
Soon Filter: Advancing Tiny Neural Architectures
for High Throughput Edge Inference

Alan T. L. Bacellar1, Zachary Susskind2, Maurício Breternitz Jr.3,
Lizy K. John2, Felipe M. G. França4 and Priscila M. V. Lima1

1 - Universidade Federal do Rio de Janeiro, Brazil; 2 - The University of Texas at Austin, USA
3 - Instituto Universitário de Lisboa ISCTE-IUL ISTAR, Portugal; 4 - Instituto de Telecomunicações, Portugal

Abstract—As Deep Neural Networks become more complex and
computationally demanding, efficient models for inference at the
edge, particularly multiplication-free ones, have gained significant
attention. The Ultra Low-Energy Edge Neural Network (ULEEN)
is a notable architecture optimized for high throughput edge
designs. ULEEN uniquely employs Bloom Filters with binary
values to compute neuron activation, boasting better efficiency
metrics than Binary Neural Networks (BNNs). This work uncovers
a gradient back-propagation bottleneck within ULEEN’s Bloom
filters and introduces a simplified version of it as a solution: the
"Soon Filter". Both theoretically and empirically, we demonstrate
that our approach improves gradient back-propagation efficiency.
Tests on MLPerf Tiny, MNIST and various UCI datasets reveal
that our method surpasses ULEEN, BNN, and DeepShift. Notably,
with MLPerf KWS (Key Word Spotting) dataset, we achieve 69.6%
accuracy with only 101KiB, while ULEEN, BNN and DeepShift
achieve only 67.4%, 55.9%, and 24.9% respectively. Remarkably,
we also achieve 67.7% accuracy with only 50KiB, resulting in a
2x model size reduction compared to ULEEN while maintaining
similar accuracy (+0.3%). This results underscores the promising
potential of our solution for efficient inference at the edge in
applications that rely on high throughput architectures.

I. INTRODUCTION

In recent years, the field of artificial intelligence has wit-
nessed a remarkable transformation due to the advent of Deep
Neural Networks (DNNs). These powerful models have pushed
the boundaries of what AI can achieve, making significant
strides in areas like computer vision, speech recognition, and
natural language processing [1, 2, 3, 4, 5]. However, this
performance comes at a cost, with increasingly complex models
demanding higher computational resources. As these models
grow in size and complexity, the computational overhead for
training and inference becomes substantial, posing a challenge
for their deployment in resource-constrained environments.

Inference at the edge, particularly in the growing realm of the
Internet of Things (IoT), demands ultra-efficient models. The
rapid expansion of the IoT ecosystem has seen an explosion
of interconnected devices, from smart thermostats to wearable
health monitors. These devices often operate under stringent
energy and latency constraints, making it imperative to deploy
models that can deliver competitive accuracy without taxing
the limited resources available [6].

Several optimization techniques, including including Pruning
[7, 8], Weight Quantization [9, 10] and Sparse Neural Networks

This work is funded by FCT/MCTES through national funds and, when
applicable, co-funded by EU funds under the project UIDB 50008/2020, and by
Next Generation EU through PRR Project Route 25 (C645463824-00000063).

[11, 12], have been developed, indicating promise in boosting
computational efficiency. Nevertheless, while they help in
reducing memory consumption, they don’t alleviate the inherent
computational expenses tied to multiplication operations during
the inference stage.

In response, recent research has shifted towards the de-
velopment of multiplication-free architectures. Binary Neural
Networks (BNNs) [13] stand out as a prominent example, in
which both weights and activations are quantized to binary
values. This paradigm enables the substitution of multiplication
operations with XOR gates, substantially reducing memory
and computational overheads [14]. Concurrently, Deep Shift
Networks [15] have been introduced, leveraging shift operations
in lieu of multiplications, offering a novel viewpoint on model
computational efficiency [16]. As a result, multiplication-
free models have been deployed in numerous applications
[17, 18, 19, 20].

In recent advancements in multiplication-free designs,
Susskind et al. (2023) introduced the Ultra Low Energy
Edge Neural Network (ULEEN) aimed at applications that
rely on high throughput architectures. By utilizing binary-
valued bloom filters, along with the use of Straight Through
Estimators (STE) and a continuous relaxation of these bloom
filters for training, this approach has demonstrated notable
improvements in latency, memory consumption, and energy
efficiency compared to BNNs, setting new state-of-the-art
results and paving the way for the implementation of highly
energy-efficient and high throughput models at the edge.

In this work, we theoretically and empirically demonstrate
a gradient back-propagation bottleneck present in ULEEN,
caused by the use of continuous relaxation of Bloom filters,
which hinders learning. Drawing insights and inspiration
from ResNet [21, 22] — which emphasizes the benefits of
tweaking network architecture to enhance gradient flow — we
introduce our solution: the "Soon filter". Both theoretically and
empirically, we demonstrate that that our proposed solution
ensures more seamless gradient back-propagation to filter
locations. Consequently, we set new state-of-the-art benchmarks
for multiplication-free high throughput models.

II. BACKGROUND

In this section, we provide an overview of the underlying
mechanisms of Bloom Filters and ULEEN, which will form
the foundation for our methodology.

Bloom Filter The Bloom Filter [23] is a space-efficient
data structure that probabilistically determines membership in
a set. It’s comprised of a bit array F ∈ {0, 1}L of fixed size
L, and K hash functions, denote hk for each k ∈ {1, ... ,K}.
Each hk function maps an element to one of the L positions in
the array, indicating its possible presence or absence. Initially,
every position in the array is set to 0. When we add an element
e to the Bloom Filter, it is hashed, and the corresponding bits
in the array change to 1. This is represented as:

∀k ∈ {1, . . . ,K} : Fhk(e) ← 1

To verify an element’s membership, it’s hashed using the same
functions, and we check the relevant bits in the array:

θ(e) =

K∧
k=1

Fhk(e)

Here, θ(e) is the Bloom Filter’s output function. If any checked
bit is 0, the element isn’t in the set. If all are 1, the element
might be in the set, but we can’t be certain because of
potential hash collisions. Hence, the Bloom Filter guarantees
true negatives but may produce false positives.

Straight Through-Estimator The Straight Through-
Estimator (STE) [24, 25] is a widely adopted technique
for learning binary variables using gradient descent and is
commonly employed in BNNs. The STE functions as the sign
function during the forward pass and as the derivative of the
hardtanh function during the backward pass. This approach
allows gradients to pass through the function, which would
otherwise be impossible since the derivative of the sign function
is infinite at zero and is zero everywhere else. The STE can
be expressed as:

STE(w) =

{
1, if w > 0

0, otherwise
∂STE(w)

∂w
=

{
1, if |w| < 1

0, otherwise

During training, the binary variable to be learned is treated
as a real-valued parameter passing through the STE. During
inference, as this variable becomes a constant, it is binarized
and the STE is removed.

Weightless Neural Networks Weightless Neural Networks
(WNNs) are a type of neural model that achieve a multiplication-
free characteristic by completely eliminating the use of weights.
Instead, they utilize lookup tables with binary values to
determine neural activity, allowing for the deployment of high-
throughput models at the edge. Consequently, WNNs have
been used in many applications requiring real-time performance
[26, 27, 28]. A drawback of using lookup tables (LUTs) is
that the memory requirement grows exponentially with the
number of inputs, making the deployment of larger models
unfeasible. To address this, [29] proposed substituting LUTs
with Bloom Filters, demonstrating that this allows for more
efficient and smaller models with negligible changes in accuracy.
Additionally, [30] showed that using H3 hash functions [31]
made the filters extremely efficient for deployment at the edge.
Recently, [32] further improved upon this work by incorporating

gradient-descent training into WNNs using Straight Through
Estimators, commonly employed in Binary Neural Networks
(BNNs). They also developed a hardware implementation for
WNNs named ULEEN, demonstrating its superiority over
BNNs in terms of latency, memory usage, and energy efficiency.

ULEEN ULEEN serves as a classification model designed
to distinguish C distinct classes from a binary input x ∈
{0, 1}nN . Each class is represented by a discriminator Dc

where c ∈ {1, 2, . . . C}. Each discriminator is composed of
N Bloom Filters of length of L. Every Bloom Filter in the
discriminator processes a unique subset of n bits from the input
x, selected pseudo-randomly. Let Fc,i ∈ {0, 1}L denote the bit
array of the i-th Bloom Filter of the of the c-th discriminator.
Let δc,i,k ∈ {1, 2, . . . L} represent the hash value of the binary
subset produced by the k-th hash function, of the i bloom filter,
of the c-th discriminator. The output of discriminator Dc is
expressed by:

sc(x) =

N∑
i=1

K∧
k=1

Fc,i,δc,i,k

where sc : {0, 1}Nn → {1, 2, ... , N} indicates the response of
the c-th discriminator. The discriminator yielding the highest
response determines the model’s output class. Refer to Figure
[fig:uleen]1 for a graphical representation.

To learn the Bloom Filter’s binary values via gradient descent,
ULEEN replaces the Bloom Filter AND aggregation with a
continuous relaxation—specifically, the min function—during
training. The Straight Through-Estimator is employed to learn
the filter array’s binary values. Specifically, during training,
the output of discriminator Dc is expressed as:

sc(x) =

N∑
i=1

K
min
k=1

STE(Fc,i,δc,i,k)

III. SOONFILTER

In this section, we elucidate the inspiration behind our
proposed methodology. We theoretically identify a gradient
bottleneck in ULEEN’s Bloom Filter and introduce our solution:
The Soon Filter.

Inspiration ResNets [33] have shown that altering model
architecture to enhance gradient flow during back-propagation
can lead to significant improvements in model performance.
Let fi be the i-th layer function in a DNN model. Given a
model with P consecutive layers, the partial derivative of the
final layer fP in the with respect to the i-th layer fi can be
expressed as:

∂fP
∂fi

=

P−1∏
p=i

∂fp+1

∂fp

The authors observed that gradients in earlier layers (those
closer to the input) can vanish due to the multiplication of
numerous values less than 1 (the partial derivative of one layer
with respect to its predecessor) in the chain rule during back-
propagation. To mitigate this, they introduced a skip connection
between layers. In their new design, assuming a skip connection

Fig. 1: ULEEN doing digit recognition. Each output class has a discriminator. The input image has digit 1 and the discriminator
corresponding to digit 1 has the highest response here.

between every 2 layers, the partial derivative of fP with respect
to fi became:

∂fP
∂fi

=

P/2−1∑
u=0

P−1∏
p=i+2u

∂fp+1

∂fp

This architectural alteration ensured that gradients effectively
propagated to earlier layers, as elucidated in [22]. This
simple yet impactful technique has been integrated into many
contemporary DNN architectures [34, 35, 36].

Taking cues from this approach of tailoring model archi-
tectures to optimize gradient flow, we propose replacing the
Bloom Filter in ULEEN with our novel Soon Filter.

Gradient Bottleneck Consider A : RK → R, an arbitrary
continuous aggregation function. For a loss function L, the
partial derivative with respect to an arbitrary content of the
ULEEN’s Bloom Filter, denoted as Fc,i,j (denoting the content
at the j-th position of the i-th Bloom Filter of the c-th
discriminator) can be written as:

∂L
∂Fc,i,j

=
∂L
∂A

∂A

∂STE

∂STE

∂Fc,i,j

We will demonstrate that the middle term of this expression
can form a bottleneck, potentially hindering filter positions
from updating.

For gradient descent training on ULEEN, a continuous
relaxation of the Bloom Filter’s AND aggregation function,
specifically the min function, is employed. Let x⃗ ∈ RK be
an input representing the output of the STE at the positions
accessed by the K hash functions. For the min function, we
have:

A(x⃗) =
K
min
k=1

xk
∂A

∂xk
(x⃗) =

{
1, if xk = A(x⃗)

0, otherwise

This function only permits gradients to flow to inputs
identical to its own value, effectively blocking gradients to
filter positions with values exceeding its own.

Another potential continuous relaxation for the AND ag-
gregation function is the product operation: However, its
derivative reveals it to be even more obstructive to gradient
back-propagation, resulting in an even greater bottleneck than
the min function:

A(x⃗) =

K∏
k=1

xk
∂A

∂xk
(x⃗) =

K∏
l=1
l ̸=k

xl

In this scenario, the gradient propagates to all filter positions
only when the STE for every accessed position yields a 1. If a
single STE of a filter position produces a 0, just that particular
position is updated by the gradient. When two or more outputs
register as zero, none of the filter positions receive a gradient
update, effectively halting gradient back-propagation entirely.

Soon Filter To overcome this gradient bottleneck issue,
we do not constrain ourselves to continuous relaxations of the
AND aggregation function. Instead, we choose an aggregation
function without a gradient bottleneck:

∂A

∂xk
(x⃗) = 1

This function corresponds to the sum operation:

A(x⃗) =

K∑
k=1

xk

Using the sum operation as the aggregation function alters the
filter’s characteristics. In this modified filter, the number of
false positives rises. While in the Bloom Filter, indexing both a
0 and a 1 position would produce a true negative, this new filter
will output a 1. Due to this filter’s tendency to output a result
prematurely, we named it the "Soon Filter" — a simplified
version of the Bloom Filter that has a higher rate of false
positives.

In our approach, the model is trained and deployed exactly
like ULEEN but replacing Bloom Filters with Soon Filters.
The discriminator’s response in our model is as follows:

sc(x) =

N∑
i=1

K∑
k=1

Fc,i,δc,i,k

During training, the discriminator response is given by:

sc(x) =

N∑
i=1

K∑
k=1

STE(Fc,i,δc,i,k)

Refer to Figure [fig:discriminators]2 for a visual representation
comparing a discriminator that employs a Bloom Filter with
a discriminator that uses a Soon Filter. This comparison
illustrates how the increased rate of false positives affects
the discriminator’s response.

Analysis of Filter Equivalence A noteworthy observation
arises when examining the Bloom Filter and the Soon Filter
within the context of the number of hash functions employed.
Specifically, when only one hash function, both the Soon Filter
and the Bloom Filter essentially operate as identical filters.
This is due to the fact that in the presence of a single hash
function, there’s no necessity for an aggregation function. Thus
the output of both filters is simply the accessed position by
that hash function.

Delving deeper into the continuous relaxations of the Bloom
Filter, an interesting parallelism can be discerned. For scenarios
with one or two hash functions, both continuous relaxations
exhibit identical derivatives. This means that, in terms of
behavior, the two relaxations are indistinguishable under these
conditions. This congruence is evident for a single hash function
since it negates the need for an aggregation function. For two
hash functions, we can construct a truth table of the partial
derivatives to elucidate this:

Input Min Product

x1 x2
∂A
∂x1

∂A
∂x2

∂A
∂x1

∂A
∂x2

0 0 0 0 0 0
0 1 1 0 1 0
1 0 0 1 0 1
1 1 1 1 1 1

When three or more hash functions are introduced, the
different continuous relaxations unique characteristics become
apparent, highlighting the distinctions in their operational
behavior. Below is the truth table showcasing a 3-bit input
into the continuous relaxation aggregations functions and their
respective derivatives:

Input Min Product

x1 x2 x3
∂A
∂x1

∂A
∂x2

∂A
∂x3

∂A
∂x1

∂A
∂x2

∂A
∂x3

0 0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0 0
0 1 0 1 0 1 0 0 0
0 1 1 1 0 0 1 0 0
1 0 0 0 1 1 0 0 0
1 0 1 0 1 0 0 1 0
1 1 0 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1

Hardware Considerations As depicted, the modifications
introduced by our model to the ULEEN hardware are minimal.
Specifically, we remove the AND gate from the Filter output
and connect the filter outputs directly to the discriminator’s
pop-count. This ensures that ULEEN’s remarkable hardware
features and performance remain intact.

IV. EXPERIMENTS

In this section, we present the experimental evaluation of
our approach, comparing it with ULEEN, BNN, and DeepShift
across the MLPerf Tiny benchmark datasets [37], various
UCI datasets [38] and MNIST [39]. We designate our model
as SULEEN to distinguish it from ULEEN, signifying the
incorporation of our proposed Soon Filters within the ULEEN
architecture. Moreover, we introduce ablation studies in which
we vary the number of hash functions in the Soon Filter and
contrast it with the continuous relaxations of the Bloom Filter
to corroborate our theoretical filter equivalence conclusions.

A. Empirical Evaluation Across Diverse Datasets

Model Implementations: To evaluate BNNs, we utilize
FINN [14], a specialized tool for developing high-performance
neural network architectures on Field-Programmable Gate
Arrays (FPGAs). FINN is designed to enable the efficient
implementation of BNNs, allowing for significant acceleration
in inference compared to traditional architectures. This aligns
with the most performant version of BNNs as outlined in
the accompanying paper. For DeepShift, we employ the
implementation detailed and made available in their paper [15],
conducting a grid search on both the Q (quantized) and PS
(parameterized shift) variations during hyperparameter tuning.
For SULEEN and ULEEN, we developed the code in PyTorch
[40], incorporating a custom CUDA kernel. The code is made
publicly accessible at: link omitted due to the double-blind
review process.

Hyperparameter Tuning: To optimize each model for
every dataset, we employed grid search, utilizing 10% of the
training data as a validation set. It is important to note that
the test dataset is only used for the final evaluation and not
for hyperparameter tuning. For SULEEN and ULEEN, the
hyperparameters were varied as follows: n ∈ {2, 3, . . . , 28},
K ∈ {1, 2, 3, 4}, and L ∈ {21, 22, . . . , 2n}. Common to all
models, we explored dropout rates p ∈ {0.0, 0.1, . . . , 0.8}. For
BNN and DeepShift, the grid search included the number of
hidden layers P ∈ {1, 2, . . . , 6}, with the number of neurons
per layer being automatically adjusted to meet the targeted
model size. In the case of DeepShift, we additionally conducted
a grid search on both the Q and PS variations to discern the
optimal choice. Hyperparameter tuning spanned 30 epochs,
employing a batch size of 32 and the Adam Optimizer with
α = 0.9, β = 0.999. We initiated with a learning rate of 1e-2,
reducing it by a factor of 0.1 every 10 epochs.

Data Splits: Following the approach in [32], we split the
datasets into 66% train and 33% test sets for datasets where
no test data was available.

(a) ULEEN Discriminator

(b) SULEEN Discriminator

Fig. 2: Graphical Representation of ULEEN (a) and SULEEN (b) discriminators. The two images provide an example of a
discriminator that receives a 10-bit input. Each discriminator in the example has two filters that are addressed by two hash
functions. Each hash function takes a 5-bit word as input and produces a 3-bit address as output. The distinction between the
Bloom Filter and Soon Filter is evident in the images: In (a), the upper Bloom Filter provides a true negative output of 0,
while the lower indicates a potential positive, outputting a 1. In (b), the upper Soon Filter outputs a 1 (a false positive) and the
lower outputs a 2, indicating a potential positive, totaling an output of 3.

Preprocessing: For Keyword Spotting (KWS), we employed
Mel Frequency Cepstral Coefficients (MFCC) preprocessing,
complemented by cepstral mean and variance normalization.
For the UCI datasets and MNIST, we followed the methodology
outlined in the ULEEN paper [32].The other datasets underwent
no preprocessing. To train both SULEEN and ULEEN models,
we employed the Distributive Thermometer Encoding [41] to
binary encode the inputs of all datasets. In the MLPerf Tiny
benchmark datasets, we assigned 8 bits for CIFAR-10, 12 bits
for KWS, 6 bits for ToyADMOS, and 12 bits for Visual Wake
Words (VWW). For the UCI datasets, we utilized a 24-bit
encoding across all datasets. For MNIST, we employed a 5-bit
encoding.

Training: All models was trained for 240 epochs with
a batch size of 32. We used the Adam Optimizer with
hyperparameters α = 0.9 and β = 0.999. The learning rate
was initialized at 1e-2 and decayed by a factor of 0.1 every
80 epochs. Each model was trained and tested 10 times, and
we report the average results.

MLPerf Tiny: A standard benchmark suite in [37] for edge
devices, MLPerf Tiny includes four datasets. Keyword Spotting
(KWS) features 105,829 utterances for keyword recognition
[42]. CIFAR-10 comprises 32x32 RGB images across 10
classes for image classification [43]. ToyADMOS/car, with
audio recordings of toy cars, focuses on anomaly detection in
damaged cars [44]. Visual Wake Words (VWW) uses 96x96
grayscale images from MSCOCO 2014 [45] to detect human
presence.

MLPerf Tiny Results: We conducted experiments across
three distinct model sizes (small, medium, and large) for each
model and dataset. The results are captured in Table I. SULEEN
consistently excels across all MLPerf Tiny datasets for every
model size. Specifically, in the KWS dataset, our large model
outperforms DeepShift by 44.7%, BNNs by 13.7%, and ULEEN
by 2.2%. Moreover, our medium-sized model (50KiB) achieves
comparable accuracy (+0.3%) to ULEEN large model (101KiB),
showing an outstanding 2x reduction in memory footprint
when compared at iso-accuracy. A similar trend is observed

Dataset Model Size SULEEN ULEEN BNN DeepShift

MLPerf Tiny

KWS(small) 23KiB 58.2% 57.2% 47.2% 18.6%
KWS (medium) 50KiB 67.7% 66.1% 53.3% 22.2%
KWS (large) 101KiB 69.6% 67.4% 55.9% 24.9%

CIFAR-10 (small) 24KiB 49.7% 45.3% 40.0% 40.3%
CIFAR-10 (medium) 250KiB 55.6% 53.5% 46.5% 53.0%
CIFAR-10 (large) 625KiB 57.3% 54.5% 48.0% 54.1%

ToyADMOS (small) 7KiB 88.4% 88.4% 84.8% 57.8%
ToyADMOS (medium) 15KiB 89.3% 89.3% 85.9% 57.8%
ToyADMOS (large) 30KiB 90.5% 90.5% 86.6% 57.9%

VWW (small) 12KiB 57.4% 57.4% 51.7% 52.9%
VWW (medium) 120KiB 59.8% 59.8% 52.1% 53.8%
VWW (large) 250KiB 60.6% 60.6% 52.3% 54.6%

UCI

Ecoli 0.87KiB 87.5% 87.5% 68.9% 43.6%
Iris 0.28KiB 98.3% 98.0% 69.2% 33.3%
Letter 78.00KiB 96.0% 95.3% 4.79% 19.2%
SatImage 9.00KiB 91.7% 90.9% 30.8% 48.0%
Vehicle 2.25KiB 78.3% 77.1% 27.2% 28.3%
Vowel 3.44KiB 94.0% 91.7% 17.7% 8.4%
Wine 0.42KiB 98.3% 98.3% 14.0% 27.3%

MNIST (98/262/355/408)KiB 98.6% 98.5% 98.4% 98.3%

TABLE I: Accuracy comparison of SULEEN, ULEEN, BNN, and DeepShift Across MLPerf Tiny at three different model sizes
(small, medium, and large), various UCI datasets and MNIST. The highest accuracy for each dataset and, for MLPerf Tiny,
each model size, is highlighted in bold.

in the CIFAR-10 dataset, where our medium model (250KiB)
achieves 55.6%, compared to the ULEEN large model (625KiB)
which achieves 54.5%, thereby demonstrating a substantial 2.5x
reduction in model size. On ToyADMOS and VWW, SULEEN
and ULEEN perform identically. This is due to both achieving
optimal results in the hyper-parameter tuning when using a
single hash function, causing them to operate essentially as
identical models, a phenomenon we detailed theoretically in
our methodology and that will be further substantiated in the
next subsection.

UCI: Our proposed approach is evaluated using a selection
of datasets from the UCI Machine Learning Repository [38].
This evaluation aims to verify its applicability for edge
inference in applications that utilize structured data.

UCI Results: Table I encapsulates our findings. SULEEN
consistently ranks first in accuracy across all datasets. When
juxtaposed against ULEEN, SULEEN exhibits superior accu-
racy in all cases, save for the Ecoli and Wine datasets, where
both models achieve parity. It’s striking to note that the top-
ranking models in terms of accuracy predominantly belong
to WNNs (SULEEN and ULEEN). Both BNN and DeepShift
fall short in matching the their performance, accentuating the
distinct advantage of WNNs in edge inference applications that

utilize structued data.
MNIST: In our study, we utilized the MNIST dataset,

a classic and foundational benchmark in the field of edge
inference. Our focus was on comparing model sizes while
maintaining a similar accuracy level, close to 98.5%, a common
practice in this domain. We utilize the results reported in
[14, 32, 46] for ULEEN, BNN and DeepShift repectively.

MNIST Results: The results, as presented in Table I, demon-
strate a significant advancement achieved by SULEEN. Notably,
SULEEN attained an impressive accuracy of 98.6% with a
model size of only 98KiB. This performance is particularly
remarkable when compared to ULEEN, achieving a 2.67x
reduction in model size, without compromising on accuracy.
Furthermore, when compared to BNN and DeepShift, we
acheive a model size reduction of 3.62x and 4.16x respectively.
These results underscore SULEEN’s significant contribution to
the field of edge inference, offering a powerful yet compact
solution that does not sacrifice accuracy for size efficiency.

B. Ablation Studies and Theoretical Validation

In this subsection, we evaluate our Soon Filter against
the continuous Min-Relaxation and Prod-Relaxation of the
Bloom Filter. We do this by varying the number of hash

1 2 3 4
93

94

95

96

97

#Hash

A
cc

ur
ac

y(
%

)

(a) Letter

1 2 3 4
88

89

90

91

92

#Hash

A
cc

ur
ac

y(
%

)

(b) SatImage

1 2 3 4
90

91

92

93

94

95

#Hash

A
cc

ur
ac

y(
%

)

(c) Vowel

1 2 3 4
95

96

97

98

99

#Hash

A
cc

ur
ac

y(
%

)

(d) MNIST

1 2 3 4
52
53
54
55
56
57
58

#Hash

A
cc

ur
ac

y(
%

)

(e) CIFAR-10

1 2 3 4
87

88

89

90

91

#Hash

A
cc

ur
ac

y(
%

)

(f) ToyADMOS

Fig. 3: Ablation study graphs comparing the Number of Hash
Functions versus Accuracy(%) for the Soon Filter (in Blue),
the Bloom Filter with Min function continuous relaxation
(in Orange), and the Bloom Filter with Product operation
continuous relaxation (in Green). Datasets include (a) Letter,
(b) SatImage, (c) Vowel, (d) MNIST, (e) CIFAR-10 , and (f)
ToyADMOS .

functions used, ranging from 1 to 4. Our goal is to validate
our theoretical findings: that the three filter versions operate
as the same model with one hash function and that both the
Mean and Product relaxations function identically with two
hash functions. Additionally, we aim to confirm that our model
consistently outperforms the others regardless of the number
of hash functions employed. We test this hypothesis on the
Letter, SatImage, Vowel, MNIST, CIFAR-10, and ToyADMOS
datasets.

The results are illustrated in Figure 3. As can be observed,
with one hash function, all filters yield identical accuracy across
all datasets. When using two hash functions, both Min and
Product relaxations also produce identical results. Notably, for
every dataset and number of hash functions, the Soon Filter
consistently surpasses both the Min and Product relaxations
of the Bloom Filter. These findings validate our theoretical
assertions.

V. CONCLUSION

In this study, we introduced the Soon Filter, an innovative
approach designed to enhance the performance of ULEEN,
a multiplication-free model tailored for high-throughput edge
inference. By theoretically demonstrating its efficiency and
conducting rigorous experimentation on the MLPerf Tiny, UCI,
and MNIST datasets, we have distinctly underscored the robust-
ness and efficiency of our proposed methodology. Notably, our
results have surpassed the performance benchmarks across all
datasets, outperforming well-established models like ULEEN,
BNN, and DeepShift.

Through ablation studies, we have empirically verified our
theoretical assertions regarding filter equivalence, showing that
the Soon Filter consistently outperforms its counterparts by
maximizing the gradient updates of the filter RAM positions.

Given the minimal deviations between our model and
ULEEN, as outlined in the methodology section, we can
consider ULEEN’s hardware results as a performance upper
bound for our model. Additionally, our approach achieves, on
average, a 2x reduction in model size compared to ULEEN.
Based on this significant size reduction, we project that the
hardware deployment of our model could be twice as efficient.
This projection underscores the importance of hardware testing
as a vital and immediate direction for future research.

Furthermore, numerous edge applications that rely on
high-throughput architectures could greatly benefit from our
approach. The integration of SULEEN into these applications
has the potential to redefine their efficiency and robustness,
thereby setting a new standard for edge inference.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[2] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” CoRR,
vol. abs/2112.10752, 2021. [Online]. Available: https://arxiv.org/abs/
2112.10752

[3] OpenAI, “Gpt-4 technical report,” ArXiv, vol. abs/2303.08774, 2023.
[4] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury,
“Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 82–97, 2012.

[5] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” ArXiv, vol. 1409, 09 2014.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
2016.

[7] X. Dong, S. Chen, and S. J. Pan, “Learning to prune deep neural networks
via layer-wise optimal brain surgeon,” CoRR, vol. abs/1705.07565, 2017.
[Online]. Available: http://arxiv.org/abs/1705.07565

[8] ——, “Learning to prune deep neural networks via layer-wise optimal
brain surgeon,” CoRR, vol. abs/1705.07565, 2017. [Online]. Available:
http://arxiv.org/abs/1705.07565

[9] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods for
8-bit training of neural networks,” in Advances in Neural Information
Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates,
Inc., 2018. [Online]. Available: https://proceedings.neurips.cc/paper_
files/paper/2018/file/e82c4b19b8151ddc25d4d93baf7b908f-Paper.pdf

[10] B. Chmiel, L. Ben-Uri, M. Shkolnik, E. Hoffer, R. Banner, and D. Soudry,
“Neural gradients are near-lognormal: improved quantized and sparse
training,” in International Conference on Learning Representations,
2021. [Online]. Available: https://openreview.net/forum?id=EoFNy62JGd

[11] Y.-L. Sung, V. Nair, and C. A. Raffel, “Training neural networks with
fixed sparse masks,” in Advances in Neural Information Processing
Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and
J. W. Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp.
24 193–24 205. [Online]. Available: https://proceedings.neurips.cc/paper_
files/paper/2021/file/cb2653f548f8709598e8b5156738cc51-Paper.pdf

[12] W. Sun, A. Zhou, S. Stuijk, R. Wijnhoven, A. O. Nelson, h. Li, and
H. Corporaal, “Dominosearch: Find layer-wise fine-grained n:m sparse
schemes from dense neural networks,” in Advances in Neural Information
Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang,
and J. W. Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp.
20 721–20 732. [Online]. Available: https://proceedings.neurips.cc/paper_
files/paper/2021/file/ad68473a64305626a27c32a5408552d7-Paper.pdf

[13] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Advances in Neural Information
Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett, Eds., vol. 29. Curran Associates, Inc., 2016.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf

[14] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “Finn: A framework for fast, scalable binarized
neural network inference,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser. FPGA
’17. New York, NY, USA: Association for Computing Machinery, 2017,
p. 65–74. [Online]. Available: https://doi.org/10.1145/3020078.3021744

[15] M. Elhoushi, Z. Chen, F. Shafiq, Y. H. Tian, and J. Y. Li, “Deepshift:
Towards multiplication-less neural networks,” in 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW),
2021, pp. 2359–2368.

[16] H. You, X. Chen, Y. Zhang, C. Li, S. Li, Z. Liu, Z. Wang, and
Y. Lin, “Shiftaddnet: A hardware-inspired deep network,” CoRR, vol.
abs/2010.12785, 2020. [Online]. Available: https://arxiv.org/abs/2010.
12785

[17] M. Samragh, S. Hussain, X. Zhang, K. Huang, and F. Koushanfar, “On
the application of binary neural networks in oblivious inference,” in 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2021, pp. 4625–4634.

[18] H. Udagawa, T. Okano, and T. Saito, “Permutation binary neural
networks: Analysis of periodic orbits and its applications,” pp. 748–764,
2023. [Online]. Available: /article/id/62948d012d80b70dfd2582b8

[19] H. Qin, X. Ma, Y. Ding, X. Li, Y. Zhang, Y. Tian, Z. Ma, J. Luo,
and X. Liu, “Bifsmn: Binary neural network for keyword spotting,”
in Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI-22, 2022, pp. 4346–4352.

[20] H. He and R. Xia, “Joint binary neural network for multi-label learning
with applications to emotion classification,” in Natural Language
Processing and Chinese Computing: 7th CCF International Conference,
NLPCC 2018, Hohhot, China, August 26–30, 2018, Proceedings, Part I
7. Springer, 2018, pp. 250–259.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[22] ——, “Identity mappings in deep residual networks,” in Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part IV 14. Springer, 2016, pp.
630–645.

[23] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, p. 422–426, Jul. 1970. [Online].
Available: https://doi.org/10.1145/362686.362692

[24] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or
propagating gradients through stochastic neurons for conditional
computation,” CoRR, vol. abs/1308.3432, 2013. [Online]. Available:
http://arxiv.org/abs/1308.3432

[25] P. Yin, J. Lyu, S. Zhang, S. J. Osher, Y. Qi, and J. Xin, “Understanding
straight-through estimator in training activation quantized neural nets,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=Skh4jRcKQ

[26] M. De Gregorio, “An intelligent active video surveillance system based
on the integration of virtual neural sensors and bdi agents,” IEICE
TRANSACTIONS on Information and Systems, vol. 91, no. 7, pp. 1914–

1921, 2008.
[27] P. Coraggio and M. De Gregorio, “WiSARD and NSP for robot global

localization,” in International Work-Conference on the Interplay Between
Natural and Artificial Computation. Springer, 2007, pp. 449–458.

[28] C. B. Do Prado, F. M. G. França, E. Costa, and L. Vasconcelos, “A
new intelligent systems approach to 3D animation in television,” in
Proceedings of the 6th ACM international conference on Image and
video retrieval. ACM, 2007, pp. 117–119.

[29] L. Santiago, L. Verona, F. Rangel, F. Firmino, D. S. Menasché, W. Caarls,
M. Breternitz Jr, S. Kundu, P. M. Lima, and F. M. França, “Weightless
neural networks as memory segmented bloom filters,” Neurocomputing,
vol. 416, pp. 292–304, 2020.

[30] Z. Susskind, A. Arora, I. D. Miranda, L. A. Villon, R. F. Katopodis,
L. S. de Araújo, D. L. Dutra, P. M. Lima, F. M. França, M. Breternitz Jr
et al., “Weightless neural networks for efficient edge inference,” in
Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques, 2022, pp. 279–290.

[31] J. Carter and M. N. Wegman, “Universal classes of hash functions,”
Journal of Computer and System Sciences, vol. 18, no. 2, pp. 143–154,
1979. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/0022000079900448

[32] Z. Susskind, A. Arora, I. D. Miranda, A. T. Bacellar, L. A. Villon, R. F.
Katopodis, L. S. de Araujo, D. L. Dutra, P. Lima, F. M. Franca et al.,
“Uleen: A novel architecture for ultra low-energy edge neural networks,”
arXiv preprint arXiv:2304.10618, 2023.

[33] F. Visin, K. Kastner, K. Cho, M. Matteucci, A. C. Courville, and
Y. Bengio, “Renet: A recurrent neural network based alternative to
convolutional networks,” CoRR, vol. abs/1505.00393, 2015. [Online].
Available: http://arxiv.org/abs/1505.00393

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[35] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” arXiv preprint arXiv:2010.11929, 2020.

[36] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
convnet for the 2020s,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2022, pp. 11 976–11 986.

[37] C. Banbury, V. J. Reddi, P. Torelli, J. Holleman, N. Jeffries, C. Kiraly,
P. Montino, D. Kanter, S. Ahmed, D. Pau et al., “Mlperf tiny benchmark,”
Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks, 2021.

[38] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

[39] L. Deng, “The MNIST database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141–142, 2012.

[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

[41] A. Bacellar, Z. Susskind, L. Villon, I. Miranda, L. Santiago, D. Dutra,
M. Jr, L. JOHN, P. Lima, and F. França, “Distributive thermometer:
A new unary encoding for weightless neural networks,” 01 2022, pp.
31–36.

[42] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” 2018. [Online]. Available: https://arxiv.org/abs/1804.03209

[43] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Toronto, Ontario, Tech. Rep. 0,
2009.

[44] Y. Koizumi, S. Saito, H. Uematsu, N. Harada, and K. Imoto, “Toyadmos:
A dataset of miniature-machine operating sounds for anomalous sound
detection,” in 2019 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA), 2019, pp. 313–317.

[45] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,”
in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and
T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014, pp.
740–755.

[46] M. Elhoushi, Z. Chen, F. Shafiq, Y. H. Tian, and J. Y. Li, “Deepshift:
Towards multiplication-less neural networks,” 2021.

