
- 1 - 

Mapping of Applications to Heterogeneous Multi-cores 

Based on Micro-architecture Independent Characteristics 
 

 

Jian Chen, Nidhi Nayyar and Lizy K. John 
Department of Electrical and Computer Engineering 

The University of Texas at Austin  
 {chenjian, nidhin}@mail.utexas.edu,ljohn@ece.utexas.edu 

 
 

 

Abstract  
Heterogeneous multi-core processor is demonstrated 

to be more efficient than its homogeneous counterpart 

due to its ability to meet different resource requirements 

of the applications. One of the challenges of designing a 

heterogeneous multi-core is how to schedule programs to 

the core that can execute them most efficiently. This 

paper presents a method to map application to its 

optimum core by analyzing the micro-architecture 

independent characteristics of that application. The 

proposed method exploits data/instruction reuse distance 

and true dependency distance to derive switching gains 

and ranks for each configuration, and maps the 

application to the optimum core accordingly. The 

experiment result shows that four out of the five 

representative programs under study are mapped to the 

optimum core in terms of energy-delay product. This 

study opens the possibility to design a more intelligent 

dynamic program switching mechanism than the current 

trial-and-error approach.   

 

I. Introduction 
Multi-core architectures are becoming an attractive 

design alternative due to the capability of achieving high 

instruction throughput as well as the flexibility to meet 

specific performance and power constraints. The existing 

multi-core architectures can be divided into two 

categories, i.e., homogeneous multi-core processor and 

heterogeneous multi-core processor.  A homogeneous 

multi-core processor can be implemented by duplicating 

multiple copies of the same core, which is desirable from 

the perspective of design and validation complexity [1]. 

However, a homogeneous multi-core system does not 

give any credit to the fact that the different programs have 

very different resource requirements during the 

execution.  The heterogeneous multi-core processor, on 

the contrary, is able to accommodate different resource 

demands of applications by scheduling programs to the 

core that can execute them most efficiently, hence,  is 

more efficient than its homogeneous counterpart in terms 

of power consumption and area cost [1][2].  

In order to exploit the core diversity in heterogeneous 

multi-core processor, programs have to be scheduled or 

mapped to the proper cores that are most suitable for the 

execution. Prior research mainly focuses on dynamic core 

selection based on sampling the behavior of neighboring 

or all cores during the switching intervals [3]. Although 

this dynamic method can identify program phase changes 

during runtime and make corresponding core switching, it 

gives no insight into the relationship between inherent 

program behavior and the corresponding resource 

requirements. Such relationship is important in a sense 

that it can not only help mapping applications statically 

according to the off-line profiling but also potentially lead 

to more intelligent dynamic core selection algorithms.  

This is the reason that motivates us to understand how 

micro-architecture independent characteristics shape and 

modulate the resource demands of programs. As one step 

towards this direction, this paper presents a method to 

map applications to the proper cores statically based on 

micro-architecture independent characteristics. The 

proposed method uses data/instruction reuse distance 

and register dependency distance to characterize the 

data/instruction working set sizes and the ILP 

(Instruction Level Parallelism) in the program. It 

introduces the concept of switching gain to quantify the 

benefit and cost of switching from one core to another. 

A ranking system based on the gains is employed to 

determine the core configuration that can best fit runtime 

resource requirements of the program. The experiment 

result shows that four out of the five representative 

programs under this study are mapped to the optimum 

core in terms of energy-delay product. This result 

demonstrates the possibility to correlate 

micro-architecture independent characteristics of 

programs with optimum core configuration in a 

heterogeneous multi-core system.  

The rest of the paper is organized as follows: Section II 

presents the overall framework for the proposed static 

application mapping. Section III describes the 

experiment environment used in this research. Section 

IV gives detailed description of the mapping heuristics 
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as well as the evaluation results of the proposed mapping 

policies. Section V concludes the paper and points out 

the future work.  

 

II. Framework for Application 

Mapping 

 Figure 1 shows the framework for application mapping 

based on micro-architecture independent characteristics. 

The framework starts with an application space, which is 

a collection of different programs that will be running on 

the multi-core processor. These programs are profiled 

according to a set of micro-architecture independent 

metrics, followed by PCA (Principal Component 

Analysis) and clustering. The immediate result of these 

steps is that application space is partitioned into several 

clusters with one representative program for each cluster. 

The underlying rationale for this step is two-fold.  First, 

the representative programs constitute a desirable subset 

of the application space for the demonstration of the 

mapping algorithm because these representative 

programs are different by nature and are more likely to be 

mapped to different cores. Second, the reduced number of 

programs under study can significantly accelerate the 

time-consuming validation process without losing 

generality. The mapping heuristic then takes the 

micro-architecture independent characteristics of these 

representative programs as well as the configurations of 

heterogeneous cores to produce the program-core 

mapping table. The step highlighted with dash line is 

only used for the validation of the mapping algorithm, 

hence is not the integral part of the mapping process. It 

should be noted that the framework only targets at 

single-ISA heterogeneous multi-core system [2], though 

it can be further extended to multi-ISA systems. In 

addition, this framework assumes programs running 

independently on different cores, and there is no 

communication and memory sharing between programs. 

This assumption may not be true in real world multi-core 

environment, yet it helps to identify the essential 

relationship between programs and hardware without 

being interfered with the side effects of the program 

communications.  

The following subsections elaborate some aspects the 

proposed framework, including the details of 

microarchitecture-independent characteristics, principle 

component analysis and clustering.  

A. Microarchitecture Independent Metrics 

Microarchitecture independent metrics give the 

opportunity to understanding the inherent program 

characteristics isolated from features of particular 

microarchitectural components [4]. These program 

characteristics can be measured effectively through 

instrumentation which is substantially faster than 

simulation. This paper employs two different types of 

the metrics, i.e., register RAW (Read-after-Write) 

dependency distance to capture the instruction level 

parallelism and data/instruction reuse distance to capture 

the working set sizes. These two metrics are among the 

factors that have the most significant impact on the 

hardware resource requirements of the program, 

therefore have the strongest correlations with the core 

configurations.  

RAW Dependency Distance: Dependency distance is 

defined as the total number of instructions in the 

dynamic instruction stream between the producer and 

the first consumer of a register instance [4]. Only true 

dependency distance, i.e., RAW dependency distance is 

profiled because false dependencies can be easily 

removed by register renaming and cannot reveal the  

 

Figure 1. Framework for Application Mapping
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degree of concurrency existed in the program. Since the 

integer RAW dependency distance and the floating-point 

one.  

Data/Instruction Reuse Distance: The use of average 

memory reuse distance to characterize data temporal 

locality is proposed in [4]. The reuse distance is defined as 

the number of memory accesses between two consecutive 

memory accesses to the same block address. The average 

reuse distance can be calculated according to the 

distribution of reuse distance with the window size of 16, 

64, 256, and 4096. The size of the block that the address 

indexed into can vary from 16 byte to 256 byte. One may 

want to sweep through all L1 block sizes that are 

implemented in the target multi-core processor. Table I 

summaries Microarchitecture independent metrics that are 

used in the proposed framework for program profiling and 

clustering.  

Table I. Micro-architecture Independent Metrics used for 

Characterizing Benchmarks. 

No. Category Characteristics 

1 

2 

3 

4 

5 

6 

7 

Integer RAW 

Dependency 

Distance 

Distance of 1 

Distance upto 2 

Distance upto 4 

Distance upto 8 

Distance upto 16 

Distance upto 32 

Distance larger than 32 

8 

9 

10 

11 

12 

13 

14 

Floating Point 

RAW 

Dependency 

Distance 

Distance of 1 

Distance upto 2 

Distance upto 4 

Distance upto 8 

Distance upto 16 

Distance upto 32 

Distance larger than 32 

15 

 

16 

 

17 

 

18 

 

Data temporal 

Locality 

Average distance for window 

size 16 

Average distance for window 

size 64 

Average distance for window 

size 256 

Average distance for window 

size 4096 

19 

 

20 

 

21 

 

22 

 

Instruction 

temporal 

Locality 

Average distance for window 

size 16 

Average distance for window 

size 64 

Average distance for window 

size 256 

Average distance for window 

size 4096 

B. Principal Component Analysis & Clustering 

Theoretically, a program can be mapped to a particular 

core by inspecting its micro-architecture independent 

program characteristics. However, in order to measure the 

quality of the mapping, detailed micro-architecture level 

simulations are needed for validation. The simulation time 

constraints prevent the mapping-and-validation process on 

a program-by-program basis from being practical.   

Therefore, this framework employs cluster analysis to 

subset the application space into several clusters, and uses 

the representative programs from these clusters as the 

major programs for mapping. 

In order to cluster programs, this framework applies 

principal component analysis to transform the raw data to 

an orthogonal space with reduced dimensionality. PCA 

achieves dimensionality reduction by removing principal 

component with lowest variance and retaining the most 

important factors that contribute to the covariance among 

different programs. This framework employs 95% criterion 

for data reduction, that is, 95% of the total variance should 

be explained by the retained principal components.  

The clustering is based on the Euclidean distance between 

different programs calculated in the space spanned with the 

reduced principal components. Programs that are close to 

each other in application space have similar characteristics 

and tend to be mapped to the same core, thus, should be 

grouped together. The immediate benefit of clustering is 

the reduction of the number of programs under analysis 

because other programs in the same cluster may follow the 

mapping of the representative program. This framework 

employs K-means clustering technique. The optimum 

number of clusters for K-means is determined by BIC 

(Bayesian Information Criterion) [6].  

III. Experiment Setup 

The application space of the experiment is composed of 

a broad range of benchmark suites, including SPEC 

CPU2000INT, SPEC CPU2000FP and MediaBench. These 

programs are compiled to Alpha-ISA. We modified 

SimProfile from Simplescalar tool set [5] to instrument 

programs and collect the above mentioned characteristics. 

To reduce the time for profiling, each SPEC2000 program 

is profiled at its single Simpoint interval with 100 million 

instructions [6] instead of the entire run of the program. 

We use STATISTICA to perform principal component 

analysis on the profiled program characteristics. The 

programs are then grouped into 5 clusters with K-means 

cluster algorithm. The number of clusters is determined 

using BIC with the tools provided in Simpoint tool suite. 

Table II shows the clustering results. The highlighted 

program for each cluster is the program that has shortest 

Euclidean distance toward the center of the cluster, thus is 
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the representative program for that cluster. These 

representative programs are chosen as the target 

applications to be mapped to different cores. 

Table II. Clusters based on overall program characteristics 

Cluster 1  bzip2, parser, adpcm, gcc, gzip, 

perlbmk,  twolf, bzip2, vpr, 

applu, fm3d 

Cluster 2  cjpeg, epic, unepic, mesa_med, 

mpeg2decode, mpeg2encode, rasta, 

encode, decode 

Cluster 3  equake, djepg, lucas  

Cluster 4  vortex, ghostscript, crafty, mesa, 

eon 

Cluster 5  art, mcf, swim 

Our hypothetical single-ISA heterogeneous multi-core 

processor has four different cores. The configurations of 

these cores should be able to demonstrate enough 

heterogeneity so that the mapping of an application to 

different cores could yield noticeable difference in terms of 

performance and energy consumption. This paper focuses 

on two key aspects of processor configurations, namely, 

issue width and cache size. These two aspects are 

consistence with the profiled micro-architecture 

independent characteristics, and are believed to define the 

performance of processors at large. Table III gives the 

detailed information of these four core configurations. 

Note that each core has a private L1 and L2 cache.  

Table III. Core Configurations for Multi-core Processor 

Configurations Details 

Configuration 1 

In-order, single-issue, 2lev(1k), 8k 

2-way d-cache 128byte, 4k 2-way 

i-cache 64byte, 32k L2 cache 

Configuration 2 

Out-of-order, 2-issue, 2lev(1k), 16k 

4-way d-cache 128byte, 8k 2-way 

i-cache 64byte, 64k L2 cache 

Configuration 3 

Out-of-order, 4-issue, 2lev(4k), 32k 

4-way d-cache 128byte, 16k 2-way 

i-cache 64byte, 128k L2 cache 

Configuration 4 

Out-of-order, 8-issue, 2lev(4k), 64k 

4-way d-cache 128byte, 32k 2-way 

i-cache 64byte, 512k L2 cache 

In order to evaluate the quality of the proposed 

application mapping, Wattch-1.02 [7] is employed to 

perform detailed power and performance simulations. Each 

of the five representative programs is simulated with 4 

different configurations. These programs except for 

MediaBench have a huge amount of dynamic instruction 

count, which requires extremely long time to simulate. 

Therefore, for each SPEC benchmark, one single Simpoint 

interval with 100 million instructions is used for detailed 

micro-architecture level simulation, which is consistent 

with the one used in profiling. The warm-up effect in 100 

million instruction interval is relatively small, hence is 

ignored.  

IV. Mapping Heuristics and 

Evaluation 

The mapping heuristic proposed in this paper exploits 

two aspects of programs, i.e., RAW register dependency 

distance and data/instruction reuse distance. The former 

serves to identify the degree of ILP in the program, while 

the latter captures the temporal and spatial locality 

behavior of the program. Unlike general classification of 

programs into processor bound and memory bound [9], this 

approach provides an opportunity to quantitatively analysis 

the relationship between the program characteristics and 

the program resource requirement implications. The 

following subsections give detailed description of the 

mapping heuristic with respect to these two aspects.  

A. Correlation between Cache Size and Data/Inst 

Reuse Distance 

 According to the definition, reuse distance is measured 

by the number of memory accesses between two 

consecutive accesses to the same block address. In the 

worst case, these memory accesses are unique and only 

caches with cache block number larger than the reuse 

distance can possibly accommodate all the data set. 

Therefore, the percentage of reuse distance larger than the 

number of cache blocks in the cache is highly correlated 

with the cache miss rate of the program. Given the fixed 

cache block size, the cache capacity has to be enlarged to 

reduce the miss rate under this analytical model. However, 

the performance gain has to be large enough to amortize 

the increased hardware cost and energy consumption. Let 

Ci be the size of cache i, and B be the cache block size, 

define the switching gain when switching from one cache 

configuration to another as 

 

22
0 log0 log

( ) /( / )
j k

i i j k
C C

ii
BB

P P C C

≤ ≤≤ ≤

−∑ ∑  (1) 

where Pi and Pj are the percentages of reuse distance 2
i
 and 

2
j
 respectively.   

In this paper, data/instruction reuse distance distribution 

is profiled based on the cache block size consistent with 

the corresponding cache block size in the hypothetical 

heterogeneous multi-core system. Figure 2 shows the 

distribution of the data/instruction reuse distance, where 

x-axis represents the distance in logarithm of 2. According 

to the distribution, it is able to derive the switching gains 
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Figure 4. Reuse distance distribution for five representative programs. (a),(c),(e),(g),(i). Data reuse distance distribution. 

(b),(d),(f),(h),(j). Instruction reuse distance distribution. 

Table IV Cache Switching Gains with Respect to the Caches in In-order Core 

Data Switching Gains Instruction Switching Gains Combined Switching Gains Rank Bench 

mark 
Cfg2 Cfg3 Cfg4 Cfg2 Cfg3 Cfg4 Cfg2 Cfg3 Cfg4 Cfg2 Cfg3 Cfg4 

Cjpeg 0.42 0.49 0.36 0.52 0.37 0.21 0.94 0.86 0.57 2 1 3 
Vortex 1.10 1.08 0.69 1.01 1.07 0.71 2.11 2.15 1.4 2 1 3 
Bzip2 1.56 2.61 1.52 0.85 0.59 0.36 2.41 3.2 1.88 2 1 3 

Art 4.33 2.17 1.09 1.74 0.9 0.45 6.07 3.07 1.54 1 2 3 
Equake 0.23 0.33 0.28 3.48 1.8 0.98 3.71 2.13 1.26 1 2 3 

 

for both data and instruction caches by sweeping through 

four different configuration nodes. The efficiency of the 

overall L1 cache systems of the corresponding core can be 

represented by the sum of data and instruction cache 

switching gains. Table IV shows the switching gains of 

both instruction cache and data cache when the program is 

switched from the in-order core to other cores. The 

combined switching gain is the sum of switching gains on 

data and instruction caches of the corresponding 

configuration node. The higher the gain is, the more 

desirable the program should be mapped to the 

corresponding cache system. Such tendency can be 

captured by a rank system with 1 represents the highest 

priority and 3 the lowest priority.  

B. Correlation between Issue Width and RAW 

Dependency Distance 

 RAW dependency distance sets an upper-bound of how 

much parallelism can be exploited in the program. In the 

best case, with the dependency distance K, K-1 instructions 

can be executed simultaneously [8]. These instructions can 

exercise the processor with issue width less than K-1 to its 

full potential. In other words, the product of the issue width 

with the percentage of instructions that has dependency 

distance larger than the issue width closely represents the 

maximum throughput when executing the program on the 

core. Therefore, similar gain based approach can be 

applied to determine the proper issue width. We define 

issue width switching gain as follows: 

 ( ) /( / )
i ji dis W j dis W i j

W P W P W W
> >

• − •  (2) 

where Wi and Wj stand for the issue width of the 

configuration node i and j, and Pdis>Wi stands for the 

percentages that the reuse distance is larger than Wi.  

Figure 5 shows RAW dependency distance distribution 

for both integer and floating-point programs, where art and 

equake are in floating-point dependency distance and the 

rest of the programs are in integer dependency distance. 

Although cjpeg has floating-point dependencies, they are  
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Figure 5. Distribution of RAW Dependency Distance for 

the representative programs.  

Table V Issue Width Switching Gain with Respect to the 

Single-issue In-order Processor 

Switching Gains Rank Bench 

mark Cfg2 Cfg3 Cfg4 Cfg2 Cfg3 Cfg4 

Cjpeg 24.47 31.40 29.28 3 1 2 

Vortex 21.11 24.62 19.32 2 1 3 

Bzip2 30.25 25.29 18.31 1 2 3 

Art 41.4 60.33 59.51 3 1 2 

Equake 43.87 62.46 62.71 3 2 1 

in very small number in terms of the dynamic instruction 

count and have very little impact on the overall ILP for the 

program. Therefore, floating-point dependencies are 

ignored in cjpeg. The same is true for integer dependency 

part in art and equake. Applying equation (2) to the 

distribution, one can get the issue width switching gain of 

configuration 2 to 4 relative to the single-issue in-order 

core, as is shown in Table V. Rank system similar with the 

one used in ranking the cache switching gains is also 

employed here.  

Now that we have two different rank systems that 

indicate two types of mapping preferences, the mapping 

heuristic should consider both and generate the application 

mapping result based on the following rules: 

1. Choose the core that has smallest value in the sum 

of the rank pair unless there is a tie. 

2. If there are ties, give priority to the rank on the issue 

width side. For example, if the rank pairs are 

(3,1),(1,3) and (2,2), the configurations with rank 1 

in issue width should be chosen. 

The second rule is based on the fact that out-of-order 

execution core can hide some memory latencies caused by 

L1 cache miss. The application-core mapping results can be 

derived according to these rules, and are shown in Table VI.  

Table VI Mapping results of the programs 

Rank Pairs Mapping Bench 

mark Cfg2 Cfg3 Cfg4 Cfg2 Cfg3 Cfg4 

Cjpeg (2,3) (1,1) (3,2)  √  

Vortex (2,2) (1,1) (3,3)  √  

 Bzip2 (2,1) (1,2) (3,3) √   

Art (1,3) (2,1) (3,1)  √  

Equake (1,3) (2,2) (3,1)   √ 

C. Evaluation of Mapping Result 

 In this paper, the quality of the mapping result is 

evaluated with energy-delay product. In other words, the 

application should be mapped to the core that has the lowest 

energy-delay product value after finishing executing the 

program. We use Wattch to get the average power number 

per cycle, and multiply it with the number of simulation 

cycles twice to calculate the effective energy-delay product, 

as is shown in table VII.  

Table VII Normalized Energy Delay Product for 

benchmark programs across four different configurations 

Benchmark Cfg1 Cfg2 Cfg3 Cfg4 Best Cfg 

Cjpeg 1 0.617 0.468 0.685 Cfg3 
Vortex 1 0.534 0.440 0.554 Cfg3 

 Bzip2 1 0.618 0.685 0.862 Cfg2 
Art 1 0.387 0.267 0.231 Cfg4 

Equake 1 0.481 0.509 0.404 Cfg4 
Table VII also shows the optimum mapping result for the 

corresponding program according to the minimum 

energy-delay product among four different configurations. 

Comparing the mapping result with the one derived by the 

proposed heuristic, four out of the five programs hit the 

optimum mapping. Even for art, which is the only one that 

has different mapping, the energy-delay product is very 

close to the optimum one. This gives a good confidence that 

by analyzing the micro-architecture independent 

characteristics, we are able to correlate program and its 

optimum core in a heterogeneous multi-core system. 

However, the proposed method has inherent deficiency 

because it cannot map any applications to the core with the 

in-order processor. The reason for that is the in-order core is 
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used as the baseline processor to calculate the switching 

gains. One way to get around this is to introduce a virtual 

baseline core configuration, and calculate the gains in terms 

of that core. Further investigation is required as to determine 

what the proper configuration of this virtual baseline 

processor is.   

V. Conclusion & Future Work 

This paper presents a method to map applications to its 

optimum cores in a heterogeneous multi-core system by 

analyzing the micro-architecture independent 

characteristics of these applications. The proposed method 

exploits data/instruction reuse distance and RAW 

dependency distance to derive the ranks for each 

configuration based on the switching gains, and maps the 

application to the core accordingly. The experiment result 

shows that four out of the five programs under study are 

mapped to the optimum core in terms of energy-delay 

product. While it is static mapping, this study opens the 

possibility to design a more intelligent dynamic program 

scheduling mechanism in heterogeneous multi-cores than 

the current trial-and-error approach.  

However, several aspects of the proposed method require 

further research. The paper assumes that the proposed 

switching gain can correlate program characteristics with 

micro-architecture configurations. Systematic validation is 

required to understand how strong and general the 

correlation is. In addition, the heterogeneous multi-core 

system in this study assumes no memory sharing in L2 

cache. Further research is required to identify the effect of 

L2 cache sharing on application mapping. Finally, we need 

to explore ways to apply the method to dynamic core 

switching.  

 

References: 

[1]  Rakesh Kumar, Dean M. Tullsen, Norman P. Jouppi, 

“Core architecture optimization for heterogeneous 

chip multiprocessors” Proceedings of the 15th 

international conference on Parallel architectures and 

compilation techniques, Sept. PACT '06.   

[2] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, 

and D. M. Tullsen. “Single-ISA Heterogeneous 

Multi-core Architectures: The Potential for Processor 

Power Reduction” In International Symposium on 

Microarchitecture, Dec. 2003. 

[3]  R. Kumar, D.M Tullsen, P. Ranganathan, N. P. Jouppi, 

and K.I. Farka, “Single-ISA Hetereogeneous 

Multi-core Architectures for Multithreaded Workload 

Performance”. In International Symposium on 

Computer Architecture, June 2004. 

[4] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John, 

“Measuring Program Similarity: Experiments with 

SPEC CPU Benchmark Suites,”. IEEE International 

Symposium on Performance Analysis of Systems and 

Software. pp10-20. Mar.2005 

[5] SimpleScalar LLC, D. Burger and T. M. Austin.  

     The simplescalar tool set version 3.02  

     http://www.simplescalar.com/ 

[6] Simpoint 3.0, Erez Perelman, Greg Hamerly and Brad 

Calder. “Picking Statistically Valid and Early 

Simulation Points”, In the International Conference on 

Parallel Architectures and Compilation Techniques, 

Sept. 2003.   

[7]  Sim-Wattch 1.02, David Brooks, Vivek Tiwari, and 

Margaret Martonosi. “Wattch: A Framework for 

Architectural-Level Power Analysis and 

Optimizations,” 27th International Symposium on 

Computer Architecture, June, 2000.   

[8] Pradeep K.Dubey, George B.Adams, and Michael J. 

Flynn, “Instruction Window Size Trade-offs and 

Characterization of Program Parallelism”, IEEE Trans. 

On Computers. Vol.43, No.4, April 1994.  

[9]  Jaehyuk Huh, Stephen W. Keckler, Doug Bruger, “ 

Exploring the Design Space for Future CMPs”, 10th 

International conference on Parallel Architectures and 

Compilation Techniques, Sept. 2001.  

 


