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Abstract 

 

 A Tensor Processing Unit Design for FPGA Benchmarking 

 

 

 Sangramsinh Kate, MSE 

The University of Texas at Austin, 2021 

 

Supervisor:  Lizy Kurian John 

 

The recent exposure of use of FPGAs for deep learning applications have opened a wide 

range of use cases for FPGAs. The scalability and programmability of FPGAs are essential to 

update the hardware to encompass the state-of-the-art network architectures with special purpose 

units to accelerate the computation. However, these accelerator designs vary according to different 

design structures and properties. It is essential to understand the efficient FPGA architecture for a 

specific type of workload. This thesis provides an academic version of Google’s tensor processing 

unit (TPU v2) design as a benchmark for FPGA architecture evaluation. The thesis provides a 

reference microarchitecture for TPU v2 core design.  The thesis uses Verilog-to-Routing (VTR) 

tool which is a widely used open-source academic FPGA architecture analysis and research tool 

to perform the analysis of benchmark on different types of FPGA architecture.   
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INTRODUCTION  

Deep learning (DL) has enabled the shift in the usage of machine learning techniques in 

numerous applications. Contemporary deep learning frameworks such as Google TensorFlow, 

PyTorch, Caffe, Keras, Microsoft Cognitive toolkit have enabled various deep learning 

architectures suitable for different sets of applications. The availability of a massive amount of 

data has enabled this paradigm shift in learning algorithms, focusing on finding meaningful 

insights from the data to the problem of classification, recognition, and prediction. Deep learning 

has extensive use-cases in computer vision, Image processing, Speech recognition, and analysis. 

While deep learning applications are vast, they are computationally complex and require a unique 

set of hardware for higher performance. While using FPGAs for deep learning is prevalent, a recent 

trend is trying to optimize FPGA architecture for deep learning workloads [2].  

The current design tools that follow a software-like approach to program an FPGA have 

made them a preferable option for deep learning hardware accelerators for their flexible hardware 

configuration and better performance per unit cost [2].  The researchers in deep learning can use 

these FPGA design tools to use high-level design descriptions to program an FPGA. While a 

traditional FPGA constitutes flip-flops for sequential logic, Block-RAM for memory requirements, 

and stores combinatorial logic in the form of lookup tables (LUTs), more recent FPGA 

architectures include special-purpose hardware such as DL optimized fabrics [3], DL accelerators 

[4][5]. 

To enhance the use-case of FPGA for DL applications, researchers are exploring different 

ways of optimizing FPGA architectures and CAD to achieve a better quality of result (QoR) for 

DL applications. The FPGA architectures need to be tested against a wide range of benchmark 

designs to understand and improve the QoR for an architecture. The FPGA benchmarks, such as 

the Microelectronics Centre of North Carolina (MCNC) benchmark, VTR benchmark, and Titan 

framework, are very well known in academia. These benchmarks include a range of designs that 
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contains small to large-size benchmarks. However, these benchmarks are not the most optimal, 

and there is a need to create more complex benchmarks [5].  [7] explains the lack of deep learning 

specific benchmark suites, which are essential for the FPGA analysis for deep learning workloads.  

This thesis work addresses this problem by providing a deep learning specific benchmark 

for FPGA architecture research. The benchmark is a model of the Google's Tensor Processing Unit 

version 2 core. The thesis establishes the groundwork and provides the design details to create an 

academic DL accelerator benchmark. 
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BACKGROUND AND RELATED WORK 

This section discusses the background work related to the DL accelerators, neural 

networks, and vector processor cores that the thesis uses as a basis of TPU v2 core design. The 

intention behind vector processor core design is that the open-source Verilog code can be utilized 

efficiently for overall design process. 

Neural Networks 

Neural networks are one of the promising types of a supervised learning algorithms. The 

ability of the neural network to learn the nonlinearity of the data efficiently helps neural networks 

to learn complex training data and predict with higher accuracy. A classical neural network 

comprises nodes, each of which has specific inputs and an output. The input to each neuron is 

called activation. A neuron in a neural network uses a weighted sum of the activations to generate 

an output. Each neuron uses a type of nonlinear function to generate the output. Neurons in neural 

networks are connected to form multiple layers such that the structure of each neuron resembles 

the structure of a neuron in a brain.  

 

Figure 1: Neuron and Neural Network 
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  Each layer can have multiple neurons connected parallel to the previous layer's neurons 

and generate activation for the next layer's neurons. The input layer is the first layer of any neural 

network. The last layer of the neural network is called the output layer, which generates the output. 

In between the input and output layers, a neural network can have multiple layers, which are called 

hidden layers.  

 Deep neural network extends this neural network class by adding more types of 

computational layers such as convolutional layers, pooling layers, activation layers, softmax layer, 

etc. Each of these layers plays a crucial role in terms of data compression and feature extractions. 

The sampled features of the image are forwarded to the fully connected layers for classification 

and identification problems. Figure 2 shows an example of a Deep neural network.  

 

 

 

Figure 2: An Example of Deep Neural Network (Taken from [8]) 

Figure 2 shows different layers and their relationship in a DL program. The figure is taken from 

[8]. Here are some of the joint operations performed in the deep neural network (DNN): 

CONVOLUTION  
A convolution operation includes the dot product operation of a filter over the input with a 

fixed stride. The convolution operation can be thought of as a reduction operation as it reduces the 

size of the input matrix by the factor of filter size. This operation helps to reduce down the 

complexity of DNN as the reduction in size results in smaller, fully connected nodes, which 
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computationally very costly. Furthermore, the convolution operation is a multiplication operation, 

the rearrangement of inputs converts a convolution problem into a matrix multiplication problem. 

MATRIX MULTIPLICATION 

Matrix multiplication is the heart of most complex neural networks. It multiples the input 

activations with the weights to produce the output of a neuron in a fully connected layer. This 

operation is the most important part of DNN as the trained weights encode the complex functional 

relationship information between input and output 

POOLING 
The pooling operations is a simple reduction operation. The most commonly used pooling 

operations include MaxPool and AvgPool. A MaxPool operation reduces the input features to 

include only maximum value features by sliding the non-overlapping filter over the input matrix. 

Thus, pooling is the easiest way to reduce a matrix. 

ACTIVATION  

The activation layer adds nonlinearity to the functioning of the neural network. The most 

commonly used activation functions include rectilinear activation function (ReLU), sigmoid 

activation function (Sig), hyperbolic tan function (Tanh). The output of a neuron from a layer acts 

as an input to the nonlinear activation function. The activation layer provides the input for the next 

layer in the network.  

SOFTMAX 

The softmax layer is used to generate the final output of a DNN. This layer generates the 

probabilistic distribution of each output over a given network. This probabilistic answer is always 

in the range of 0 to 1. 

 

DNNs use multiple structures of the combination of these layers. Table 1 compares a few typical 

examples of the most widely used neural network for their performance. It can be observed how 

the performance of a network can be different by changing the architecture of a DNN [8]. The 

table shows how different deep learning architectures vary in terms of number of layers, number 
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of nodes per layer, filter dimension, etc. It also discusses the total number of operations required 

in each type of network and their performance. The table is taken from [8]. 

 

 

 
Table 1: A comparison of Different Deep learning Architectures and their 
performance. 

Deep Neural Network Accelerators 

The majority of the workload in a DL workload is involved with different types of 

operations on input matrices. Convolution and fully connected layers predominantly use matrix 

multiplication operation. A matrix multiplication application involves a lot of data reuse as each 

row gets multiplied with all columns. Moreover, the row-column pair multiplication is agnostic to 

each other and can be executed in parallel. In general-purpose hardware, due to the limited 

resources and sequential execution-style, such workload experiences a performance loss as they 

cannot extract enough parallelism. Due to the prevalence of deep learning applications, it is 

essential to improve the performance of these applications. Although traditionally, use of general-

purpose GPU for DL applications is common, some special-purpose accelerator designs have been 

proposed and developed both in academia and industry. This thesis provides a brief overview of 

two industrial accelerators, Tensor processing unit version 1 (TPU v1) and Tensor processing unit 

version 2(TPU v2), to understand the design points behind these accelerators. 
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TENSOR PROCESSING UNIT V1 

TPU v1 is Google's DL accelerator for inference. TPU v1 is an off-chip accelerator, which 

a host CPU handles to offload DL workload for inference. The capability of TPU to utilize the 

reuse of data and extract parallelism for matrix multiplication helps to achieve higher performance. 

The TPU v1 uses a systolic array for the matrix multiplication operation. The matrices multiplied 

in systolic arrays are tiled into small blocks of size optimally equal to or less than that of systolic 

array size. The systolic array outputs are stored in an accumulator for reuse. The TPU v1 loads the 

data from the DRAM and host interface to be stored in the local buffer. The weight metrics are 

directly pulled from the DRAM interface. The layer-wise computation starts by loading the data 

into the systolic arrays for the purpose of convolution or dense layer computation. The output of 

the systolic array is further used by the activation block to process the outputs by an activation 

function. TPU v1 also provides pooling and normalization layer function. The local buffer acts as 

temporary storage for passing the data from one convolutional/dense layer to another one. The 

overall flow is shown in Figure 3 below which is a block diagram of TPU v1 along with the data 

flow. The Figure 3 is taken from [9]. 
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Figure 3: TPU v1 Microarchitecture details 

Systolic Array 
Systolic arrays are a 2-D mesh of many small processing elements connected to 

multiplying and accumulating operations. These processing elements pass the computed result or 

unmodified input to the adjacent processing element on each cycle [10].  This functionality of 

systolic arrays helps in utilizing more reuse as the data transfer happens only between adjacent 

processing elements [10],[11]. In the computational model for the systolic array pipeline, the 

data transfers between each PE from the top and left side of the systolic array. Thus, the output 

of the matrix multiplication is pushed down from the bottom of the systolic array over multiple 

clock cycles with one systolic row of each clock cycle. 
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    Figure 4: Matrix multiplication using Systolic array 

 Figure 4 is taken from [10]. Each PE in the systolic array computes the multiplication 

between input weight and activation and adds the result into a local accumulator. The 

accumulated results are passed down to the next PE. 

TENSOR PROCESSING UNIT VERSION 2 

Google improved their TPU v1 architecture to add more generalization into the 

architecture. TPU v2 contains a scalar unit call a core sequencer and a vector unit. In addition, 

each unit supports memories called scalar mem and vector mem. The overall architecture of TPU 

v2 is shown in figure 5.  

 

 

Figure 5: TPU v2 core block diagram (taken from [11]) 
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The scalar unit is a simple processor without advancements like branch prediction, cache 

used for efficient single-threaded execution. The scalar unit uses scalar instructions for normal 

control operations to execute the program. The instructions for the scalar unit and the data 

associated with it are stored in scalar memory. The vector unit is the heart of the TPU v2, where 

most of the DL-related workload execution happens. Figure 7 describes the vector unit for a TPU 

v2 core. Figures 6 and 7 are taken from the videoblog on TPU v2 design [18]. 

 

 

Figure 6: TPU v2 Scalar Unit block diagram 

 

 

Figure 7: TPU v2 vector unit lane block diagram 
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The vector unit consists of vector ALUs, which are embedded into multiple lanes. Each of 

these lanes contains vector memory, DMA, multiple ALU blocks, and register files divided into 

sub-lanes. The vector unit is connected with a matrix multiplication unit. The matrix multiplication 

unit is a systolic array of size 128 x 128 elements. The systolic array takes input from the register 

files of all vector lanes and provides a matrix multiplication result shared among all lanes. 

Along with the matrix multiply unit, TPU v2 core also have transpose, reduction, and 

permute (TRP) units. These functional elements are also shared among all vector lanes. These 

blocks are used for matrix transpose operation, matrix reduction operation, and matrix permutation 

operation, as their name suggests.  The scalar unit, vector unit, and matrix multiply and TRP unit 

are together called a TPU core. In TPU v2, there are two cores in each node. These nodes are 

connected using an interconnect router, enabling the TPU v2 to share data among its different 

nodes. These TPU cores in each node are also connected with high bandwidth memory per core 

for faster data access. 

The interconnect network allows each TPU to be connected in a mesh structure to enable 

data communication and breakdown of DL workload by sharing it into multiple nodes. TPU v2 

supports VLIW architecture with software-managed memory. Each instruction in TPU v2 includes 

322b format of 2 scalar instructions, four-vector instructions, and two matrix instructions. The 

overall architecture of TPU v2 as compared to TPU v1 is more generalized to accommodate the 

wide range of deep neural networks and tasks associated with them. TPU v2 also provides more 

local buffers and more accessibility and communication channel through the interconnects. This 

thesis focuses on TPU v2 core implementation.  The thesis compares two different 

implementations of vector processors, VESPA, and VIPERS, to form the foundational design. The 

details of these processors have been mentioned in the thesis. 
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VESPA and VIPERS vector processor cores 

VESPA [12] and VIPERS [13] are vector processor implementations that are used for the 

comparison to finalize basis design for TPU v2 core. These processors support a vector processing 

unit and a scalar processing unit along with a vector control pipeline. The VESPA uses MIPS 

based simple 3 stage pipeline scalar core, while the VIPERS use a non-pipelined 4 stage 

multithreaded scalar core. In addition, VESPA and VIPERS use an adapted version of the vector 

IRAM instruction set [14] for their vector cores. Both these implementations supported vector to 

scalar and scalar to vector data transfers. The overall architecture of VESPA implementation is 

described in Figures 8, 9 below. The figures are taken from [12]  

 

Figure 8: VESPA Architecture diagram 
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Figure 9: VESPA Implementation Block diagram 

 

 Here is the overview of comparison analysis: 

VIPERS 

a. VIPERS do not support vector chaining. This is because the loss of vector 

chaining potentially would hurt the performance for long vector lengths. 

b.  VIPERS implementation does not support external memory access. Instead, it 

uses an on-chip ram to store the data and program. 

c.  Each vector lane has its local memory, as expected in the implementation of 

TPU v2 core. 

d. Vipers do not use caches. 

VESPA 

a. VESPA cores are simpler than vipers in terms of design complexity. 

b. VESPA cores supported I-cache and D-cache instead of local memories. 

VESPA uses a multiplexer and demultiplexer logic with arbitration to access 

the D-cache between the scalar core and all lanes of the vector core. 
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c. VESPA core supported a DDR memory controller to access main memory. 

d. VESPA cores support vector chaining. 

With this brief analysis, the VESPA vector processor implementation was a reasonable basis for 

TPU v2 design. In order to implement over benchmark design, several modifications were carried 

out which are explained in detail in further section. 

 

FPGA Benchmarking 

 The development of novel FPGA architectures uses different types of benchmarks. These 

benchmarks are very crucial to capture the market the application market targeted by the FPGA 

architecture. A lack of these benchmarks or non-representative benchmarks does not help to 

optimize the benchmarks for targeted segments. The commonly used benchmarks for FPGA 

benchmarking mentioned in introduction section includes very small design which does not utilize 

the complex blocks within FPGA and are not representatives of state-of-the-art design use in the 

target applications. The UMass RCG HDL Benchmarks [21] represents complex design which use 

digital signal processing applications and are not targeted for open-source FPGA benchmarking. 

The TPU v2 core provided in the thesis will be a part of larger set of frameworks for benchmarking 

of FPGA for DL specific workloads. The TPU v2 core is a commercial design of DL accelerator 

used by Google [10]. Therefore, it represents the commercial application of DL specific workload.  

Verilog To Routing (VTR)  

VTR tool is an open-source tool for FPGA architecture and CAD research. The VTR design 

flow takes a verilog RTL design file and an FPGA architecture description file of target 

architecture. The tool then performs elaboration and synthesis, logic optimization and technology 

mapping, and place and route for the design on target FPGA to produce the details of design 

implementation such as frequency, wirelength, component utilization, etc. [19]   
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The VTR design flow uses Odin II for synthesis and elaboration. Some of the complex 

design constructs, such as generate statements, multidimensional arrays, and integer variables, etc., 

are not supported by this open-source academic tool. Scripts were used to modify the verilog 

construct used in the benchmark design into supported constructs to work around this limitation. 

Any additional vendor specific design elements were replaced with the ones that are compatible 

with VTR.  
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DESIGN AND VERIFICATION 

In order to create a TPU v2 benchmark design from the VESPA vector cores, 

microarchitectural updates and the addition of functional units to support some of the complex 

neural network functions were required. In this section of the thesis, the design implementation 

and microarchitecture of the benchmark TPU v2 have been explained. 

SCALAR CORE OF VESPA 

The MIPS-based scalar core of VESPA has a 3-stage pipeline architecture with data 

forwarding [12]. The processor is auto generated by SPREE RTL generator [15]. The scalar core 

can work in parallel with the vector processing unit without being stalled. The three pipeline stages 

include the fetch and decode stage, register read and execute state, and writeback state. The scalar 

core also executes memory access in execute state. Finally, the scalar core can communicate with 

the vector core through communication instructions. Due to the limited role of this core processor 

in TPU v2, the execution of VESPA's scalar core is not modified due to its limited use in DL 

applications for the implementation of the TPU v2 core. 

VECTOR CORE OF VESPA 

 The vector unit is a 7-stage pipeline unit, as shown in figure 8. The seven stages design 

includes multiple lanes to support vector operations. In TPU v2 benchmark design, the number of 

vector lanes is set to be eight to process eight operations in parallel. Each vector to be processed 

by the vector processor can have a length greater than or equal to the size of vector lanes. In such 

a case, the vector to be processed utilizes multiple clock cycles to process. The replicate stage 

takes care of such replication operations. It includes a dispatcher unit that dispatches part of the 

vector instruction that the vector core can process at a time. The maximum vector length for a 

program is defined using a parameter and is fixed throughout the program. 
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DESIGN CHANGES 

The VESPA vector processor is modified to resemble the TPU v2 core, as discussed in 

Section 2.3. The VESPA vector processor lacks functional units like the matrix multiplication unit 

and TRP unit. These are the heart of the TPU v2 core as they accelerate the matrix operations such 

as multiplication, transpose, reduce, permute, etc. The caches were not required as TPU v2 have 

simple scratchpad memories where instructions can move data into local memory. The 

programmer can address the data as the program manages data allocation within the memory by 

itself. This reduces the indeterministic nature of caches and provides simple hardware. The VESPA 

implementation of vector processor lanes and scalar processor uses the same D-cache with an 

arbiter and mux logic to prioritize requests as they reach the data cache. However, TPU v2 includes 

a local memory for processing per lane of its vector unit and the scalar unit, enabling each vector 

lane to operate separately. The TPU V2 includes two TPU v2 core connected through the 

interconnect network within a TPU v2 node. The overall VESPA implementation lacks the 

compatibility to be connected with another VESPA implementation. Google introduced a new 

custom floating-point format called "bfloat16" a less precise version of IEEE 754 single-precision 

floating-point number format [16]. The smaller size of bfloat16 reduces the overall data size while 

not a significant loss of precision for deep learning workloads [17]. The VESPA implementation 

does not support floating-point operations and bfloat16 data type.     

INSTRUCTION SET 

The vector processor is based on an instruction set called vector IRAM [14]. Table 2 

provides a list of instructions supported in the VESPA implementation of the vector processor. For 

DL-specific workloads, The benchmark design added few more instructions, which are listed in 

Table 2 as custom instructions (instruction opcodes of some existing instructions were repurposed 

to reduce the work of changing the compiler/assembler and focusing on hardware changes). In 

addition, to convert the hardware-managed cache to software-managed memory. 
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Mnemonic Operation 

Integer Arithmetic Instructions 

vabs Absolute Value 

vadd Add 

vsub Subtract 

vmullo Multiply Low 

vmulhi Multiply High 

vmod modulus 

 

Mnemonic Operation 

Logical 

vand And 

vor Or 

vxor Xor 

vnor Nor 

vsll Shift left logical 

vsrl Shift right logical 

 

 

 

Mnemonic Operation 

Integer Arithmetic Instructions 

vsra Shift Rigth Arithmetic 

vcmp Compare 

vmin Min element 

vmax Max element 

Load/store 

vfld Load flag 

vld Unit stride load 

vlds Variable stride load 

vldx Indexed Load 

vfst Flag store 

vst Unit stride store 

vsts Variable stride store 

vstx Index stride store 

Custom Instructions 

vdiv Matrix multiplication 

Mnemonic Operation 

Flag logical 

vfand Flag And 

vfor Flag Or 

vfxor Flag Xor 

vfnor Flag nor 

vfclr Flag clear 

vfset Flag set 

Control Instructions 

vmcts Move control to scalar 

vmstc Move scalar to control 

vsatvl Saturate vector length 

cfc2 Control from cop2 

Mtc2 Move from cop2 

Ctc2 Control to cop2 

Custom Instructions 

Vsts_w AXI store 
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vld_w Activation operation 

vlds_w Transpose operation 

vldx_w Reduce operation 

Vst_w Permute operation 
 

Vsts_w AXI load 

Vsqrt  Bfloat16 add 

vxlmul Bfloat16 multiply 

  

 

Table 2: Instruction set for TPU v2 benchmark. 

Most of the instructions are adapted from VIRAM as done in VESPA [19]. In addition, some 

custom instructions are added for the support required for DL work. 

MATRIX MULTIPLICATION UNIT 

Matrix multiplication is the most critical operation in DNN. It is used for both matrix 

multiplication as well as convolution. Although the support for vector multiplication of bfloat16 

data format is available, a matrix multiplication operation requires a high throughput design to 

extract the parallelism and reuse available within the data [10]. A systolic array is integrated into 

the vector processor as a matrix multiplication unit to achieve the performance goals of the matrix 

multiplication operation. The data to the matrix multiplication unit is transferred from the registers. 

The size of the systolic array is restricted to 8x8 for this academic benchmark. The matrix 

multiplication unit takes 29 cycles to produce a matrix multiplication of two 8x8 matrices. The 

result of matrix multiplication is stored in the registers over eight cycles. Each cycle stores the 

result into the register file of each lane.   

BFLOAT16 UNITS 

TPU v1 includes an accumulator block to accumulate the result of matrix multiplication, 

as shown in figure 3. The vector addition operation replaces the accumulation in TPU v2. As the 

matrix data is stored in bfloat16 format, functional units supporting bfloat16 formats are necessary 

for the benchmark. Therefore, the TPU v2 core benchmark includes add-subtract unit and 

multiplies unit supporting bfloat16 data type. Each of these units is 3 stage pipeline design. 
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REPLACEMENT OF CACHE TO LOCAL MEMORY 

The TPU v2 cores have local memories per lane used by each lane to store the results and 

load the data. Thus, each lane can optimally work in an independent way to do the operation. 

VESPA vector core uses multiplexer logic to share the D-cache accesses between the scalar core 

and each lane of the vector core. In order to resemble the TPU v2 approach, the D-cache access 

from each vector lane is replaced by a local scratchpad memory for each lane. The continuous 

address space is divided so that a sequence of 8 contiguous address spaces is divided among each 

lane.  

A DMA is designed used to load/store data from the main memory into these local 

memories. The DMA access is done through programming of control register with the instructions 

ctc2 and cfc2. The DMA takes the start address, length of transfers and source address, and the 

destination address to store the data as required. The DMA polls the control registers present in 

the vector control pipeline. The transfer is initiated by first loading the transfer-related information 

into the DMA and then setting the control register with value 1. The DMA data transfer writes 

value one into another control register after the completion of data transfer. Software polling is 

necessary to this control register to ensure the program data is available in local memories. An 

interrupt-based scheme can be developed in the future. The local memories used in each lane are 

two-port memories where one port is accessible by the DMA, and the other port is accessible by 

the vector unit.  Figure 10 explains the data flow of local memory. There is one local memory per 

vector lane. The vector control registers control the DMA access. 
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Figure 10: The block diagram for TPU v2 core benchmark memory system for vector unit. 

TRANSPOSE REDUCE PERMUTE (TRP) UNIT 

TRP unit helps to transpose, reduce or permute the matrix. This unit can load an 8x8 matrix 

from registers and provide the transpose of the matrix. The design uses a local 8x8 flop structure 

to store the matrix and does the transformation in 1 cycle. The output is stored into the register in 

8 cycles with one write operation in each lane in each cycle. The reduce operation reduces all the 

elements of the matrix. The reduction operation can be selected using mode signals. The design 

supports three reduction operations: the addition of all elements, largest element reduction, and 

least element reduction. The reduction operation uses a tree-based structure to generate a single 

output which is stored in all lanes.  The permute operation performs matrix permutations in a way 

that it can shuffle the matrix rows and columns. The permute operation loads an 8x8 matrix and 

accepts a transform vector for rows or columns. The transform vector provides the details for 

shuffling of rows or columns. The output of permute unit is a shuffled matrix. 
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CORE TO CORE INTERFACE 

The TPU v2 core has the functionality to communicate with other TPU v2 core. An AXI 

master-slave interface is added to the TPU v2 core. The AXI master initiates a transfer when the 

benchmark design issues an instruction for AXI transfer. The AXI slave interface is connected to 

the vector memory using a multiplexer structure that shares the other port with DMA logic. The 

overall design is present in figure 11. The AXI master-slave interface enables two TPU v2 cores 

to be connected. The AXI interface initiates transactions through instruction at vector core. The 

slave interface shares the access to the local memory with DMA. 

 

 

Figure 11: AXI interface for TPU v2 core benchmark 

ACTIVATION UNIT 

Most of the Deep learning workloads require an activation function after the convolution 

layer and dense layers. The TPU v1 used activation units to carry out the activation function of 

Neural Networks. The TPU v2 core has special execution units in the vector processor to carry out 

activation operations on data read from register. The benchmark design adds another functional 

unit called the activation unit to support activation, carrying out the activation function. The 
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activation unit in the benchmark uses ReLU activation function. The unit performs a check sign 

bit of input activation. For the numbers with negative sign, the output of activation unit is set to 

value zero. For all positive numbers, the output of activation unit is the activation itself.  

 

OVERALL MICROARCHITECTURE 

The overall design for TPU v2 after the modifications mentioned earlier is shown in Figure 

12 below.  

 

Figure 12: The overall microarchitecture of TPU v2 benchmark design 

FILE STRUCTURE AND CODE INFORMATION 

Verilog code that models a TPU v2 like processor is created in this work. The verilog code 

is open source and available on github: https://github.com/sangramkate/tpu_v2. The overall source 

code is present in folder tpu. The tpu folder contains 5 major directories: apps, verif, 

design, doc ,vtr.  
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The apps directory contains the programs to be run on TPU v2. It includes a Makefile 

to create new programs. It requires a reference to the compiler-vector which is a modified 

MIPS compiler. The compiler is available at: https://www.eecg.utoronto.ca/VESPA/. Along with 

the C program, an VIRAM assembler function is required for instructions related to vector co-

processor. The assembler function and the main c program gets compiled by the Makefile. 

The design folder contains the source code for the design. All vector processor code is 

stored in vector folder. The scalar core is stored in scalar folder. Some of the logic such as 

adder subtractor unit, fifo, etc. were inserted to replace the existing ones. These can be found in 

local folder. The top folder contains the top-level module is in file de.v. which instantiates 

processor.v which includes the scalar core as well as the vector core. The top level of scalar 

core is defined in system.v under scalar folder  and the top level of vector core is defined in  

vpu.v under the vector folder. The bfloat folder contains the additional logic for bfloat16 

adder, subtractor, multiplier. It also includes the transpose, reduction and permutation operation. 

The design for systolic array is present in the top directory.  

The doc directory contains the update log and setup commands for the repository. The 

verif folder contains the test bench de3_test_bench.v file. The initialization files include 

instr.dat and data.dat which contains instructions and data to be run on the TPU v2 

benchmark. These files are stored in the verif directory. The verif directory includes a 

Makefile to compile and simulate the program. This Makefile is accessed by the top level 

Makefile present at the root of repository   

The Vtr directory contains the scripts that are used to convert the complex Verilog 

contructs into the Vtr acceptable constructs. The directory contains the scripts for scalar processor 

at the top. It also contains a folder called vector scripts which contains the scripts for vector 

processor. As the defines and parameters are propagated in vector processor from top level 

hierarchy to all leaf level modules, the toplevel script vpu.py runs all scripts to generate the 

design. There are separate Makefiles to generate both scalar and vector processor. 
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Figure 13: Overall execution and simulation flow for TPU v2. 

VERIFICATION  

 To verify the modified design elements, a C program is used which performs the 

matrix multiplication operation of two 8x8 matrices. bfloat16 add and multiply operations are also 

performed using a similar program that loads 16 bfloat16 values and performs bfloat16 add, 

subtract and multiply for these operations and stores the result back into the main memory. The 

VESPA core uses a modified MIPS compiler which also supports the extended VIRAM ISA that 

is used in vector processor. The vector code is written in a program.S file which is added to the 

C program as a function. The required data for the processing of vector operations is passed as a 

function input to these codes. The vector code is an assembly code which directly use the 

instructions referred in table 2. The main C program is compiled into a MIPS binary. The VIRAM 

instructions for vector processor are embedded into this binary file.  

The compiled data and instruction files are copied to the verif directory where the 

simulation runs. The Verification flow requires use of ModelSim. The program stores this data 

into the main memory. The instructions are stored into the local memory of scalar core. The 
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VESPA implementation supports DDR2 memory access as it uses an altera memory controller 

logic. This memory controller is used to read the data into the vector processor. The overall flow 

of program execution is shown in the figure below.  

 

 

Figure 14: A simulation of matrix multiplication program 
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VTR ANALYSIS AND RESULTS 

This section of the thesis explains the experiments carried out with the design of the TPU v2 core, 

to facilitate its use as a benchmark. As TPU v2 is a deep learning application-specific design, it is 

a benchmark for FPGA architecture evaluation for deep learning tasks. The analysis for the 

benchmark is done using the Verilog-to-Routing (VTR) tool, which is one of the most widely used 

FPGA architecture analysis frameworks [19]. The utilization of block RAMs (BRAM) and DSP 

slices of a specific FPGA architecture impact the performance of workload design. The following 

section analyzes the impact of different FPGA architectures on the performance of the TPU v2 

benchmark.   

EXPERIMENTAL SETUP 

The thesis work uses VTR 8.0 for the experiments which is the latest version. First, an SDC 

(Synopsys Design Constraints) file is provided for VTR flow. The SDC file declares all IO-to-

register paths as false paths for timing analysis, thereby keeping only register-to-register paths. 

Then, VTR flow is run to optimize the clock frequency for thedesign. The auto-layout feature is 

used for all experiments and a maximum of 150 routing optimization iterations with a channel 

width set to 300. Finally, an average from 3 runs is taken to demonstrate the final result. 

A custom FPGA architecture description file is used for the experiments, which is modeled 

using COFFE [20] with a 22 nm technology node. This custom architecture file uses columns of 

logic blocks, DSPs, and block RAMs (BRAM). The DSP slices and BRAMs are interleaved 

between the columns of logic blocks. The density of these blocks is varied for different sets of 
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architectures. The architecture uses unidirectional wire segments of lengths 4 and 16. The block 

pins are accessible through a wire length of 4 only. Furthermore, the switches appear on every 4th 

column.  

RESULTS 

Tables 3, 4, and 5 show the main results of VTR analysis on TPU v2 design. First, the 

result shows the design of TPU v2 with netlist primitives of 25k. Next, Table 3 discusses the 

utilization of logic within an FPGA for the benchmark. Finally, the data in Table 3,4, and 5 helps 

us to understand the design complexity involved. 

 
 

Parameters Value 

Netlist primitives 25655 

Logic depth 8 

Used IOs 489 

Used LBs 702 

Used DSPs 68 

 

Parameter Value 

Used BRAMs 49 

 Single bit adders 2604 

Flip-flops 5272 

Max fanout 5753 

LUTs 9192 

Table 3: VTR Flow results for TPU-v2 core. 

 

 
Max Frequency(in MHz) Routed wire length(in 

length 1 wires) 
Grid Size 

100.9677761 104973 70x70 

Table 4: VTR flow results for TPU-v2 core. 
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Parameters Values 

VTR flow elapsed time 1865.04 

Odin time 121.38 

ABC time 184.22 

Pack time 49.81 

Place time 41.23 

Route time 6.7 

Peak Memory usage 1231832 

Table 5: VTR Flow runtime analysis for experiments on TPU-v2 

Table 5 provides us VTR Flow related analysis useful for CAD research purposes. The 

experiments were carried over Intel Xeon CPU E5-2430 running at 2.5 GHz with 64 GB of 

Memory. The table provides the details of peak memory usage for using VTR flow on the TPU v2 

benchmark with the design size and complexities mentioned in Tables 3 and 4. As for the baseline 

run, the achieved frequency of operation was 100 MHz with a grid size of 70x70. 

Architecture Exploration 

In this section of work, VTR flow is run on TPU v2 benchmark to analyze the impact of 

different types of FPGA architectures on the performance of benchmark design. The experiments 

use several different types of architecture configurations, as shown in Figure 12. These 

architectures are different from each other in terms of the placement of DSP slices and BRAMs 

and their densities. For example, in Figure 12, Each architecture style depicts three different 

versions ranging from lower densities of DSP slice and BRAM at the top to denser architectures 

in the following rows. 
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Figure 15: Different FPGA architectures for TPU v2 experiments 

The analysis of these experiments is summarized in Table 6,7,8 and 9. Each architecture style 

impacts the achieved frequency, total wire length, and grid size. Therefore, four different 

comparisons of the design- architecture relation are provided in Tables 6,7,8 and 9. experiment 1 

shows the tradeoffs between distributed, coupled, and clustered architecture with respect to their 

baseline. Experiment 2,3 further evaluates the impact of densities of BRAMs and DSP slices on 

benchmark performance for clustered and coupled architectures. Finally, experiment 4 compares 

architectures with higher densities of DSP slices vs. the architecture having higher densities of 

BRAMs.   

 

Experiment 1 
Frequency 

(MHz) 
Wirelength* Grid Size Avg wire segments per 

net* 

1A 99.87162691 107549.3333 70x70 8.47681 

2A 106.8608573 105547.6667 70x70 8.42256 

3A 106.8963744 96137 70x70 8.06376 

Table 6: VTR Flow result comparisons for TPU-v2  
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Experiment 2 
Frequency 

(MHz) 
Wirelength* Grid Size Avg wire segments per 

net* 

3A 106.8963744 96137 70x70 8.06376 

3B 106.517103 99169 56x56 8.12544 

3C 99.07488318 98556.33333 38x38 8.3923 

Table 7: VTR Flow result comparisons for TPU-v2 

Experiment 3 
Frequency 

(MHz) 
Wirelength* Grid Size Avg wire segments per 

net* 

4A) 99.06077481 102137 39x39 8.74357 

4B) 100.7686076 103311.3333 39x39 8.84129 

4C) 96.3184402 103482.3333 44x44 8.72768 

Table 8: VTR Flow result comparisons for TPU-v2 

From experiment 1, It is can be observed that coupled and clustered FPGA architectures for DSP 

slices and BRAMs provide better performance for the TPU v2 core benchmark than that of 

distributed DSP slices BRAM architecture. The evaluation of the coupled and clustered 

architectures for higher densities is done in experiment 2. As the densities of these modules 

increase, there is a decrease in overall grid size. However, due to the smaller number of logic 

blocks between the clustered DSP slices and BRAMS, an overall gain in wirelength and average 

wire segment per net is observed, as shown in table 7. This increased wire length amounts to 

decreased frequency of operation. In the last experiment, the performance of the TPU v2 

benchmark for uneven distribution of DSP slices and BRAMs is compared. The VTR flow utilized 

68 DSP slices and 49 BRAM for the TPU v2 run, as shown in table 3. It is observed that an 

architecture that has fewer DSP slices suffers a performance loss compared to other architectures. 

This set of experiments provides good details about the dependency of benchmark design 

performance on different architectures. 
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*The unit of wirelength and avg wirelength per net are length 1 wire which is size of 1 logic block 

in an FPGA. 

 

 

Figure 16: VTR flow analysis on TPU v2 Frequency for different architectures 

  

Figure 17: Frequency and wirelength analysis using VTR Flow for different DSP slice and 
BRAM densities  
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Figure 18: Frequency and avg wirelength per net analysis using VTR flow for different DSP 
slice and BRAM densities. 
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CONCLUSION 

In this thesis, an academic TPU v2 deep learning benchmark design for FPGA architecture 

analysis is presented. This design is an academic version of the core logic of Google's tensor 

processing unit version 2.  The microarchitectural details of the benchmark TPU v2 core and the 

result of running this design using VTR flow are presented. The thesis further demonstrates the 

TPU v2 benchmark as a reference for architecture analysis through the different set of the 

experiment using target FPGA architectures different from each other in terms of the densities of 

BRAMs and DSP slices and their distribution within the FPGA. This benchmark design can further 

help to understand the target FPGA architectures for DL-oriented workloads. 
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