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         Abstract 

Standard Performance Evaluation Corporation (SPEC) CPU benchmark suite which was first released in 1989 

as a collection of 10 computation-intensive benchmark programs (average size of 2.5 billion dynamic instructions per 

program), is now in its fourth generation and has grown to 26 programs (average size of 230 billion dynamic 

instructions per program).  In order to keep pace with the architectural enhancements, technological advancements, 

software improvements, and emerging workloads, new programs were added,  programs susceptible to compiler 

attacks were retired, program run times were increased, and memory activity of programs was increased in every 

generation of the benchmark suite. The objective of this paper is to understand how the inherent characteristics of 

SPEC benchmark programs have evolved over the last 1.5 decades – which aspects have changed and which have not. 

We measured and analyzed a collection of microarchitecture-independent metrics related to the instruction mix, data 

locality, branch predictability, and parallelism to understand the changes in generic workload characteristics with the 

evolution of benchmark suites.  Surprisingly, we find that other than a dramatic increase in the dynamic instruction 

count and increasingly poor temporal data locality, the inherent program characteristics have pretty much remained 

unchanged.  We also observe that SPEC CPU2000 benchmark suite is more diverse than its ancestors, but still has a 

over 50% redundancy in programs.  Based on our key findings and learnings from this study: (i) we make 

recommendations to SPEC that will be useful in selecting programs for future benchmark suites,  (ii) speculate about 

the trend of future SPEC CPU benchmark workloads, and (iii) provide a scientific methodology for selecting 

representative workloads should the cost of simulating the entire benchmark be prohibitively high. 

1. Introduction 

The Standard Performance Evaluation Corporation (SPEC), since its formation in 1988, has served a long way 

in developing and distributing technically credible, portable, real-world application-based benchmarks for computer 
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designers, architects, and consumers. While often criticized for inadequacies and vulnerabilities[10][13], SPEC has 

strived to create credible and objective benchmarks.  In order to keep pace with the architectural enhancements, 

technological advancements, software improvements, and emerging workloads, new programs were added,  programs 

susceptible to compiler attacks were retired, program run times were increased, and memory activity of programs was 

increased in every generation of the benchmark suite.  The initial CPU benchmark suite which was first released in 

1989 as a collection 10 computation-intensive benchmark programs (average size of 2.5 billion dynamic instruction 

per program), is now in its fourth generation and has grown to 26 programs (average size of 230 billion dynamic 

instructions per program).   

Designing, understanding, and validating benchmarks is as serious an issue as designing the computers 

themselves.  In order to reach good computer designs in shorter time, it is important to have benchmarks that cover the 

program space well.  It is desired that these benchmarks are uniformly distributed over the program space (rather than 

clustered in specific areas). Ofcourse, it is best to have fewer benchmarks in the suite if they meet the requirement of 

covering the program space.   

As the SPEC benchmarks evolved through years, some aspects of the benchmarks have changed, and some 

aspects have not.  The static instruction count of the programs in their binaries has not significantly grown from SPEC 

CPU89 to SPEC CPU2000.  Have the basic program control flow aspects really changed as the benchmark suites have 

evolved? There was a conscious effort to increase run-times and to avoid getting contained in the growing data caches; 

what is the impact  when the static count has not changed? How diverse are the different programs in the different 

suites? Do the 26 programs in SPEC CPU2000 model a more vast region of program space compared to what the 10 

programs from SPEC89 suite did? Some programs appear in multiple suites. How did these program evolve between 

suites? Four generations of CPU benchmarks and 1.5 decades since the release of the first suite, our objective in this 

paper is to understand the trends in the evolution of the SPEC benchmarks  and their implications.  

Computer architects and computer performance analysts have some insight into the changes in the benchmark 

suites during the last 15 years, however, no past research has tried to study all the suites with a common perspective. 

Most of the insights from the past are from what performance analysts and designers might have done on specific 

microarchitectural components. The instruction set architecture (ISA) and compilers might have been different and the 

results might have been closely tied to specific microarchitectural elements in the evaluation. We perform this study 

using a collection of microarchitecture-independent metrics related to the instruction mix, data locality, branch 
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predictability, and instruction level parallelism  (ILP), to characterize the generic behavior of the benchmark programs.  

The same compiler is used to compile the four suites. The data is analyzed to understand the changes in workload 

characteristics with the evolution of benchmark suites, the workload space that is covered by each generation of the 

benchmark suites, and the redundancy in each benchmark suite.  The contributions of this work are multifold: 

understand current benchmarks, provide useful insight for selecting programs for the next generation of benchmarks, 

and help in interpreting micro-architecture level performance measurements 

This paper is organized as follows.  We first detail our methodology in section 2 after which we present our 

results in section 3.  Section 4 then discusses the implications of these results in detail.  We present related work in 

section 5 and finally conclude in section 6. 

2. Methodology  

This section presents our methodology: the microarchitecture-independent metrics, the statistical data analysis 

techniques, the tools, and the benchmarks that are used in this paper. 

2.1 Metrics 

In this research work we selected microarchitecture-independent metrics to characterize the behavior of the 

instruction and data stream of every benchmark program.  Microarchitecture-independent metrics allow for a 

comparison between programs by understanding the inherent characteristics of a program isolated from features of 

particular microarchitectural components. As such, we use a gamut of microarchitecture-independent metrics which 

we feel affect overall program performance.  We provide an intuitive reasoning to illustrate how the measured metrics 

can affect the manifested performance.  The metrics measured in this study are a subset of all the microarchitecture- 

independent characteristics that can be potentially measured, but we believe that they cover a wide enough range of the 

program characteristics to make a meaningful comparison between the programs.   

We have identified the following microarchitecture-independent metrics: 

Instruction Mix: Instruction mix of a program measures the relative frequency of various operations performed by a 

program.  We measured the percentage of computation, data memory accesses (load and store), and branch instructions 

in the dynamic instruction stream of a program.  This information can be used to understand the control flow of the 

program and/or to calculate the ratio of computation to memory accesses which gives us an idea of whether the 

program is computation bound or memory bound. 
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Basic Block Size: A basic block is a section of code with one entry and one exit point. We measure the  basic block 

size which quantifies the average number of instructions between two consecutive branches in the dynamic instruction 

stream of the program.  Programs with a larger basic block size will take a relatively smaller performance hit due to 

branch misprediction rate, as compared to programs with smaller basic block sizes. 

Branch Direction: Backward branches are typically more likely to be taken than forward branches.  This metric 

computes the percentage of forward branches out of the total branch instructions in the dynamic instruction stream of 

the program.  Obviously, hundred minus this percentage is the percentage of backward branches.   

Taken Branches: We measured the number of taken branches as a fraction of the total number of branches in the 

dynamic instruction stream. 

Forward-taken Branches: We also measure the fraction of taken forward branches in the dynamic instruction stream. 

Dependency Distance: We use a distribution of the dependency distances in a program as a measure of the inherent 

ILP in the program. Dependency distance is defined as the total number of instructions in the dynamic instruction 

stream between the production (a write) and the consumption (a read) of a register instance [3][22]. While techniques 

such as value prediction reduce the impact of these dependencies on ILP, information on the dependency distance is 

very useful in understanding ILP inherent to a program.  The dependency distance is classified into six categories: 

percentage of total dependencies that have a distance of 1, and the percentage of total dependencies that have a 

distance of up to 2, 4, 8, 16, 32, and greater than 32.  Programs that have a higher percentage of true dependencies 

greater than 32 are likely to exhibit a higher ILP than a program that has a higher percentage of true dependencies with 

a dependency distance less than 32 (provided control flow is not the limiting factor). 

Data Temporal Locality: Temporal locality of a program’s data stream is a measure of how soon recently accessed 

data items tend to be accessed in the near future. Several locality metrics have been proposed in the past 

[4][5][11][18][21][30][31], however, many of them are computation and memory intensive. We picked the average 

memory reuse distance metric from [31] since it is more computationally feasible than other metrics. In this metric, 

locality is evaluated by counting the number of memory accesses between two accesses to the same address, for every 

unique address in the program. The evaluation is performed in restricted window sizes analogous to cache block sizes. 

The data temporal locality (tlocality) metric is defined as the weighted (based on the number of times each unique data 

address is accessed) average memory reuse distance. The tlocality metric is calculated for window sizes of 16, 64, 256 

and 4096.  
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Data Spatial Locality: Cache memories exploit spatial locality through the use of cache lines.  In order to measure 

spatial locality we computed the above mentioned tlocality metric, or the weighted average memory reuse distance, for 

four different window sizes: 16, 64, 256, and 4096.   Spatial locality information is characterized by the difference 

between the tlocality metric for the various line sizes.  The choice of the window sizes is based on the experiments 

conducted by Lafage et. al.[31].  Their experimental results showed that the above set of window sizes was sufficient to 

characterize the locality of the data reference stream with respect to a wide range of data cache configurations. 

2.2 Statistical Data Analysis 

Obviously, the amount of data in the analysis is huge.  There are many variables (18 microarchitecture- 

independent characteristics) and many cases (60 benchmarks).  It is humanly impossible to simultaneously look at all 

the data and draw meaningful conclusions from them.  We thus use multivariate statistical data analysis techniques, 

namely Principal Component Analysis and Cluster Analysis, to compare and discriminate programs based on the 

measured characteristics, and understand the distribution of programs in the workload space.  Cluster Analysis is used 

to group n cases in an experiment (benchmark programs) based on the measurements of the p principal components.  

The goal is to cluster programs that have the same intrinsic program characteristics. 

Principal Components Analysis:  Principal components analysis (PCA) [6] is a classic multivariate statistical data 

analysis technique that is used to reduce the dimensionality of the data set while retaining most of the original 

information.  It builds on the assumption that many variables (in our case, microarchitecture-independent program 

characteristics) are correlated.  PCA computes new variables, called principal components, which are linear 

combinations of the original variables, such that all the principal components are uncorrelated.  PCA transforms p 

variables X1, X2,...., Xp into p principal components Z1,Z2,…,Zp  such that:  

 

 This transformation has the property Var [Z1] > Var [Z2] >…> Var [Zp] which means that 1Z  contains the most 

information and Zp the least.  Given this property of decreasing variance of the principal components, we can remove 

the components with the lower values of variance from the analysis.  This reduces the dimensionality of the data set 

while controlling the amount of information that is lost.  In other words, we retain q principal components (q << p) that 

explain at least 80% to 90 % of the total information; in this paper q varies between 2 and 4.  By examining the most 
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important principal components, which are linear combinations of the original program characteristics, meaningful 

interpretations can be given to these principal components in terms of the original program characteristics.  

Cluster Analysis:  There exist two flavours of clustering techniques, linkage clustering and K-means clustering [1].  

In linkage clustering, cases (or benchmarks) are grouped iteratively in a multi-dimensional space (the PCA space in 

this paper) until all cases are in one single group (cluster).  A dendrogram is used to graphically present the cluster 

analysis by showing the linkage distance (Euclidean distance) between each of the clusters.  The dendrogram is a tree 

representation of the clusters; elements of a cluster and their merging can be visualized in this representation. The 

distance from a node to the leaves indicates the distance between the merging clusters. Based on the results of the 

dendrogram it is up to the user to decide how many clusters to consider.  K-means clustering on the other hand, tries to 

group all cases into exactly K clusters.  Obviously, not all values for K fit the data set well.  As such, we will explore 

various values of K in order to find the optimal clustering for the given data set.  

2.3 Tools 

Compilers: The programs from the four SPEC CPU benchmark suites were compiled on a Compaq Alpha AXP-2116 

processor using the Compaq/DEC C, C++, and the FORTRAN compiler.  The programs were statically built under 

OSF/1 V5.6 operating system using full compiler optimization. 

SCOPE: The various workload characteristics were measured using a custom-grown analyzer called SCOPE.  SCOPE 

was created by modifying the sim-safe functional simulator from the SimpleScalar 3.0 [29] tool set.  SCOPE analyzes 

the dynamic instruction stream and generates statistics related to instruction mix, data locality, branch predictability, 

basic-block size, ILP etc. Essentially, the front-end of sim-safe is interfaced with home-grown analyzers to obtain 

various locality and parallelism metrics.  We also used ATOM to measure the static instruction count of the benchmark 

programs. 

Statistical data analysis:  We use STATISTICA version 6.1 for performing PCA as well as for linkage clustering.  

For K-means clustering, we use the SimPoint software [32]. 

2.4 Benchmarks 

The different benchmark programs and their dynamic instruction counts are shown in Tables 1-4. Due to the 

differences in libraries, data type definitions, pointer size conventions, and known compilation issues on 64-bit  
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Table 1: SPEC CPU 89.                                                                        Table 2: SPEC CPU 92. 
 
    

Program Input INT/FP Dynamic 
Instrn Count 

espresso bca.in INT 0.5 billion 
li li-input.lsp INT 7 billion 

eqntott * INT * 
gcc * INT * 

spice2g6 * FP * 
doduc doducin FP 1.03 billion 
fpppp natoms FP 1.17 billion 

matrix300 - FP 1.9 billion 
nasa7 - FP 6.2 billion 

tomcatv - FP 1 billion 
 
 
 
 
 
 

 

 

 
              Table 3: SPEC CPU 95.                                 Table 4: SPEC CPU 2000. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Program Input INT/FP Dynamic 
Instrn Count 

espresso bca.in INT 0.5 billion 
li li-input.lsp INT 6.8 billion 

eqntott * INT * 
compress in INT 0.1 billion 

sc * INT * 
gcc * INT * 

spice2g6 * FP * 
doduc doducin FP 1.03 billion 

mdljdp2 input.file FP 2.55 billion 
mdljsp2 input.file FP 3.05 billion 
wave5 - FP 3.53 billion 

hydro2d hydro2d.in FP 44 billion 
Swm256 swm256.in FP 10.2 billion 

alvinn In_pats.txt FP 4.69 billion 
ora params FP 4.72 billion 
ear * FP * 

su2cor su2cor.in FP 4.65 billion 
fpppp natoms FP 116 billion 
nasa7 - FP 6.23 billion 

tomcatv - FP 0.9 billion 

Program Input INT
/FP 

Dynamic 
Instrn Count 

Gzip input.graphic INT 103.7 billion 
vpr route INT 84.06 billion 
gcc 166.i INT 46.9 billion 
mcf inp.in INT 61.8 billion 
crafty crafty.in INT 191.8 billion 
parser  INT 546.7 billion 
eon chair.control.cook 

chair.camera 
chair.surfaces 
chair.cook.ppm 

INT 80.6 billion 

perlbmk * INT * 
vortex lendian1.raw INT 118.9 billion 
gap ref.in INT 269.0 billion 
bzip2 input.graphic INT 128.7 billion 
twolf ref INT 346.4 billion 
swim swim.in FP 225.8 billion 
wupwise wupwise.in FP 349.6 billion 
mgrid mgrid.in FP 419.1 billion 
mesa mesa.in FP 141.86 billion 
galgel gagel.in FP 409.3 billion 
art C756hel.in FP 45.0 billion 
equake inp.in FP 131.5 billion 
ammp ammp.in FP 326.5 billion 
lucas lucas2.in FP 142.4 billion 
fma3d fma3d.in FP 268.3 billion 
apsi apsi.in FP 347.9 billion 
applu applu.in FP 223.8 billion 
facerec * FP * 
sixtrack * FP * 

Program Input INT/FP Dynamic 
Instrn Count 

go null.in INT 18.2 billion 
li *.lsp INT 75.6 billion 
m88ksim ctl.in INT 520.4 billion 
compress bigtest.in INT 69.3 billion 
ijpeg penguin.ppm INT 41.4 billion 
gcc expr.i INT 1.1 billion 
perl perl.in INT 16.8 billion 
vortex * INT * 
wave5 wave5.in FP 30 billion 
hydro2d hydro2d.in FP 44 billion 
swim swim.in FP 30.1 billion 
applu applu.in FP 43.7 billion 
mgrid mgrid.in FP 56.4 billion 
Turb3d turb3d.in FP 91.9 
Su2cor su2cor.in FP 33 billion 
fpppp natmos.in FP 116 billion 
apsi apsi.in FP 28.9 billion 
tomcatv tomcatv.in FP 26.3 billion 
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machines, we were unable to compile some programs (mostly from old suites - SPEC CPU 89 and SPEC CPU 92). 

The instruction counts of these programs are therefore missing from the tables.  

3. Results 

In this section, we present our results.  Before presenting overall behavioral characteristics, we first focus on 

particular benchmark characteristics: dynamic instruction count, branch characteristics, data stream locality and 

instruction-level parallelism. The raw data is presented in Appendix A while the paper focuses on insights and 

observations.  The raw data shows that no single characteristic has changed as dramatically as the dynamic instruction 

count. 

3.1 Dynamic and static instruction count  

Due to the increasing microprocessor performance, SPEC also has to increase the dynamic instruction count of 

their CPU benchmark suites.  The dynamic instruction count has grown 100 times on the average from SPEC CPU89 

to SPEC CPU2000. This is to enable performance measurement during a sufficiently long time window.  We observe 

that although the average dynamic instruction count of the benchmark programs has increased by a factor of x100, the 

static count has remained more or less constant.  This suggests that the dynamic instruction count of the SPEC CPU 

benchmark programs could have simply been scaled – more iterations through the same instructions.  This could be a 

plausible reason for the observation that instruction locality of programs has more or less remained the same across the 

four generations of benchmark suites. 

3.2 Branch characteristics 

For studying the branch behavior we have included the following metrics: the percentage branches in the 

dynamic instruction stream, the average basic block size, the percentage forward branches, the percentage taken 

branches, and the percentage forward-taken branches.  From PCA analysis, we retain 2 principal components 

explaining 62% and 19% of the total variance, respectively.  Figure 1 plots the various SPEC CPU benchmarks in this 

PCA space.  The integer benchmarks are observed to be much clustered. We also observe that the floating-point 

benchmarks typically have a positive value along the first principal component (PC1), whereas the integer benchmarks 

have a negative value along PC1.  The reason is that floating-point benchmarks typically have fewer branches, and 

thus have a larger basic block size; floating-point benchmarks also typically have a smaller percentage of forward 
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branches, and fewer percentage forward-taken branches.  In other words, floating-point benchmarks tend to spend most 

of their time in loops.  The two outliers in the top corner of this graph are SPEC2000’s mgrid and applu programs due 

to their extremely large basic block sizes, 273 and 318, respectively.  The two outliers on the right are SPEC92 and 

SPEC95 swim due to its large percentage taken branches and small percentage forward branches.   

We conclude from this graph that branch characteristics did not significantly change over the past 1.5 decades.  

Indeed, all SPEC CPU suites overlap in this graph.  

3.3 Data stream locality 

For studying the temporal and spatial locality behavior of the data stream we used the locality metrics as 

proposed by Lafage et. al. [31] for four different window sizes: 16, 64, 256, and 4096.  Recall that the metrics by 

themselves quantify temporal locality whereas the differences between them is a measure for spatial locality.  Since 

PCA is a linear transformation, PCA will be able to extract the spatial locality from the raw data.  From the PCA 

analyses of raw data, we concluded that several SPEC CPU2000 and CPU95 benchmark programs: bzip2, gzip, mcf, 

vortex, vpr, gcc, crafty, applu, mgrid, wupwise, and apsi from CPU2000, and gcc, turbo3d, applu, and mgrid from 

CPU95 exhibit a temporal locality that is significantly worse than the other benchmarks.  Concerning spatial locality, 

most of these benchmarks exhibit a spatial locality that is relatively higher than that of the remaining benchmarks, i.e. 

increasing window sizes improves performance of these programs more than they do for the other benchmarks.  The 

only exceptions are gzip and bzip2 which exhibit poor spatial locality.  Obviously, we expected temporal locality of the 

data stream to get worse for newer generations of SPEC CPU given one of the objectives of SPEC which is to increase 

the working set size along the data stream for subsequent SPEC CPU suite generations. 

On the remaining benchmarks we perform PCA which yields us two principal components explaining 57.2% 

and 38.6% of the total variance, respectively.  The first principal component basically measures temporal locality, i.e. a 

more positive value along PC1 indicates poorer temporal locality.  The second principal component basically measures 

spatial locality.  Benchmarks with a high value along PC2 will thus benefit more from an increased line size.   

Figure 2 plots the benchmarks in this PCA space.  This graph shows that for these benchmarks, all SPEC CPU 

generations overlap.  This indicates that although SPEC’s objective is to worsen the data stream locality behavior of 

subsequent CPU suites, several benchmarks in recent suites exhibit a locality behavior that is similar to older versions 
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of SPEC CPU.  Moreover, several CPU95 and CPU2000 benchmarks show a temporal locality behavior that is better 

than most CPU89 and CPU92 benchmarks. 

3.4 Instruction-level parallelism 

In order to study the instruction-level parallelism (ILP) of the SPEC CPU suites we used the dependency 

metrics as well as the basic block size.  Both metrics are closely related to the intrinsic ILP available in an application.  

Long dependency distances and large basic block sizes generally imply a high ILP. Basic block related and 

dependency related limitations can be overcome by branch prediction and value prediction respectively. However, both 

these metrics can be used to indicate the ILP or to motivate the use of better branch and value predictors.  The first two 

principal components explain 96% of the total variance.  The PCA space is plotted in Figure 3.  We observe that the 

integer benchmarks typically have a high value along PC1 which indicates that these benchmarks have more short 

dependencies.  The floating-point benchmarks typically have larger dependency distances.  We observe no real trend in 

this graph.  The intrinsic ILP did not change over the past 1.5 decades - except for the fact that several floating-point 

SPEC89 and SPEC92 benchmarks (and no SPEC CPU95 or SPEC CPU2000 benchmarks) exhibit relatively short 

dependencies compared to other floating-point benchmarks; these overlap with integer benchmarks in the range -0.1 < 

PC1 < 0.6. 

3.5 Overall characteristics 

When considering all our metrics together in a single analysis, we retain four principal components explaining 

82.8% of the total variance.  The first principal component (47.6%) basically measures ILP, the second PC (14%) 

measures temporal data stream locality, the third PC (11.2%) measures the memory intensiveness, and the fourth PC 

(10%) quantifies branch behavior.  We thus conclude that the larger variability among the SPEC CPU benchmarks is 

due to (in decreasing order) ILP, temporal data stream locality, memory intensiveness, and branch behavior. 

Figure 4 shows a projection of the PCA space on its first two principal components; Figure 5 does the same for 

the third and fourth principal components.  We can make several interesting observations from these graphs.  First, we 

observe several outliers in Figure 4, namely bzip2, gzip, mcf, wupise, apsi and turbo3d.  This is due to poor temporal 

locality in the data stream.  Second, Figure 5 shows that there is more diversity in the floating-point benchmarks than 

in the integer benchmarks. This was also apparent from the previous subsections when discussing the individual 

metrics. 
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Figure 1: PCA space built up from the branch characteristics.                   Figure 2: Data stream locality for the SPEC   

CPU benchmarks after excluding the SPEC95   
and SPEC2000 benchmarks with poor locality. 
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Figure 5: The PCA space built up by all the characteristics: PC3 versus PC4. 

 

4. Discussion 

This section discusses the implications of the results presented in the previous section. 

4.1 Selecting representative benchmarks 

The research done in the computer architecture community typically uses SPEC CPU benchmarks and 

simulation [14].  An important consequence of this practice is that it is difficult to compare results published in 1999 

using SPEC CPU95 versus results published in 2001 using SPEC CPU2000.  The reason is that the benchmarks and 

their inputs in the various suites change over time, as pointed out earlier in this paper.  One solution is to better 

understand how (dis)similar the various benchmarks are from different CPU suites.  In order to detect cross CPU suite 

(dis)similarity we perform a cluster analysis in the PCA space.  We use K-means clustering using the SimPoint 

software [29].  The SimPoint software identifies the best ‘K’ so that the clustering in K clusters fits the data well 

according to the Bayesian Information Criterion (BIC).  The BIC is a measure of the goodness of fit of a clustering to a 

data set.  Unlike SimPoint we do not use random projection before applying K-means clustering; we use the 

transformed PCA space instead as the projected space.  SimPoint identifies the best ‘K’ by trying a number of K’s and 

selecting the minimal K for which the BIC is near optimal (within 90% of the best BIC).  Using the SimPoint software, 

we obtain 10 clusters as a good fit for the given data set.  

These 10 clusters are shown in Table 5.  The benchmarks in bold are the benchmarks closest to the centroid of the 

cluster and can thus be considered the representatives for that cluster.  An analysis of Table 5 gives us several 

interesting insights.  First, these results confirm our previous statement that the integer benchmarks show less diversity 

over the various CPU suites than the floating point benchmarks.  This is reflected here by the fact that nearly all integer 

benchmarks reside in 5 of the 10 clusters; the floating point benchmarks reside in the remaining 6 clusters.  There are 
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two clusters containing the outliers, mcf and bzip2/gzip, respectively.  All other integer benchmarks are in clusters 2 

and 5, except for ijpeg which is in cluster 3.  Second, this clustering in conjunction with the results from the previous 

section can give us meaningful interpretations to observed (dis)similarities between the different CPU suites.  There 

are three clusters containing benchmarks with a poor temporal data stream locality, namely clusters 4 (mgrid and 

applu), 6 (gzip and bzip2) and 8 (mcf).  The integer cluster 2 differs from cluster 5 due to its relatively low percentage 

memory operations.  Concerning the floating-point clusters, cluster 1 seems to have the highest value along PC4 

followed by cluster 7 and cluster 9.  In other words, the benchmarks in cluster 1 generally have more taken branches 

and less forward branches than the benchmarks from clusters 7 and 9.  They thus spend most of their time in tight 

loops without conditional branches inside the loop; the floating-point benchmarks in cluster 9 on the other hand, tend 

to have more conditional branches inside loops.  The two remaining floating-point clusters 3 and 10 also have more 

conditional branches inside loops.  The only difference however is that cluster 3 has a relatively lower percentage of 

memory operations as compared to cluster 10. 

4.2 Subsetting benchmark suites 

Citron [2] presented a survey on the use of SPEC CPU2000 benchmarks by researchers in the computer 

architecture community.  He observed that some benchmarks are more popular than others.  For the integer CPU2000 

benchmarks, the list in decreasing order of popularity is: gzip, gcc, parser, vpr, mcf, vortex, twolf, bzip2, crafty, 

perlbmk, gap and eon.  For the floating-point CPU2000 benchmarks, the list is art, equake, ammp, mesa, applu, swim, 

lucas, apsi, mgrid, wupwise, galgel, sixtrack, facerec and fma3d.  Table 5 suggests that these subsets might not be well 

chosen for two reasons: (i) some parts of the workload space might be uncovered by the subset and (ii) there might be 

significant redundancy within the subset.  For example, subsetting CINT2000 using gzip, gcc, parser, vpr, mcf and 

vortex will result in two uncovered clusters, namely 2 and 10 in Table 5; at the same time, this subset contains 

significant redundancy since four benchmarks in the subset come from the same cluster.  The results from Table 5 

suggest that subsetting CINT2000 using twolf, gcc, gzip, mcf and eon would be better practice. 

Another observation made by Citron is that several researchers dealing with data cache performance do not or 

insufficiently consider floating-point benchmarks in their analyses.  To address this issue we have computed a 

representative clustering on the data stream locality metrics from section 3.4.  The results are given in Table 6 and 

suggest indeed that not using or only using a random subset of CPU2000 floating-point benchmarks might not be 

representative for studying data stream behavior.  Several clusters in this analysis do not contain CPU2000 integer  
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benchmarks; as such, not using representatives from those clusters might lead to a distorted result when doing 

memory hierarchy design optimizations.  Similarly, only using CPU2000 floating-point benchmarks and no 

CPU2000 integer benchmarks might also be unrepresentative.  

4.3 Similarity of common benchmarks among different suites 

Several benchmarks appear in various versions of the SPEC CPU suites.  The results from the previous section 

on cross CPU suite (dis)similarity will allow us to identify which benchmarks did change significantly over different 

CPU suite generations and which did not.  To further support this observation, we also provide a dendrogram as 

obtained through linkage clustering.  This is shown in Figure 6.  In this dendrogram, benchmarks that are connected 

through small linkage distances are similar, whereas benchmarks connected through large linkage distances are 

dissimilar.  The benchmarks that did not significantly change over time are nasa7 (89/92), swim (92/95), espresso 

(89/92), li (89/92/95), gcc (95/2000), tomcatv (89/92/95), hydro2d (92/95), wave5 (92/95), doduc (89/92) and fpppp 

(89/92/95).  It is surprising to see gcc included in this list because it is known that gcc (2000) performs aggressive 

inlining and other optimizations   and is significantly different from gcc (95) [10]. In Table 6 which provides clustering 

results for data memory access behavior, gcc2k is very uniquely positioned compared to gcc(95), however, in the 

clustering based on overall characteristics, gcc does not exhibit significant changes. Since architectural changes 

sometimes affect only one specific aspect of the program, it is important to use a clustering based on individual 

features as opposed to overall characteristics. For a number of other benchmarks that did change significantly over 

time we can point to behavioral differences, for example swim (the CPU2000 version has more conditional branches 

inside loops than its ancestors), applu (the CPU2000 version has a significantly worse temporal locality in its data 

stream than its ancestors), and compress (the CPU95 version has a higher branch taken rate and a smaller number of 

forward branches than the CPU92 version. 

4.4 Redundancy 

As pointed out by previous research [7] [9], there is a lot of redundancy in benchmark suites.  That is, benchmarks 

might exhibit similar behavioral characteristics questioning the need to include all those redundant benchmarks in the 

suite.  Redundancy in benchmark suites is especially a problem for simulation purposes.  Simulating benchmarks with 

similar behavioral characteristics will add to the overall simulation time without providing any additional insight.  The 

purpose of this section is to quantify how redundancy has changed over the past 1.5 decades in SPEC CPU.  To this 
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end, we define the redundancy of a CPU suite as 1 – (number of similarity clusters / number of benchmarks in the 

suite).  As such, a benchmark suite with as much clusters as benchmarks, will have a redundancy of zero.  A 

benchmark suite on the other hand with several benchmarks in the same cluster will have a redundancy greater than 

zero.  Obviously, smaller is better.  We use the clustering from Table 5 to calculate the redundancy of the various CPU 

suites: 14.3% for CPU89, 53.3% for CPU92, 56.2% for CPU95 and 54.5% for CPU2000.  We thus conclude that 

CPU89 has the lowest redundancy and that from then on the redundancy remained more or less constant in subsequent 

generations of SPEC CPU.  

 
4.5 Should experimentation using older suites be condemned? 

Often researchers and reviewers get upset with the use of benchmarks from SPEC CPU95 or older suites.  It is 

however interesting to observe that in the clustering based on overall characteristics (Table 5) and data memory access 

characteristics (Table 6), several programs from the older suites appear clustered with newer programs.  While vendors 

should use newest suites for the SPECmark numbers, an occasional use of an older, shorter benchmark by a researcher 

to reduce simulation time with complex cycle-accurate simulators is not that sinful, especially if the relative position of 

the used benchmark in the benchmark space is known.  We hope that data in Tables 5 and 6 will be very useful to the 

research community for such analysis. 
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Figure 6: Dendrogram obtained through complete linkage clustering in the PCA space. 

 

4.6 Speculations about future SPEC CPU suites  

We believe that the results from this paper are also useful for the designers of future computer systems.  

Indeed, designing a new microprocessor is extremely time-consuming taking up to seven years [26].  As a result of 

that, a future computer system will be designed using yesterday’s benchmarks.  This might lead to a suboptimal design 

if the designers do not anticipate future program characteristics.  The results from this paper suggest that the temporal 

locality of future benchmarks will continue to get worse.   
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cluster 1 nasa7 (89) cluster 6 gzip (2000) 
 matrix300 (89)  bzip2 (2000) 
 alvinn (92)   
 swm256 (92) cluster 7 tomcatv (89) 
 nasa7 (92)  wave5 (92) 
 swim (95)  tomcatv (92) 
 mgrid (95)  su2cor (92) 
 galgel (2000)  hydro2d (92) 
   tomcatv (95) 
cluster 2 espresso (89)  su2cor (95) 
 espresso (92)  hydro2d (95) 
 compress (95)  applu (95) 
 twolf (2000)  apsi (95) 
   wave5 (95) 
cluster 3 mdljsp2 (92)  equake (2000) 
 mdljdp2 (92)  fma3d (2000) 
 ijpeg (95)  art (2000) 
 lucas (2000)   
  cluster 8 mcf (2000) 
cluster 4 mgrid (2000)   
 applu (2000) cluster 9 doduc (89) 
   doduc (92) 
cluster 5 li (89)  ora (92) 
 li (92)  turbo3d (95) 
 compress (92)  apsi (2000) 
 go (95)  swim (2000) 
 li (95)  wupwise (2000) 
 perl (95)  ammp (2000) 
 gcc (95)   
 crafty (2000) cluster 10 fpppp (89) 
 gcc (2000)  fpppp (92) 
 parser (2000)  fpppp (95) 
 vortex (2000)  eon (2000) 
 vpr (2000)  mesa (2000) 

 

Table 5: Clustering the SPEC CPU benchmarks using the overall characteristics. 
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Indeed, from our detailed analysis of the temporal data stream locality we observed that several CPU95 and CPU2000 

benchmarks exhibit poor temporal locality compared to CPU89 and CPU92.  As such, we anticipate that this will 

continue to be the fact in future benchmarks and we thus recommend computer designers to design well performing 

memory subsystems in future microprocessors to deal with the increasingly poor temporal locality of computer 

applications. 

cluster 1 bzip2 (2000) cluster 11 doduc (89) 
   fpppp (89) 
cluster 2 gcc (2000)  doduc (92) 
   mdljdp2 (92) 
cluster 3 gzip (2000)  wave5 (92) 
   ora (92) 
cluster 4 mcf (2000)  mdljsp2 (92) 
   swm256 (92) 
cluster 5 wupwise (2000)  su2cor (92) 
   hydro2d (92) 
cluster 6 applu (2000)  nasa7 (92) 
 vortex (2000)  fpppp (92) 
 vpr (2000)  tomcatv (95) 
 mgrid (2000)  swim (95) 
   su2cor (95) 
cluster 7 mgrid (95)  hydro2d (95) 
 applu (95)  apsi (95) 
 crafty (2000)  fpppp (95) 
   wave5 (95) 
cluster 8 li (89)  eon (2000) 
 li (92)  galgel (2000) 
 li (95)  lucas (2000) 
 ijpeg (95)  swim (2000) 
 compress (95)   
 go (95) cluster 12  espresso (89) 
 ammp (2000)  alvinn (92) 
   espresso (92) 
cluster 9 turb3d (95)  perl (95) 
 apsi (2000)  equake (2000) 
   art (2000) 
cluster 10 nasa7 (89)   
 matrix300 (89) cluster 13 parser (2000) 
 tomcatv (89)  twolf (2000) 
 tomcatv (92)  gcc (95) 
 fma3d (2000)  compress (92) 
 mesa (2000)   

 

Table 6: Clustering the SPEC CPU benchmarks based on data stream locality metrics. 
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4.7 Recommendations to SPEC 

We believe that the results from this paper suggest several recommendations to SPEC for the design of future 

CPU suites.  In general, the static instruction count of any commerical software application binary tends to increase 

with every generation as the software application evolves with increase in new features and functionality.  However, 

we observe that the static instruction count in SPEC CPU benchmark binaries has not significantly increased during 

the last four generations.  We therefore recommend that SPEC should select programs with higher static instruction 

count in binaries when designing next generation of benchmark suites.   Another important recommendation we make 

to SPEC is to reduce the redundancy in the CPU suites.  According to the results of the previous section, around 50% 

of the most recent CPU suites were redundant.  This suggests that SPEC can build an equally well representative 

benchmark suite with 50% less benchmarks.  We believe that the methodology as used in this paper could be used by 

SPEC in its search for representative, non-redundant next generation CPU benchmark suites.  Another 

recommendation we make to SPEC is to broaden the scope of applications.  Our results indicate that SPEC was 

successful in this respect when designing CPU2000; the CPU2000 benchmarks reside in all 10 clusters from Table 5, 

whereas previous CPU suites only resided in 6 or 7 clusters.  

5. Related Work 

Weicker [25] used characteristics such as statement distribution in programs, distribution of operand data 

types, and distribution of operations, to study the behavior of several stone age benchmarks.  Saveedra et al. [24] 

characterized Fortran applications in terms of number of various fundamental operations, and predicted their execution 

time.  They also develop a metric for program similarity that makes it possible to classify benchmarks with respect to a 

large set of characteristics.   Source code level characterization has not gained popularity due to the difficulty in 

standardizing and comparing the characteristics across various programming languages.  Moreover, nowadays, 

programmers rely on compilers to perform even basic optimizations, and hence source code level comparison may be 

unfair. 

The majority of ongoing work in studying benchmark characteristics involves measuring microarchitecture 

level metrics such as cycles per instruction, cache miss rate, branch prediction rate etc. on various microarchitecture 

configurations that offer a different mixture of bottlenecks [12][15][16][17][27].  The variation in the 

microarchitecture metrics is then used to infer the generic program behavior.  These inferred program characteristics, 
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although seemingly microarchitecture-independent, may be biased by the idiosyncrasies of a particular configuration, 

and therefore may not be generally applicable.  

Past attempts to understand benchmark redundancy used microarchitecture dependent metrics such as 

execution time or SPECmark. Vandierendonck et. al. [7] analyzed the SPEC CPU2000 benchmark suite peak results 

on 340 different machines representing eight architectures, and used PCA to identify the redundancy in the benchmark 

suite.  Dujmovic and Dujmovic [9] developed a quantitative approach to evaluate benchmark suites.  They used the 

execution time of a program on several machines and used this to calculate metrics that measure the size, 

completeness, and redundancy of the benchmark space. The shortcoming of these two approaches is that the inferences 

are based on the measured performance metrics due the interaction of program and machine behavior, and not due to 

the generic characteristics of the benchmarks. Ranking programs based on microarchitecture dependent metrics can be 

misleading for future designs because a benchmark might have looked redundant in the analysis merely because all 

existing architectures did equally well (or worse) on them, and not because that benchmark was uninteresting.  The 

relatively lower rank of gcc in [7] and its better position in this work (Tables 5 and 6) is an example of such 

differences that become apparent only with microarchitecture-independent studies. 

There has been some research on microarchitecture-independent locality and ILP metrics. For example, 

locality models researched in the past include working set models, least recently used stack models, independent 

reference models, temporal density functions, spatial density functions, memory reuse distance, locality space etc. 

[4][5][11][18][21][30][31].  Generic measures of parallelism were used by Noonburg et. al. [3] and Dubey et. al. [22] 

based on a profile of dependency distances in a program.   Sherwood et. al. [32] proposed basic block distribution 

analysis for finding program phases which are representative of the entire program.  Microarchitecture-independent 

metrics such as true computations versus address computations and overhead memory accesses versus true memory 

accesses have been proposed by several researchers [8][19]. This paper can benefit from more microarchitecture- 

independent metrics, but we believe that the metrics we have used cover a wide enough range of the program 

characteristics to make a meaningful comparison between the programs.   

6. Conclusion 

With the objective of understanding the SPEC CPU benchmarks since the inception of SPEC, we characterized 

18 different microarchitecture-independent features of 60 SPEC CPU programs from SPEC89 to SPEC2000 suites.  

Analyzing the executables generated by compiling these programs on state of the art compilers with full optimization 
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levels, we put the programs into a common perspective and examined the trends.  Instruction mix, control flow, data 

locality, and parallelism characteristics were studied.  No single characteristic has changed as dramatically as the 

dynamic instruction count.   We observe that the dynamic instruction count of the programs has grown 100X on an 

average, and this trend will continue to meet the increasing processor performance.  Surprisingly, the static instruction 

count in the binary has remained more or less constant and we feel that there should be an effort to increase it in the 

future generation of benchmark suites.  Our analysis shows that the branch and ILP characteristics have not changed 

much over the last 1.5 decades, but the temporal data locality of programs has become increasingly poor, and we 

expect that the trend will continue.  Although the diversity of newer generations of SPEC CPU benchmarks has 

increased, about half of the programs in SPEC CPU 2000 are redundant.  While researchers in the past have picked 

subsets of suites based on convenience, we have presented results of clustering analysis based on several innate 

program characteristics and our results should be useful to select representative subsets (should experimentation with 

the whole suite be prohibitively expensive).   We have also put program from four different suites into a common 

perspective, in case anyone wanted to compare results of particular programs from past suites with the newest 

programs. 

Our recommendations to SPEC would be to continue broadening the diversity of programs in the future 

generation of benchmark suites while at the same time reduce the redundancy in programs, and increase the static 

instruction count in the program binaries.  We also recommend that computer architects and researchers should 

concentrate on designing well performing memory hierarchies in anticipation of increasingly poor temporal data 

locality in future generation of SPEC CPU benchmark programs. 
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Appendix A – Measured value of Microarchitecture Independent Metrics for SPEC CPU benchmarks 

 
Static Instruction Count Branch Metrics

From Binary Instr executed at least once %Memory %Branches Computation:Memory Basic Block Size %Fwd %taken %Fwd-T-of total br %Back-T-of-total br Tlocality16 Tlocality64 Tlocality256Tlocality4096 1 Upto 2 Upto 4 Upto 8 Upto 16 Upto 32 > 32
espresso_89 106,416 20,913 26.66 15.92 2.15 5.28 0.63 0.64 0.47 0.53 313.00 103.00 31.00 6.00 28.25 40.94 54.92 65.36 76.79 83.64 16.36
li_89 70,164 10,074 41.13 16.74 1.02 4.98 0.66 0.65 0.63 0.37 138.00 63.00 36.00 7.00 27.71 39.01 48.88 62.15 77.33 88.73 11.27
doduc_89 221,660 26,006 34.51 7.74 1.67 11.91 0.80 0.49 0.64 0.36 499.00 628.00 201.00 28.00 7.38 13.95 24.38 36.87 50.31 64.44 35.56
nasa7_89 205,053 17,463 46.24 2.47 1.11 39.56 0.26 0.84 0.14 0.86 338.00 593.00 182.00 25.00 3.38 6.46 14.79 31.49 44.51 60.90 39.10
matrix300_89 194,397 9,308 35.15 3.13 1.76 30.94 0.05 0.95 0.01 0.99 21312.00 1771.00 236.00 24.00 9.41 16.95 32.05 60.26 73.30 77.13 22.87
fpppp_89 210,524 20,457 43.36 1.29 1.28 76.73 0.82 0.51 0.72 0.28 2418.00 850.00 230.00 30.00 1.11 2.39 5.09 16.61 32.24 45.80 54.20
tomcatv_89 194,517 9,375 39.31 2.78 1.47 34.97 0.53 0.99 0.53 0.47 575.00 603.00 171.00 21.00 2.71 3.67 6.47 15.32 33.71 49.89 50.11
doduc_92 221,660 26,007 34.51 7.74 1.67 11.91 0.80 0.49 0.64 0.36 505.00 631.00 201.00 28.00 7.37 14.16 24.97 37.40 50.98 67.23 35.56
mdljdp2_92 215,667 16,396 24.72 12.65 2.53 6.91 0.86 0.84 0.83 0.17 1230.00 656.00 208.00 33.00 18.94 22.90 35.34 42.83 55.07 63.31 36.69
wave5_92 238,629 22,934 35.75 4.63 1.67 20.62 0.49 0.73 0.34 0.66 1020.00 576.00 184.00 27.00 5.07 10.12 18.91 32.31 44.30 57.15 42.85
tomcatv_92 194,517 9,375 39.31 2.78 1.47 34.97 0.53 0.99 0.53 0.47 575.00 605.00 172.00 22.00 2.71 3.67 6.47 15.32 33.71 49.89 50.11
ora_92 198,304 10,303 29.64 6.88 2.14 13.54 0.78 0.57 0.63 0.37 393.00 622.00 206.00 34.00 7.61 20.17 35.77 45.72 55.98 69.15 30.85
alvinn_92 60,521 6,034 36.48 10.32 1.46 8.69 0.04 0.98 0.02 0.98 54.00 33.00 15.00 2.00 12.10 23.28 34.55 55.94 70.06 70.95 29.05
mdljsp2_92 215,695 16,532 23.05 3.52 3.18 27.39 0.53 0.66 0.30 0.70 502.00 649.00 210.00 32.00 7.70 14.52 27.17 38.03 48.23 61.88 38.12
swm256_92 200,721 12,673 37.43 0.63 1.65 157.91 0.05 0.95 0.02 0.98 458.00 637.00 207.00 32.00 1.22 2.33 5.16 12.07 27.98 42.69 57.31
su2cor_92 219,179 22,779 38.84 2.81 1.50 34.64 0.46 0.78 0.32 0.68 2397.00 971.00 300.00 36.00 2.71 5.27 12.26 23.77 39.04 51.08 48.92
hydro2d_92 216,278 24,337 36.84 6.00 1.55 15.66 0.54 0.75 0.41 0.59 1294.00 672.00 217.00 35.00 3.63 8.04 13.83 26.70 42.76 58.54 41.46
nasa7_92 213,052 21,133 46.15 2.57 1.11 37.86 0.28 0.83 0.16 0.84 406.00 616.00 191.00 27.00 3.67 5.77 12.76 29.99 42.64 57.51 42.49
fpppp_92 210,523 20,452 44.96 2.05 1.18 47.82 0.79 0.61 0.75 0.25 3167.00 1161.00 273.00 30.00 2.35 4.40 8.76 21.30 36.00 48.89 51.11
espresso_92 102,483 19,843 27.85 17.10 1.98 4.85 0.63 0.64 0.47 0.53 309.00 106.00 37.00 6.00 45.47 59.11 65.88 70.40 77.95 82.85 17.15
li_92 68,660 9,494 42.53 17.65 0.94 4.67 0.67 0.65 0.63 0.37 139.00 61.00 34.00 8.00 36.83 44.47 53.38 65.42 79.15 89.57 10.43
compress_92 46,080 3,418 33.97 12.05 1.59 7.30 0.77 0.52 0.58 0.42 10178.00 1693.00 100.00 4.00 21.53 36.54 51.02 61.76 71.85 80.82 19.18
tomcatv_95 203,525 13,269 37.56 1.82 1.61 53.98 0.39 0.75 0.20 0.80 477.00 221.00 221.00 26.00 1.68 3.18 5.35 17.06 34.31 49.44 50.56
swim_95 204,144 12,876 37.40 0.62 1.66 160.73 0.03 0.97 0.01 0.99 461.00 643.00 210.00 33.00 1.25 2.52 5.63 13.82 28.15 43.46 56.54
su2cor_95 218,311 25,086 37.70 3.62 1.56 26.62 0.57 0.70 0.39 0.61 4175.00 910.00 291.00 33.00 4.26 7.81 14.87 26.58 41.32 52.97 47.03
hydro2d_95 214,881 23,525 36.55 5.82 1.58 16.20 0.54 0.78 0.41 0.59 1607.00 698.00 218.00 31.00 3.99 9.20 14.93 27.30 43.10 59.09 40.91
applu_95 * * 34.76 3.68 1.77 26.20 0.32 0.62 0.27 0.73 93989.00 720.00 207.00 32.00 1.94 5.98 9.52 21.53 36.45 47.82 52.18
turb3d_95 213,613 21,290 37.88 3.30 1.55 29.28 0.49 0.60 0.35 0.65 1113236.00 124651.00 1078.00 38.00 3.14 7.66 13.10 19.58 35.58 50.36 49.64
apsi_95 235,175 32,446 35.71 3.31 1.71 29.23 0.43 0.72 0.31 0.69 1155.00 705.00 222.00 34.00 3.24 6.97 11.70 21.32 37.20 53.88 46.12
fpppp_95 215,569 21,188 43.86 1.40 1.25 70.37 0.80 0.54 0.72 0.28 3166.00 804.00 204.00 32.00 1.30 2.79 5.70 17.66 33.50 47.00 53.00
wave5_95 241,194 26,677 39.67 3.35 1.44 28.84 0.42 0.76 0.25 0.75 465.00 659.00 221.00 33.00 4.54 8.53 18.59 30.60 42.04 55.51 44.49
mgrid_95 * * 36.73 0.82 1.70 120.55 0.19 0.83 0.11 0.89 81269.00 693.00 214.00 28.00 0.46 2.16 5.03 16.00 33.23 43.60 56.40
go_95 129,840 68,562 36.95 13.04 1.35 6.67 0.76 0.66 0.70 0.30 2856.00 548.00 69.00 9.00 21.34 33.31 46.90 57.76 69.62 79.89 20.11
li_95 44,316 9,607 41.36 18.05 0.98 4.54 0.65 0.64 0.62 0.38 1369.00 278.00 103.00 10.00 37.60 45.49 54.28 66.53 78.39 88.75 11.25
perl_95 137,680 17,219 40.80 16.72 1.04 4.98 0.85 0.67 0.79 0.21 153.00 81.00 42.00 5.00 24.01 35.24 48.12 59.64 72.34 83.13 16.87
gcc_95 372,848 143,153 37.92 14.91 1.24 5.70 0.75 0.62 0.66 0.34 7157.00 3412.00 730.00 5.00 24.64 35.38 46.98 58.24 72.03 82.26 17.74
compress_95 59,983 1,556 32.59 11.52 1.71 7.68 0.59 0.79 0.54 0.46 109.00 49.00 27.00 7.00 18.01 29.98 45.74 62.28 76.04 86.06 13.94
ijpeg_95 108,404 20,199 28.35 5.45 2.33 17.33 0.59 0.75 0.50 0.50 1700.00 195.00 34.00 9.00 14.40 24.37 37.88 50.60 62.18 79.48 20.52
bzip2_2k 38,479 9,633 39.50 12.29 1.22 8.14 0.63 0.70 0.56 0.44 337042.00 100375.00 69024.00 1875.00 31.42 35.46 57.57 73.12 86.49 90.60 9.40
crafty_2k 116,296 34,073 36.60 11.20 1.43 8.93 0.83 0.67 0.80 0.20 31962.00 7635.00 294.00 21.00 13.80 24.51 38.62 52.66 64.37 72.75 27.25
eon_2k 189,016 43,503 48.15 11.18 0.84 8.94 0.67 0.63 0.59 0.41 3622.00 707.00 229.00 28.00 6.75 11.89 21.40 31.91 48.05 62.04 37.96
gcc2k 446,281 180,588 53.26 10.68 0.68 9.36 0.58 0.71 0.43 0.57 26246.00 7112.00 2705.00 307.00 22.81 29.63 44.87 51.53 68.92 75.86 24.14
gzip_2k 42,079 9,338 32.17 10.44 1.78 9.58 0.72 0.70 0.62 0.38 3484076.00 296272.00 120821.00 2579.00 22.12 33.67 43.96 61.23 69.05 74.19 25.81
mcf_2k 33,221 8,026 37.27 21.10 1.12 4.74 0.63 0.64 0.53 0.47 6384474.00 801795.00 309.00 8.00 19.47 34.29 46.45 58.32 68.91 72.19 27.81
parser_2k 65,607 25,345 34.84 15.48 1.43 6.46 0.65 0.65 0.50 0.50 24700.00 1816.00 175.00 9.00 20.47 32.34 49.97 61.18 74.00 83.41 16.59
twolf_2k 98,360 35,318 32.28 12.08 1.72 8.28 0.62 0.57 0.48 0.52 21792.00 1240.00 102.00 6.00 21.94 38.78 62.77 80.11 87.12 90.09 9.91
vortex_2k 163,748 69,692 40.53 17.29 1.04 5.78 0.83 0.52 0.69 0.31 315137.00 27783.00 1419.00 60.00 41.77 49.78 60.82 73.40 83.80 91.69 8.31
vpr_2k 73,791 29,901 44.08 10.65 1.03 9.39 0.68 0.52 0.44 0.56 524568.00 15223.00 1829.00 4.00 11.51 13.20 15.32 44.36 65.44 71.24 28.76
applu_2k 241,202 76,864 38.17 0.31 1.61 317.61 0.26 0.69 0.04 0.96 557233.00 3638.00 218.00 34.00 1.22 2.49 5.23 13.12 28.24 40.80 59.20
apsi_2k * * 37.22 3.60 1.59 27.80 0.55 0.55 0.39 0.61 1621949.00 106372.00 202.00 25.00 1.96 6.04 10.95 22.26 36.95 49.38 50.62
equake_2k * * 44.29 4.15 1.16 24.08 0.52 0.87 0.50 0.50 42.00 25.00 11.00 4.00 6.21 9.24 14.09 26.57 40.10 49.49 50.51
fma3d_2k * * 43.99 4.10 1.18 24.39 0.54 0.71 0.43 0.57 1225.00 661.00 202.00 19.00 1.69 3.21 7.63 20.22 34.74 48.42 51.58
galgel_2k 238,133 47,073 43.66 5.24 1.17 19.07 0.07 0.87 0.00 1.00 462.00 641.00 207.00 33.00 3.44 9.46 14.45 19.18 44.14 56.25 43.75
lucas_2k * * 22.13 1.43 3.45 69.91 0.36 0.62 0.02 0.98 382.00 597.00 191.00 30.00 4.07 5.99 12.18 21.90 36.33 47.99 52.01
mesa_2k * * 38.54 17.59 1.14 5.69 0.76 0.62 0.68 0.32 1337.00 442.00 142.00 17.00 7.97 15.33 20.86 28.23 37.82 52.71 47.29
mgrid_2k 178,553 18,349 36.72 0.37 1.71 273.37 0.41 0.65 0.19 0.81 689344.00 1349.00 247.00 34.00 1.77 3.65 9.51 28.76 40.90 48.61 51.39
swim_2k 181,467 20,283 32.92 1.30 2.00 76.66 0.41 0.59 0.01 0.99 1163.00 622.00 201.00 30.00 0.85 1.48 3.67 5.32 26.59 33.57 66.43
wupwise_2k 180,263 18,037 30.78 9.76 1.93 10.24 0.67 0.37 0.56 0.44 768641.00 192694.00 48236.00 36.00 0.74 5.25 17.95 27.46 37.66 47.08 52.92
art_2k * * 34.72 13.09 1.50 7.64 0.50 0.86 0.46 0.54 10102.00 25.00 13.00 7.00 7.28 12.24 16.49 28.90 36.68 45.75 54.25
ammp_2k * * 38.34 7.49 1.41 13.36 0.71 0.35 0.32 0.68 8928.00 196.00 79.00 9.00 9.07 16.23 27.00 37.49 46.27 56.03 43.97

* These are long running programs & their results are awaited
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