Oct 2012.

[11] Yuichiro Anzai. Pattern Recognition & Machine Learning. 2012.

[12] Rachata Ausavarungnirun, Saugata Ghose, Onur Kayiran, Gabriel H

Loh, Chita R Das, Mahmut T Kandemir, and Onur Mutlu. Exploiting

inter-warp heterogeneity to improve GPGPU performance. In 24th In-

ternational Conference on Parallel Architectures and Compilation Tech-

niques (PACT), pages 25–38, 2015.

[13] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt.

Analyzing CUDA workloads using a detailed GPU simulator. In 2009

IEEE International Symposium on Performance Analysis of Systems and

Software, pages 163–174, April 2009.

[14] R. Banakar, S. Steinke, Bo-Sik Lee, M. Balakrishnan, and P. Marwedel.

Scratchpad memory: a design alternative for cache on-chip memory in

embedded systems. In Proceedings of the Tenth International Symposium

on Hardware/Software Codesign. CODES 2002, pages 73–78, May 2002.

[15] Nathan Beckmann and Daniel Sanchez. Modeling cache performance be-

yond lru. In IEEE 22nd International Symposium on High Performance

Computer Architecture (HPCA), pages 225–236, 2016.

122

[16] Jeroen Bédorf, Evghenii Gaburov, and Simon Portegies Zwart. A sparse

octree gravitational n-body code that runs entirely on the GPU proces-

sor. In Journal of Computational Physics, volume 231, pages 2825–2839,

April 2012.

[17] Burton H. Bloom. Space/Time trade-offs in hash coding with allowable

errors. In Communication of ACM, volume 13, pages 422–426, July 1970.

[18] Anand Chandrasekher. Meet qualcomm centriq 2400, the world’s first

10-nanometer server processor. https://www.qualcomm.com/news/

onq/2016/12/07/meet-qualcomm-centriq-2400-worlds-first-10-

nanometer-server-processor.

[19] Mainak Chaudhuri, Jayesh Gaur, Nithiyanandan Bashyam, Sreenivas

Subramoney, and Joseph Nuzman. Introducing hierarchy-awareness in

replacement and bypass algorithms for last-level caches. In 21st Interna-

tional Conference on Parallel Architectures and Compilation Techniques

(PACT), pages 293–304, 2012.

[20] Tien-Fu Chen and Jean-Loup Baer. Effective hardware-based data

prefetching for high-performance processors. In IEEE Transactions on

Computers, volume 44, pages 609–623, May 1995.

[21] Xi E. Chen and Tor M. Aamodt. Hybrid analytical modeling of pending

cache hits, data prefetching, and mshrs. In 41st Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO 41, pages 59–

70, 2008.

123

https://www.qualcomm.com/news/onq/2016/12/07/meet-qualcomm-centriq-2400-worlds-first-10-nanometer-server-processor
https://www.qualcomm.com/news/onq/2016/12/07/meet-qualcomm-centriq-2400-worlds-first-10-nanometer-server-processor
https://www.qualcomm.com/news/onq/2016/12/07/meet-qualcomm-centriq-2400-worlds-first-10-nanometer-server-processor

[22] Hongwei Cheng, Leslie Greengard, and Vladimir Rokhlin. A fast adap-

tive multipole algorithm in three dimensions. In Journal of Computa-

tional Physics, volume 155, pages 468–498, 1999.

[23] D Yu Chenhan, Jianyu Huang, Woody Austin, Bo Xiao, and George

Biros. Performance optimization for the k nearest-neighbor kernel on

x86 architectures. 2015.

[24] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and

George Candea. Cloud9: A software testing service. In SIGOPS Oper.

Syst. Rev., volume 43, pages 5–10, January 2010.

[25] Jamison D Collins and Dean M Tullsen. Hardware identification of cache

conflict misses. In 32nd Annual ACM/IEEE International Symposium

on Microarchitecture, pages 126–135, 1999.

[26] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak,

and Bill Hughes. Cache hierarchy and memory subsystem of the amd

opteron processor. In IEEE Micro, volume 30, pages 16–29, March 2010.

[27] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking cloud serving systems with ycsb. In

Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10,

pages 143–154, 2010.

[28] CRC2-2017. THE 2ND CACHE REPLACEMENT CHAMPIONSHIP.

http://crc2.ece.tamu.edu/c, 2017.

124

http://crc2.ece.tamu.edu/c

[29] B. Dally. Power, programmability, and granularity: The challenges of

exascale computing. In 2011 IEEE International Parallel Distributed

Processing Symposium, pages 878–878, May 2011.

[30] Tom Darden, Darrin York, and Lee Pedersen. Particle mesh ewald: An

n log (n) method for ewald sums in large systems. In The Journal of

chemical physics, volume 98, pages 10089–10092, 1993.

[31] Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero,

and Alexander V Veidenbaum. Improving cache management policies

using dynamic reuse distances. In 45th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 389–400, 2012.

[32] Yoav Etsion and Dror G Feitelson. Exploiting core working sets to filter

the l1 cache with random sampling. In IEEE Transactions on Comput-

ers, volume 61, pages 1535–1550, 2012.

[33] P. Faldu and B. Grot. Leeway: Addressing variability in dead-block

prediction for last-level caches. In 26th International Conference on

Parallel Architectures and Compilation Techniques (PACT), pages 180–

193, Sept 2017.

[34] Priyank Faldu and Boris Grot. Leeway: Addressing variability in dead-

block prediction for last-level caches. In 26th International Conference

on Parallel Architectures and Compilation Techniques (PACT), pages

180–193, 2017.

125

[35] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,

Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel

Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the clouds:

A study of emerging scale-out workloads on modern hardware. In SIG-

PLAN Not., volume 47, pages 37–48, March 2012.

[36] John W. C. Fu, Janak H. Patel, and Bob L. Janssens. Stride directed

prefetching in scalar processors. In 25th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, MICRO 25, pages 102–110,

1992.

[37] Adi Fuchs, Shie Mannor, Uri Weiser, and Yoav Etsion. Loop-aware

memory prefetching using code block working sets. In 47th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 533–

544, 2014.

[38] Wanling Gao, Yuqing Zhu, Zhen Jia, Chunjie Luo, Lei Wang, Zhiguo Li,

Jianfeng Zhan, Yong Qi, Yongqiang He, Shimin Gong, Xiaona Li, Shujie

Zhang, and Bizhu Qiu. Bigdatabench: a big data benchmark suite from

web search engines. volume abs/1307.0320, 2013.

[39] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass and insertion al-

gorithms for exclusive last-level caches. In ACM/IEEE 38th Annual In-

ternational Symposium on Computer Architecture (ISCA), pages 81–92,

June 2011.

126

[40] K. Ghose and M. B. Kamble. Reducing power in superscalar processor

caches using subbanking, multiple line buffers and bit-line segmentation.

In Proceedings 1999 International Symposium on Low Power Electronics

and Design, pages 70–75, Aug 1999.

[41] Alexander G Gray and Andrew W Moore. N-body’problems in statistical

learning. In NIPS, volume 4, pages 521–527, 2000.

[42] John L. Henning. Spec cpu2006 benchmark descriptions. In SIGARCH

Comput. Archit. News, volume 34, pages 1–17, September 2006.

[43] Johannes Hofmann, Georg Hager, Gerhard Wellein, and Dietmar Fey. An

analysis of core- and chip-level architectural features in four generations

of intel server processors. 02 2017.

[44] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel

methods in machine learning. In The Annals of Statistics, pages 1171–

1220, 2008.

[45] Kenneth Hoste and Lieven Eeckhout. Microarchitecture-independent

workload characterization. In IEEE Micro, volume 27, pages 63–72,

2007.

[46] Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi. Timekeeping

in the memory system: Predicting and optimizing memory behavior. In

SIGARCH Comput. Archit. News, volume 30, pages 209–220, May 2002.

[47] MKL Intel. Intel math kernel library, 2007.

127

[48] Ciji Isen and Lizy John. Eskimo-energy savings using semantic knowl-

edge of inconsequential memory occupancy for DRAM subsystem. In

42nd Annual IEEE/ACM IEEE/ACM International Symposium on Mi-

croarchitecture, pages 337–346, 2009.

[49] Yasuo Ishii, Mary Inaba, and Kei Hiraki. Access map pattern matching

for data cache prefetch. In Proceedings of the 23rd International ACM

Conference on International Conference on Supercomputing, ICS ’09,

pages 499–500, 2009.

[50] A. Jain and C. Lin. Back to the future: Leveraging belady’s algorithm for

improved cache replacement. In ACM/IEEE 43rd Annual International

Symposium on Computer Architecture (ISCA), pages 78–89, June 2016.

[51] A. Jaleel, J. Nuzman, A. Moga, S. C. Steely, and J. Emer. High perform-

ing cache hierarchies for server workloads: Relaxing inclusion to capture

the latency benefits of exclusive caches. In IEEE 21st International

Symposium on High Performance Computer Architecture (HPCA), pages

343–353, Feb 2015.

[52] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer.

High performance cache replacement using re-reference interval predic-

tion (RRIP). In SIGARCH Comput. Archit. News, volume 38, pages

60–71, June 2010.

[53] Jonas Jalminger and P Stenstrom. A novel approach to cache block

128

reuse predictions. In International Conference on Parallel Processing,

pages 294–302, 2003.

[54] Natalie D Enright Jerger, Eric L Hill, and Mikko H Lipasti. Friendly

fire: understanding the effects of multiprocessor prefetches. In 2006

IEEE International Symposium on Performance Analysis of Systems and

Software, pages 177–188, 2006.

[55] W. Jia, K. A. Shaw, and M. Martonosi. Mrpb: Memory request prior-

itization for massively parallel processors. In IEEE 20th International

Symposium on High Performance Computer Architecture (HPCA), pages

272–283, Feb 2014.

[56] Daniel A Jiménez. Dead block replacement and bypass with a sampling

predictor. In JWAC 2010-1st JILP Worshop on Computer Architecture

Competitions: Cache Replacement Championship, 2010.

[57] Daniel A Jiménez. Insertion and promotion for tree-based pseudolru

last-level caches. In 46th Annual IEEE/ACM International Symposium

on Microarchitecture, pages 284–296, 2013.

[58] Daniel A. Jiménez and Elvira Teran. Multiperspective reuse prediction.

In 50th Annual IEEE/ACM International Symposium on Microarchitec-

ture, MICRO-50 ’17, pages 436–448, 2017.

[59] A. L. Narasimha Reddy Jinchun Kim, Paul V. Gratz. Lookahead

129

prefetching with signature path. http://comparch-conf.gatech.edu/

dpc2/, 2015. [The 2nd Data Prefetching Championship (DPC2)].

[60] Ajay Joshi, Aashish Phansalkar, L. Eeckhout, and L. K. John. Measuring

benchmark similarity using inherent program characteristics. In IEEE

Transactions on Computers, volume 55, pages 769–782, June 2006.

[61] N. P. Jouppi. Improving direct-mapped cache performance by the

addition of a small fully-associative cache and prefetch buffers. In

ACM/IEEE 17th International Symposium on Computer Architecture

(ISCA), pages 364–373, May 1990.

[62] N. P. Jouppi. Improving direct-mapped cache performance by the

addition of a small fully-associative cache and prefetch buffers. In

ACM/IEEE 17th International Symposium on Computer Architecture

(ISCA), pages 364–373, May 1990.

[63] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,

S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao,

C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaem-

maghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hog-

berg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Ka-

plan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon,

J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,

A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,

R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps,

130

http://comparch-conf.gatech.edu/dpc2/
http://comparch-conf.gatech.edu/dpc2/

J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snel-

ham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,

H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,

and D. H. Yoon. In-datacenter performance analysis of a tensor pro-

cessing unit. In ACM/IEEE 44th Annual International Symposium on

Computer Architecture (ISCA), pages 1–12, June 2017.

[64] Norman P Jouppi. Improving direct-mapped cache performance by

the addition of a small fully-associative cache and prefetch buffers. In

ACM/IEEE 17th International Symposium on Computer Architecture

(ISCA), pages 364–373, 1990.

[65] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco.

GPUs and the future of parallel computing. In IEEE Micro, volume 31,

pages 7–17, Sep. 2011.

[66] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie. Quantifying the

energy cost of data movement in scientific applications. In 2013 IEEE

International Symposium on Workload Characterization (IISWC), pages

56–65, Sep. 2013.

[67] Samira Manabi Khan, Yingying Tian, and Daniel A Jimenez. Sampling

dead block prediction for last-level caches. In 43rd Annual IEEE/ACM

International Symposium on Microarchitecture, pages 175–186, 2010.

[68] Mazen Kharbutli and Yan Solihin. Counter-based cache replacement and

131

bypassing algorithms. In IEEE Transactions on Computers, volume 57,

pages 433–447, 2008.

[69] A. Khawaja, J. Wang, A. Gerstlauer, L. K. John, D. Malhotra, and

G. Biros. Performance analysis of HPC applications with irregular tree

data structures. In 2014 20th IEEE International Conference on Parallel

and Distributed Systems (ICPADS), pages 418–425, Dec 2014.

[70] J. Kin, Munish Gupta, and W. H. Mangione-Smith. The filter cache: an

energy efficient memory structure. In 30th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pages 184–193, Dec 1997.

[71] Peter Kogge and John Shalf. Exascale computing trends: Adjusting to

the ”new normal” for computer architecture. In Computing in Science

& Engineering, volume 15, pages 16–26, 11 2013.

[72] Partha Kundu, Murali Annavaram, Trung Diep, and John Shen. A case

for shared instruction cache on chip multiprocessors running oltp. In

SIGARCH Comput. Archit. News, volume 32, pages 11–18, September

2003.

[73] Ilya Lashuk, Aparna Chandramowlishwaran, Harper Langston, Tuan-

Anh Nguyen, Rahul Sampath, Aashay Shringarpure, Richard Vuduc,

Lexing Ying, Denis Zorin, and George Biros. A massively parallel adap-

tive fast multipole method on heterogeneous architectures. In Commu-

nications of the ACM, volume 55, pages 101–109, 2012.

132

[74] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. When prefetching works,

when it doesn’t, and why. In ACM Trans. Archit. Code Optim.,

volume 9, pages 2:1–2:29, March 2012.

[75] Junghoon Lee, Taehoon Kim, and Jaehyuk Huh. Dynamic prefetcher

reconfiguration for diverse memory architectures. In IEEE 34th Inter-

national Conference on Computer Design (ICCD), pages 125–132, 2016.

[76] Shin-Ying Lee and Carole-Jean Wu. Ctrl-C: Instruction-aware control

loop based adaptive cache bypassing for GPUs. In IEEE 34th Interna-

tional Conference on Computer Design (ICCD), pages 133–140, 2016.

[77] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter,

Michael Kistler, and Tom W Keller. Energy management for commercial

servers. In Computer, volume 36, pages 39–48, 2003.

[78] Robert W Leland, Richard Murphy, Bruce A Hendrickson, Katherine

Yelick, John Johnson, and Jonathan Berry. Large-scale data analytics

and its relationship to simulation. Technical report, Sandia National

Lab.(SNL-NM), Albuquerque, NM (United States), 2016.

[79] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani,

Nam Sung Kim, Tor M. Aamodt, and Vijay Janapa Reddi. GPUWattch:

Enabling energy optimizations in GPGPUs. In SIGARCH Comput. Ar-

chit. News, volume 41, pages 487–498, June 2013.

133

[80] Ang Li, Gert-Jan van den Braak, Akash Kumar, and Henk Corporaal.

Adaptive and transparent cache bypassing for GPUs. In SC ’15: Proceed-

ings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 1–12, 2015.

[81] Chao Li, Shuaiwen Leon Song, Hongwen Dai, Albert Sidelnik, Siva Ku-

mar Sastry Hari, and Huiyang Zhou. Locality-driven dynamic GPU

cache bypassing. In Proceedings of the 29th International ACM Con-

ference on International Conference on Supercomputing, pages 67–77,

2015.

[82] Lingda Li, Dong Tong, Zichao Xie, Junlin Lu, and Xu Cheng. Optimal

bypass monitor for high performance last-level caches. In 21st Interna-

tional Conference on Parallel Architectures and Compilation Techniques

(PACT), pages 315–324, 2012.

[83] Mengjie Li, Matheus Ogleari, and Jishen Zhao. Logging in persistent

memory: to cache, or not to cache? In Proceedings of the International

Symposium on Memory Systems, pages 177–179, 2017.

[84] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and

N. P. Jouppi. Mcpat: An integrated power, area, and timing modeling

framework for multicore and manycore architectures. In 42nd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 469–

480, Dec 2009.

134

[85] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M

Tullsen, and Norman P Jouppi. Mcpat: an integrated power, area, and

timing modeling framework for multicore and manycore architectures.

In 42nd Annual IEEE/ACM International Symposium on Microarchi-

tecture, pages 469–480, 2009.

[86] Jieun Lim, Nagesh B Lakshminarayana, Hyesoon Kim, William Song,

Sudhakar Yalamanchili, and Wonyong Sung. Power modeling for GPU

architectures using McPAT. In ACM Transactions on Design Automa-

tion of Electronic Systems (TODAES), volume 19, page 26, 2014.

[87] J. Lin, Y. Chen, W. Li, A. Jaleel, and Z. Tang. Understanding the

memory behavior of emerging multi-core workloads. In 2009 Eighth In-

ternational Symposium on Parallel and Distributed Computing, pages

153–160, June 2009.

[88] Haiming Liu, Michael Ferdman, Jaehyuk Huh, and Doug Burger. Cache

bursts: A new approach for eliminating dead blocks and increasing cache

efficiency. In 41st Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 222–233, 2008.

[89] Robert Lucas, James Ang, Keren Bergman, Shekhar Borkar, William

Carlson, Laura Carrington, George Chiu, Robert Colwell, William Dally,

Jack Dongarra, Al Geist, Rud Haring, Jeffrey Hittinger, Adolfy Hoisie,

Dean Micron Klein, Peter Kogge, Richard Lethin, Vivek Sarkar, Robert

Schreiber, John Shalf, Thomas Sterling, Rick Stevens, Jon Bashor, Ron

135

Brightwell, Paul Coteus, Erik Debenedictus, Jon Hiller, K. H. Kim,

Harper Langston, Richard Micron Murphy, Clayton Webster, Stefan

Wild, Gary Grider, Rob Ross, Sven Leyffer, and James Laros III. Doe ad-

vanced scientific computing advisory subcommittee (ascac) report: Top

ten exascale research challenges. 2 2014.

[90] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur

Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim

Hazelwood. Pin: Building customized program analysis tools with dy-

namic instrumentation. In SIGPLAN Not., volume 40, pages 190–200,

June 2005.

[91] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Fors-

gren, Gustav H̊allberg, Johan Högberg, Fredrik Larsson, Andreas Moest-

edt, and Bengt Werner. Simics: A full system simulation platform. In

Computer, volume 35, pages 50–58, February 2002.

[92] Krishna T Malladi, Benjamin C Lee, Frank A Nothaft, Christos

Kozyrakis, Karthika Periyathambi, and Mark Horowitz. Towards

energy-proportional datacenter memory with mobile DRAM. In ACM

SIGARCH Computer Architecture News, volume 40, pages 37–48, 2012.

[93] William B March and George Biros. Far-field compression for fast kernel

summation methods in high dimensions. In Applied and Computational

Harmonic Analysis, 2015.

136

[94] William B March, Bo Xiao, Chenhan D Yu, and George Biros. An

algebraic parallel treecode in arbitrary dimensions. In Parallel and

Distributed Processing Symposium (IPDPS), 2015 IEEE International,

pages 571–580, 2015.

[95] Ian Masliah, Ahmad Abdelfattah, A. Haidar, S. Tomov, Marc Baboulin,

J. Falcou, and J. Dongarra. High-performance matrix-matrix multipli-

cations of very small matrices. In Proceedings of the 22Nd International

Conference on Euro-Par 2016: Parallel Processing - Volume 9833, pages

659–671, 2016.

[96] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation

techniques for storage hierarchies. In IBM Syst. J., volume 9, pages

78–117, June 1970.

[97] Pierre Michaud. A best-offset prefetcher. http://comparch-conf.

gatech.edu/dpc2/, 2015. [The 2nd Data Prefetching Championship

(DPC2)].

[98] Sebastian Mika, Bernhard Schölkopf, Alexander J Smola, Klaus-Robert

Müller, Matthias Scholz, and Gunnar Rätsch. Kernel pca and de-noising

in feature spaces. In NIPS, volume 4, page 7, 1998.

[99] Sparsh Mittal. A survey of cache bypassing techniques. In Journal of

Low Power Electronics and Applications, volume 6, page 5, 2016.

137

http://comparch-conf.gatech.edu/dpc2/
http://comparch-conf.gatech.edu/dpc2/

[100] Naohito Nakasato. A fast gemm implementation on the cypress GPU. In

ACM SIGMETRICS Performance Evaluation Review, volume 38, pages

50–55, 2011.

[101] Rajib Nath, Stanimire Tomov, and Jack Dongarra. An improved magma

gemm for fermi graphics processing units. In International Journal of

High Performance Computing Applications, volume 24, pages 511–515,

2010.

[102] CUDA Nvidia. CuBLAS library. In NVIDIA Corporation, Santa Clara,

California, volume 15, page 27, 2008.

[103] T. Palit, , and M. Ferdman. Demystifying cloud benchmarking. In

IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), pages 122–132, April 2016.

[104] R. Panda and L. K. John. Data analytics workloads: Characterization

and similarity analysis. In 2014 IEEE 33rd International Performance

Computing and Communications Conference (IPCCC), pages 1–9, Dec

2014.

[105] R. Panda, X. Zheng, Jiajun Wang, A. Gerstlauer, and L. K. John. Sta-

tistical pattern based modeling of GPU memory access streams. In 2017

54th ACM/EDAC/IEEE Design Automation Conference (DAC), pages

1–6, June 2017.

138

[106] Reena Panda and Lizy Zheng, Xinnian John. Accurate address streams

for llc and beyond (SLAB): A methodology to enable system exploration.

In IEEE International Symposium on Performance Analysis of Systems

and Software (ISPASS), pages 87–96, 2017.

[107] Dhinakaran Pandiyan. Data Movement Energy Characterization of

Emerging Smartphone Workloads for Mobile Platforms. 2014.

[108] Vassilis Papaefstathiou, Manolis GH Katevenis, Dimitrios S Nikolopou-

los, and Dionisios Pnevmatikatos. Prefetching and cache management

using task lifetimes. In Proceedings of the 27th International ACM Con-

ference on International Conference on Supercomputing, pages 325–334,

2013.

[109] J. J. K. Park, Y. Park, and S. Mahlke. A bypass first policy for energy-

efficient last level caches. In 2016 International Conference on Embedded

Computer Systems: Architectures, Modeling and Simulation (SAMOS),

pages 63–70, July 2016.

[110] Bhargavraj Patel, Nikos Hardavellas, and Gokhan Memik. Scp: Syner-

gistic cache compression and prefetching. In IEEE 33rd International

Conference on Computer Design (ICCD), pages 164–171, 2015.

[111] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John. Measuring pro-

gram similarity: Experiments with spec cpu benchmark suites. In IEEE

International Symposium on Performance Analysis of Systems and Soft-

ware (ISPASS), pages 10–20, March 2005.

139

[112] P Prinz, T Crawford, JL Hennessy, and DA Patterson. Computer archi-

tecture: A quantitative approach. 2018.

[113] S. H. Pugsley, Z. Chishti, C. Wilkerson, P. f. Chuang, R. L. Scott,

A. Jaleel, S. L. Lu, K. Chow, and R. Balasubramonian. Sandbox

prefetching: Safe run-time evaluation of aggressive prefetchers. In IEEE

20th International Symposium on High Performance Computer Archi-

tecture (HPCA), pages 626–637, Feb 2014.

[114] Seth H Pugsley, Zeshan Chishti, Chris Wilkerson, Peng-fei Chuang,

Robert L Scott, Aamer Jaleel, Shih-Lien Lu, Kingsum Chow, and Ra-

jeev Balasubramonian. Sandbox prefetching: Safe run-time evaluation of

aggressive prefetchers. In IEEE 20th International Symposium on High

Performance Computer Architecture (HPCA), pages 626–637, 2014.

[115] M. K. Qureshi and G. H. Loh. Fundamental latency trade-off in ar-

chitecting DRAM caches: Outperforming impractical sram-tags with a

simple and practical design. In 45th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 235–246, Dec 2012.

[116] Subramanian Ramaswamy and Sudhakar Yalamanchili. Customized

placement for high performance embedded processor caches. In Proceed-

ings of the 20th International Conference on Architecture of Computing

Systems, ARCS’07, pages 69–82, 2007.

[117] A. Rizk, M. Zink, and R. Sitaraman. Model-based design and anal-

140

ysis of cache hierarchies. In 2017 IFIP Networking Conference (IFIP

Networking) and Workshops, pages 1–9, June 2017.

[118] Arun F. Rodrigues, Gwendolyn Renae Voskuilen, and Simon David

Hammond. Multi-Level Memory: What You Add Is More Important

Than What You Take Out. Sep 2016.

[119] Suleyman Sair, Timothy Sherwood, and Brad Calder. A decoupled

predictor-directed stream prefetching architecture. In IEEE Transac-

tions on Computers, volume 52, pages 260–276, 2003.

[120] Ivo F Sbalzarini, Jens H Walther, Michael Bergdorf, Simone Elke Hieber,

Evangelos M Kotsalis, and Petros Koumoutsakos. Ppm–a highly efficient

parallel particle–mesh library for the simulation of continuum systems.

In Journal of Computational Physics, volume 215, pages 566–588, 2006.

[121] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: sup-

port vector machines, regularization, optimization, and beyond. 2002.

[122] A. Sembrant, E. Hagersten, and D. Black-Schaffer. A split cache hierar-

chy for enabling data-oriented optimizations. In IEEE 23rd International

Symposium on High Performance Computer Architecture (HPCA), pages

133–144, Feb 2017.

[123] Andreas Sembrant, Erik Hagersten, and David Black-Schaffer. Data

placement across the cache hierarchy: Minimizing data movement with

141

reuse-aware placement. In IEEE 34th International Conference on Com-

puter Design (ICCD), pages 117–124, 2016.

[124] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris

Wilkerson, Seth H Pugsley, and Zeshan Chishti. Efficiently prefetching

complex address patterns. In 48th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 141–152, 2015.

[125] Premkishore Shivakumar and Norman P Jouppi. Cacti 3.0: An inte-

grated cache timing, power, and area model. Technical report, Technical

Report 2001/2, Compaq Computer Corporation, 2001.

[126] Jaewoong Sim, Jaekyu Lee, Moinuddin K. Qureshi, and Hyesoon Kim.

Flexclusion: Balancing cache capacity and on-chip bandwidth via flex-

ible exclusion. In SIGARCH Comput. Archit. News, volume 40, pages

321–332, June 2012.

[127] Alan Jay Smith. Cache memories. In ACM Computing Surveys (CSUR),

volume 14, pages 473–530, 1982.

[128] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen,

Hubert Wong, Arthur Klepchukov, Sheetal Patil, O Fox, and David

Patterson. Cloudstone: Multi-platform, multi-language benchmark and

measurement tools for web 2.0, 2008.

[129] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.

142

Spatial memory streaming. In ACM/IEEE 33rd International Sympo-

sium on Computer Architecture (ISCA), pages 252–263, 2006.

[130] Johan AK Suykens and Joos Vandewalle. Least squares support vector

machine classifiers. In Neural processing letters, volume 9, pages 293–

300, 1999.

[131] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of deep

neural networks: A tutorial and survey. In Proceedings of the IEEE,

volume 105, pages 2295–2329, Dec 2017.

[132] Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, Yungang

Bao, and Ninghui Sun. Fast implementation of dgemm on fermi GPU.

In Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, page 35, 2011.

[133] Elvira Teran, Yingying Tian, Zhe Wang, and Daniel A Jiménez. Mini-

mal disturbance placement and promotion. In IEEE 22nd International

Symposium on High Performance Computer Architecture (HPCA), pages

201–211, 2016.

[134] Yingying Tian, Sooraj Puthoor, Joseph L Greathouse, Bradford M Beck-

mann, and Daniel A Jiménez. Adaptive GPU cache bypassing. In

Proceedings of the 8th Workshop on General Purpose Processing using

GPUS, pages 25–35, 2015.

143

[135] Gary Tyson, Matthew Farrens, John Matthews, and Andrew R

Pleszkun. A modified approach to data cache management. In 28th An-

nual IEEE/ACM International Symposium on Microarchitecture, pages

93–103, 1995.

[136] A. Jaleel M. Qureshi V. Young, C. Chou. Ship++: Enhancing signature-

based hit predictor for improved cache performance. https://crc2.

ece.tamu.edu/?page_id=53, 2017.

[137] J. Wang, X. Dong, and Y. Xie. Oap: An obstruction-aware cache man-

agement policy for stt-ram last-level caches. In 2013 Design, Automation

Test in Europe Conference Exhibition (DATE), pages 847–852, March

2013.

[138] J. Wang, A. Khawaja, G. Biros, A. Gerstlauer, and L. K. John. Optimiz-

ing GPGPU kernel summation for performance and energy efficiency. In

2016 45th International Conference on Parallel Processing Workshops

(ICPPW), pages 123–132, Aug 2016.

[139] J. Wang, R. Panda, and L. K. John. SelSMaP: A selective stride masking

prefetching scheme. In 2017 IEEE International Conference on Com-

puter Design (ICCD), pages 369–372, Nov 2017.

[140] Jiajun Wang, Reena Panda, and Lizy John. Prefetching for cloud

workloads: An analysis based on address patterns. In IEEE Interna-

tional Symposium on Performance Analysis of Systems and Software

(ISPASS), pages 163–172, 2017.

144

https://crc2.ece.tamu.edu/?page_id=53
https://crc2.ece.tamu.edu/?page_id=53

[141] Jiajun Wang, Reena Panda, and Lizy K. John. SelSMaP: A selective

stride masking prefetching scheme. In ACM Transactions on. Archi-

tecture and Code Optimization (TACO), volume 15, pages 42:1–42:21,

October 2018.

[142] Z. Wang, D. A. Jimnez, C. Xu, G. Sun, and Y. Xie. Adaptive placement

and migration policy for an stt-ram-based hybrid cache. In IEEE 20th

International Symposium on High Performance Computer Architecture

(HPCA), pages 13–24, Feb 2014.

[143] Zhe Wang, Shuchang Shan, Ting Cao, Junli Gu, Yi Xu, Shuai Mu,

Yuan Xie, and Daniel A. Jiménez. Wade: Writeback-aware dynamic

cache management for nvm-based main memory system. In ACM Trans.

Archit. Code Optim., volume 10, pages 51:1–51:21, December 2013.

[144] L. Wehmeyer and P. Marwedel. Influence of memory hierarchies on

predictability for time constrained embedded software. In Design, Au-

tomation and Test in Europe, pages 600–605 Vol. 1, March 2005.

[145] Thomas F Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Fal-

safi, and Andreas Moshovos. Making address-correlated prefetching

practical. In IEEE micro, volume 30, 2010.

[146] Thomas F Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Fal-

safi, and Andreas Moshovos. Making address-correlated prefetching

practical. In IEEE micro, volume 30, 2010.

145

[147] Wikipedia-contributors. Epyc. https://en.wikipedia.org/wiki/

Epyc, 2018.

[148] Wikipedia-contributors. List of intel xeon microprocessors. https:

//en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors#

Skylake-based_Xeons, 2018.

[149] Theodore M Wong and John Wilkes. My cache or yours?: Making stor-

age more exclusive. In USENIX Annual Technical Conference, General

Track, pages 161–175, 2002.

[150] C. J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, and

J. Emer. Ship: Signature-based hit predictor for high performance

caching. In 44th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 430–441, Dec 2011.

[151] Youfeng Wu, R. Rakvic, Li-Ling Chen, Chyi-Chang Miao, G. Chrysos,

and J. Fang. Compiler managed micro-cache bypassing for high perfor-

mance epic processors. In 35th Annual IEEE/ACM International Sym-

posium on Microarchitecture, pages 134–145, 2002.

[152] Lingxiang Xiang, Tianzhou Chen, Qingsong Shi, and Wei Hu. Less

reused filter: improving l2 cache performance via filtering less reused

lines. In Proceedings of the 23rd International ACM Conference on In-

ternational Conference on Supercomputing, pages 68–79, 2009.

146

https://en.wikipedia.org/wiki/Epyc
https://en.wikipedia.org/wiki/Epyc
https://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors#Skylake-based_Xeons
https://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors#Skylake-based_Xeons
https://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors#Skylake-based_Xeons

[153] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang. Coordinated static

and dynamic cache bypassing for GPUs. In IEEE 21st International

Symposium on High Performance Computer Architecture (HPCA), pages

76–88, Feb 2015.

[154] Xiaolong Xie, Yun Liang, Yu Wang, Guangyu Sun, and Tao Wang. Co-

ordinated static and dynamic cache bypassing for GPUs. In IEEE 21st

International Symposium on High Performance Computer Architecture

(HPCA), pages 76–88, 2015.

[155] Chenhan D Yu, Jianyu Huang, Woody Austin, Bo Xiao, and George

Biros. Performance optimization for the k-nearest neighbors kernel

on x86 architectures. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis,

page 7, 2015.

[156] Z. Zheng, Z. Wang, and M. Lipasti. Adaptive cache and concurrency

allocation on GPGPUs. In IEEE Computer Architecture Letters, vol-

ume 14, pages 90–93, July 2015.

147

Vita

Jiajun Wang was born in Tianjin, China on 11 February 1991. She

received the Bachelor of Science degree in Engineering from the Zhejiang Uni-

versity in May 2013. From August 2013, she started his Doctoral studies at

The University of Texas at Austin. She has completed several internships.

She interned with the performance analysis team of Centaur Technology twice

during the summer of 2015 and 2016 in Austin, Texas. In 2017 summer, she

worked as a research intern with Memory Team at arm in Austin, Texas.

She also interned with the System-On-Chip Architecture team at Google in

Mountain View, California in 2018.

Permanent address: jiajunw91@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

148

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Problem Description
	Challenges in CPU memory subsystems
	Challenges in GPU memory subsystems

	Limitations of Prior Research Work
	Overview of Proposed Research
	Thesis Statement
	Dissertation Contribution
	Dissertation Organization

	Chapter 2. Related Work
	Schemes for Measuring Spatial and Temporal Locality
	Exclusive Caches and Data Replacement Policies
	Data Placement Involving Software Level Management

	Chapter 3. Methodology
	Simulation Infrastructure and Power Measurement
	CPU performance and power measurement
	GPU performance and power measurement

	Workload Description
	CloudSuite
	SPEC CPU2006 benchmarks
	Kernel summation

	Chapter 4. Data Locality Analysis and Micro-architectural Insights
	Experimental Setup
	Temporal locality profile

	Analysis of Temporal Locality
	Micro-architectural insights

	Analysis of Spatial Locality
	Summary

	Chapter 5. Multicore CPU Data Placement Optimization
	Proposed Scheme
	Handling demand requests
	Handling prefetch requests

	Evaluation
	Evaluation results
	Hardware cost and design decisions

	Summary

	Chapter 6. GPU Data Placement Optimization
	GPGPU background
	Kernel Summation application
	Proposed Scheme
	Data placement in GEMM
	Shared memory data mapping
	Kernel summation fused with GEMM

	Evaluation
	Influence on data movement
	Energy

	Summary

	Chapter 7. Conclusion and Future Work
	Summary
	Future Work

	Bibliography
	Vita

