
Self-Monitored Adaptive Cache Warm-Up for Microprocessor Simulation

Yue Luo Lizy K. John
University of Texas at Austin, USA

{luo, ljohn}@ece.utexas.edu

Lieven Eeckhout
Ghent University, Belgium

leeckhou@elis.ugent.be

Abstract

Simulation is the most important tool for computer

architects to evaluate the performance of new
computer designs. However, detailed simulation is
extremely time consuming. Sampling is one of the
techniques that effectively reduce simulation time. In
order to achieve accurate sampling results,
microarchitectural structure must be adequately
warmed up before each measurement.

In this paper, a new technique for warming up
microprocessor caches is proposed. The simulator
monitors the warm-up process of the caches and
decides when the caches are warmed up based on
simple heuristics. In our experiments the Self-
Monitored Adaptive (SMA) warm-up technique on
average exhibits only 0.2% warm-up error in CPI.
SMA achieves smaller warm-up error with only
1/2~1/3 of the warm-up length of previous methods. In
addition, it is adaptive to the cache configuration
simulated. For simulating small caches, the SMA
technique can reduce the warm-up overhead by an
order of magnitude compared to previous techniques.
Finally, SMA gives the user some indicator of warm-up
error at the end of the cycle-accurate simulation that
helps the user to gauge the accuracy of the warm-up.

1. Introduction

Simulation of standard benchmarks has been the
most popular method for computer architects to study
design tradeoffs. Modern benchmarks are no longer
small kernels or synthesized toy programs. Instead,
they are very close to real world programs and often
take a long time to execute. Moreover, modern
superscalar microprocessors are becoming increasingly
complex; and so are the simulators modeling the
processors. As a result, running benchmarks on
detailed microarchitecture simulation models can take
prohibitively large simulation times.

To reduce simulation time, several techniques have
been proposed, among which sampling and reduced

input sets are the most commonly used. In this paper,
we focus on sampling. In a sampled simulation the
original full instruction stream is divided into non-
overlapping chunks of continuous instructions. Each
chunk is a basic simulation unit, or a sampling unit.
The sampling unit size is the number of instructions in
each chunk. The pre-sample of a sampling unit refers
to the instructions before this sampling unit up to the
end of the previous sampling unit. A sample consists
of the selected chunks that are actually simulated and
measured. The number of sampling units in a sample
is the sample size. Recently, Wunderlich et al. applied
sampling theory to microarchitecture simulation [2].
Under the assumption of no measuring error, they
showed that CPI can be estimated to within an error of
3% with 99.7% confidence by measuring fewer than 50
million instructions per benchmark. This accounts for
only 0.029% of the average dynamic instructions
executed for a benchmark program. It appears that
sampling has effectively solved the problem of long
simulation time.

However, the above results are obtained under the
assumption that the number of cycles or CPI for each
sampling unit can be accurately measured. The CPI of
each sampling unit depends not only on the
instructions executed in the unit, but also on the initial
state of all microarchitecture structures at the
beginning of this unit. The initial state is, in turn, the
result of the execution of all the instructions before the
sampling unit. Executing a limited number of
instructions before a sampling unit to get
(approximately) correct initial state is known as
warming up the microarchitecture. The number of
instructions used for warm-up before a sampling unit is
its warm-up length. For small structures like the ROB,
the reservation station, and the register file, thousands
of instructions are enough to put them into correct
state. However, some structures in the microprocessor
like the branch target buffer, and the caches can hold
thousands to millions of bytes. It is difficult to ensure
that they are in the correct initial state before every
sampling unit in the simulation. If the initial state is
not correct, the error can be large. For example,

Haskins et al reported that in their experiment, ignoring
warm-up could result in an error as high as 15% in
simulated CPI [12]. Thus adequate warm-up is critical
to the accuracy of sampled simulation. Warm-up does
not only affect accuracy but also incurs overhead and
increases simulation time. When simulating a
processor with large caches, a large number of
instructions may be needed for adequate warm-up,
which prolongs the simulation. Therefore, warm-up
issue is very important in sampled simulation. A good
warm-up scheme should achieve a desired level of
accuracy while devoting as few instructions as possible
for warm-up.

We believe that warm-up is still an important issue
in sampled microprocessor simulation and deserves
active research. But there is an opinion that warm-up
is largely solved and little reduction in simulation time
can be accomplished with better warm-up techniques.
For example, MRRL is claimed to have achieved 90%
of the maximum possible simulation speed [12].
However, careful analysis of the experiment reveals
functional simulation as the bottleneck because every
benchmark is simulated functionally from beginning to
end. In our simulation environment, the relative speed
of functional simulation (no microarchitecture
simulation at all), functional warm-up (only cache and
branch predictor simulation), and cycle-accurate
simulation, is 1:1/2.8:1/161. Fifty 1 million-instruction
sampling units are used in [12]. Suppose that a
benchmark is 100 billion instructions long and on
average each sampling unit needs 30 million
instructions for warm-up2. Then the percentages of
time spent in functional simulation, functional warm-
up and cycle simulation are 95.17%, 4.06%, and
0.77%. It is obvious that the functional simulation is
the bottleneck, so even getting rid of warm-up
overhead altogether will provide little benefit.
However, if the user saves the checkpoints or the traces
for each sampling unit, she no longer needs to run the
benchmark from beginning to end and is able to
simulate for each sampling unit directly. In this case,
removing the warm-up overhead will give 6.25 times
speedup in simulation! Therefore, better warm-up
technique is still highly desired. (Reducing the storage
cost of checkpoints/traces is among our future
research.)

In this paper, we study the warm-up process of the
processor caches and propose a self-monitored
adaptive warm-up scheme for simulation. The

1 The relative speed numbers are highly dependent on the simulator
and the configuration being simulated.

2 No warm up length number is given in [12]. This number is based
on our experiment with MRRL. See Section 4.2.

simulator monitors the warm-up process of the caches
and decides when the caches are warmed up based on a
simple heuristic. Unlike previous research, this
method is both adaptive to the characteristics of the
benchmark and the cache configuration being
simulated. Overall, it achieves very good accuracy with
lower warm-up overhead than previously proposed
techniques.

In the next section, we survey the existing warm-up
techniques and discuss the strength and weakness of
each technique. To overcome these weaknesses, we
present our new self-monitored adaptive cache warm-
up scheme in Section 3. Our proposed technique is
evaluated experimentally in Section 4. Finally, we
conclude and discuss future research in Section 5.

2. Related work

Obviously the most accurate way to warm up the
caches is to do cache simulation throughout the
benchmark execution. This is how the SMARTS
scheme [2] does the warm-up. The simulator switches
between functional warm-up and cycle-accurate
simulation. During functional warm-up, the simulator
executes the program without simulating the pipeline
stages, but the caches and the branch predictors are
simulated. During cycle simulation, the simulator does
detailed cycle accurate simulation. Therefore, the only
error in warm-up is introduced by not simulating the
effect of out-of-order execution and wrong path
execution on the caches during functional warm-up. It
has been shown that this error is small [2] [3].
Although this warm-up scheme is by far the most
accurate, it is still not satisfactory. First, always
simulating caches can be a waste of resource.
According to sampling theory, for a specific accuracy,
the sample size should be determined by the variability
in the population. If the benchmark does a lot of
repetition, only a tiny fraction of the instruction stream
is needed. However, the scheme requires that caches
be simulated for every instruction, which is inefficient.
Secondly, always warming up the cache makes
distributed simulation hard. For sampling methods
such as SimPoint [14] and Variance SimPoint [15],
where a small number of relatively large sampling
units are taken, each sampling unit can be simulated on
different machines in parallel to greatly improve the
overall simulation speed. However, constantly
warming up caches as in SMARTS make it difficult to
distribute the simulation on multiple machines.

Another simple warm-up scheme is to devote a
fixed number of instructions to warm up the cache.
This is called “PRIME” scheme [6] following Crowley
et. al.’s terminology [4]. At an extreme, zero

instructions are used to warm up the cache before
cycle-simulating a sampling unit. Then two types of
assumption can be made about the initial state of the
cache. If all cache lines are assumed to be invalid, it is
called “COLD” scheme, which, obviously,
overestimates the number of cache misses. If, on the
other hand, the cache state is assumed to be the same
as the state at the end of last sampling unit, the scheme
is called “STITCH” [5]. The efficacy of these
assumptions depends on workload, cache organization,
and choice of sampling parameters. The user is often
left with a result whose error the user has no idea
unless he/she does the full simulation. An additional
problem with prime is the lack of guideline for the user
to choose the number of instructions to warm up the
cache.

The problem of cache warm-up is that the state of
the cache is unknown at the beginning of each
observation. In other words, since portions of the trace
are unexamined between observations, it is unknown
whether the first reference to each cache block will be
a hit or a miss. Such references are referred to as cold-
start references. Laha et al [7] proposed not counting
these cold-start references when calculating cache
misses. This effectively assumes that the miss rate for
the cold-start references is equivalent to the miss rate
for all other references. Wood et al [8] show that this
assumption is usually not true. The miss rate for the
cold-start references is higher than the overall miss
rate. Employing a renewal theoretical model, Wood et
al propose a method to estimate the miss rate for the
cold-start references by observing the average live and
dead time for each cache line. These two methods can
be used to calculate the cache miss rate from sampled
trace, but not directly applicable to microarchitectural
simulation to get CPI.

Haskins and Skadron have proposed two techniques
to determine the warm-up length for a sampling unit.
The Minimal Subset Evaluation (MSE) [9] technique
uses formulas derived from combinatorics and
probability theory to calculate, for some user-chosen
probability p, the number of memory references prior
to each sampling unit that must be modeled in order to
achieve accurate cache state. This work only handles
warm-up for the first-level data and instruction caches.
In their second technique, they measure the Memory
Reference Reuse Latency (MRRL) [12], which refers
to the elapsed time measured in number of instructions
between a reference to some memory address and the
next reference to the same address. Instructions in a
sampling unit and its pre-sample are profiled to get the
distribution of MRRL. Given a p-value (p%) the
warm-up length is the p-percentile of the distribution.
Because most of the instructions used to calculate the
distribution of MRRL are from the pre-sample, it is

hard to guarantee that the instructions in the sampling
unit also follow the distribution.

To avoid this problem, Eeckhout et al proposed the
Boundary Line Reuse Latency (BLRL3) method [10],
in which every memory reference in a sampling unit is
directly examined instead of relying on aggregated
distribution. For a reference r to address a generated
by instruction I in the sampling unit, they search for a
reference r’ to the same address a in the pre-sample. If
reference r’ is found and it is generated by instruction
I’ , then warming up from I’ can guarantee that we
know whether r is a hit or miss when LRU replacement
policy is used. Given a p-value like 90%, the
instructions in the pre-sample of the sampling unit are
scanned. The warm-up length for the sampling unit is
chosen such that 90% of the unique references in the
sampling unit whose addresses are referenced in the
pre-sample are covered by the warm-up instructions.

Neither MRRL nor BLRL takes the cache
organization into consideration. The cache warm-up
process depends on both the workload and the cache
organization. The methods discussed so far only
consider the workload. A small direct mapped cache is
intuitively easier to warm up than a large highly
associative one, but these methods calls for the same
warm-up length given the same p-value. Therefore, the
cache-independent methods may be overkill depending
on the cache being simulated.

3. Self-monitored adaptive warm-up

As discussed in the previous section, none of the
existing warm-up technique is satisfactory. One major
problem with MRRL and BLRL is that they do not
take cache configuration into account. Different
caches may require different warm-up length even for
the same benchmark. Therefore, using any fixed p-
value in the techniques may result in under-warm-up or
over-warm-up for different caches. When we carefully
examine the previous techniques, we see that none of
them are really warm-up method per se. The warm-up
method itself is simulating instructions before each
sampling units. All the methods just help the user to
decide when the warm-up is enough, so why not
monitor the warm-up process in the simulator to decide
whether the warm-up is enough? This is exactly the
rationale behind the self-monitored adaptive (SMA)
warm-up technique.

In SMA warm-up, as in the previous techniques, the
simulator does functional warm-up before switching to

3 The method was not given an official name in [10]. It is called
“Boundary Line Reuse Latency” because it is equivalent to profiling
the memory reuses that cross the boundary line between a sampling
unit and its pre-sample.

detailed cycle accurate simulation. During the
functional warm-up, the caches are accessed but no
pipeline stages are simulated. The warm-up process of
the cache is monitored. The simulator switches to
cycle simulation as soon as the cache is deemed
“warmed up”. Therefore, the warm-up length is not
fixed but adaptive. Unlike previous approaches, this
technique implicitly considers both the workload
characteristics and the cache organization. Fewer
instructions will be used for warming up a small direct-
mapped cache than for a large highly associative one.

To monitor the cache warm-up process, all the
cache blocks are initialized to the cold-start state
before the functional warm-up. The address/tag in a
cold-start block is unknown because it depends on the
previous instructions, which were not simulated.
When a cache access is initiated, the set index to the
cache can be calculated. If the memory address is not
found in this set and one or more cache block in this
set is in cold-start state, then we call the cache access a
cold-start access. It is not known whether a cold-start
access will result in a cache miss or a hit. When data is
brought to a cold-start state cache block, the block
changes to the “valid” state. Once a cache block leaves
the cold-start state, it never goes back to this state
again. We call any state other than the cold-start state
a known state.

Two aspects of the warm-up process are monitored.
Firstly, the simulator keeps track of the percentage of
the cache blocks in cold-start state. This number
monotonously decreases during warm-up. If no cache
block is in cold-start state, the cache is completely
warmed up. We can guarantee that the outcome of
every future reference is known. Secondly, the
simulator monitors the number of cold-start accesses
during an interval. When the cache is large, or the
working set of the program is small, it may take too
long to completely warm up the cache. In this case, the
cache is deemed warmed up when the number of cold-
start accesses is below a user-defined threshold. Unlike
a completely warmed up cache, there is no guarantee
that all future reference will access blocks in known
state. However, the possibility of cold-start accesses is
low. The detailed information on choice of
parameters for the interval size and threshold is given
in the next section. Monitoring the warm-up process is
a very low overhead operation, it only increments or
decrements a couple of counters at a cold-start cache
access. There is no time overhead for accessing cache
blocks in known state. The number of cold-start
accesses usually decreases quickly.

Another problem with the previous methods is that
the user generally does not know how accurate the
warm-up was after the simulation. She has to rely on
previously published validated results. However, the

user’s configuration may not be the same as in the
published paper. SMA can give the user some
indication of the accuracy of the warm-up after the
simulation. After switching to cycle accurate
simulation, the simulator continues to count the
number of cold-start accesses. In this way, after the
simulation the user knows how much of all the cache
misses are due to cold-start accesses. In the
experiment we count a cold-start access as a cache
miss. So the number of cold-start accesses is usually
the upper bound of the overestimation of cache misses.
For example, if during cycle accurate simulation of 1
million instructions the user only sees 20 cold-start
cache references, then she knows that the
overestimation of cache misses is very unlikely to go
above 20 and the CPI result should be fairly accurate.

Table 1. Benchmarks, their data set and dynamic

instruction count. The data set name is appended to the
benchmark name

Benchmark # of
Instructions

(million)
gcc-166 46, 918
bzip2-source 108,878
crafty 191,883
eon-cook 80,614
gap 269,036
gzip-graphic 103,706
mcf 61,867
twolf 346,485
vortex-1 118,977
vpr-route 84,069

Table 2. Processor configuration
Parameter 8-way (baseline)

Machine Width 8
RUU/LSQ size 128/64

Memory System
32KB 2-way L1 I & D, 2
ports,
Unified 1M 4-way L2

ITLB / DTLB
4-way 128 entries
4-way 256 entries
200 cycle miss penalty

L1/L2/Memory
Latency

1/12/100 cycles

Functional Units

4 I-ALU
2 I-MUL/DIV
2 FP-ALU
1 FP-MUL/DIV

Branch Predictor
Combined 2K tables
7 cycle misprediction penalty
1 prediction/cycle

4. Experiments and results

Ten benchmarks from SPECint 2000, listed in Table
1, are used in our experiment. The programs,
downloaded from the SimpleScalar web site [16], are
compiled for the Alpha ISA. All the experiments are
done on our modified SimpleScalar v3.0 [1]. Table 2
shows the main processor configuration used in our
experiment. This configuration is adapted from the
SMARTS paper [2].

4.1. Variability in warm-up process

Much research has been done on devising and
comparing warm-up techniques, but few of the projects
shed light on the warm-up process itself. We have
done experiments to study how the cache warm-up
process proceeds. In this section, we only present one
important issue in cache warm-up, the variability in the
warm-up length. The effectiveness of the new warm-
up technique depends on the variability. If a constant
warm-up length is good for all situations, then the
PRIME method with fixed warm-up length will be the
best. However, if the warm-up length changes widely,
then a good warm-up technique needs to adapt to all
the factors that affect the warm-up process.

Each benchmark execution is divided into segments
of 100 million instructions. We study the cache warm-
up process of each segment, so the simulator sets all
cache blocks to cold-start state at the beginning of each
segment. We track the warm-up process in each
segment. For L1 data cache, we record, for each
segment, the warm-up length needed to put every
cache block in known state. Table 3 lists the average
and the standard deviation of warm-up length. The L2
cache may not completely warm up at the end of 100
million instruction segments, so we record the warm-
up length needed to warm up 50% of the cache blocks
for each segment. The statistics for the L2 cache
warm-up length is shown in Table 4. These warm-up
lengths are not the warm-up length required in
simulation. Nevertheless they reflect the large
variability in the warm-up process. As we can see, the
warm-up length is different for different benchmarks.
It is also widely different within one benchmark. The
standard deviation of the warm-up length of different
segments is as large as the mean in many cases.
Therefore, devoting fixed number of instructions to
warm-up as in PRIME method is not good. Comparing
Table 3 and Table 4 we also see that the large L2 cache
needs much longer warm-up than the small L1 cache.
Therefore, it is important for a good warm-up method
to also take into consideration of the cache
configuration. MRRL and BLRL both adapt to the

different segment in a benchmark but they cannot
adapt to the cache configuration.

Table 3. Warm-up length for warming up all cache
blocks in L1 data cache (in 100,000 instructions).

Benchmark Average Standard
Deviation

Max Min

bzip2-source 17.80 16.82 184 1
gcc-166 9.98 15.92 145 1
crafty 110.61 51.59 439 21
eon-cook 27.87 14.36 106 7
gap 8.08 10.28 167 1
gzip-graphic 4.62 2.88 14 1
mcf 1.54 4.02 45 1
twolf 2.82 15.04 687 2
vortex-1 14.46 15.01 141 1
vpr-route 3.59 3.94 66 1

Table 4. Warm-up length for warming up 50% cache

blocks in L2 cache (in 100,000 instructions).
Benchmark Average Standard

Deviation
Max Min

bzip2-source 177.32 233.17 999 1
gcc-166 546.30 331.57 999 1
crafty 303.68 165.11 986 28
eon-cook 155.47 272.07 998 2
gap 136.75 62.20 788 3
gzip-graphic 837.82 245.56 999 5
mcf 15.41 73.19 810 1
twolf 34.76 22.38 920 8
vortex-1 208.94 84.66 874 5
vpr-route 52.69 35.47 232 2

4.2 Comparison with MRRL and BLRL

In this section we compare SMA with the two most
recently proposed warm-up techniques, MRRL and
BLRL. We compare both the warm-up length and the
accuracy in CPI. In the experiment, we choose a
sampling unit size of 1 million instructions. This
sampling unit size was used in MRRL paper [12], and
Variance SimPoint [15]. In this section, each
benchmark execution is divided into segments of 200
million instructions. We use 200 million instruction
segment size instead of 100 million in the previous
section to give larger gap between sampling units for
more accurate profiling in MRRL and BLRL. One
sampling unit is chosen from each segment.

In SMA the sampling units are not previously
determined but rather depend on the cache warm-up
process. Once the cache is deemed warmed up
enough, the simulator executes 4,000 instructions in
cycle accurate mode to warm up the pipeline as
suggested in [2], and then the CPI of 1 million
instruction sampling unit is measured. As discussed in

the above section, the L2 cache may not be completely
warmed up with reasonable number of instructions so
we cannot use complete warm-up as the only criterion
for the caches. Therefore, we choose the following
simple heuristic to judge if the cache is warmed up. At
the end of each interval, we calculate the average
number of cold-start accesses for the last N intervals.
If the average number of cold-start references falls
below a threshold T, we assume that the cache is
warmed up enough and end the functional warm-up.
Because this method requires warm-up of at least N
intervals, to take advantage of segments that reach
complete warm-up quickly, we also monitor the
number of cache blocks in the cold-start state in the
cache. The functional warm-up also ends as soon as
the cold-start state blocks drop to zero. For L1 data
cache, we use N=20, T=10. For L1 instruction cache,
we use N=10, T=1. For L2 cache, we use N=20, T=15.

For MRRL and BLRL the sampling units are
chosen to be the same as those in SMA. 4,000
instructions are also simulated in the cycle-accurate
mode before each sampling units to warm up the
pipeline. The profiler for MRRL was downloaded
from its author’s website [18].

Although not implemented in the current simulator,
we hope to further improve simulation speed by
distributed simulation. When sampling units are
distributed to different machines, the end state of one
sampling unit cannot be used as the beginning state of
another sampling unit. Therefore, in our experiment
caches are emptied before warming up each sampling
unit.

The final error in CPI in sampled simulation comes
from two sources: the sampling error per se and the
warm-up error. To fairly compare different warm-up
techniques, only the warm-up error should be
measured, so we additionally run a simulation with full
cache warm-up. In this simulation the caches are
always simulated between every sampling units as in

SMARTS [2]. The sampling units and the cycle-
accurate warm-up are the same in all of our
simulations, so the difference between the CPI of a
warm-up technique and the CPI of full cache warm-up
is the warm-up error.

Table 5 compares SMA with MRRL and BLRL.
The heuristic in SMA relies on the warm-up history to
predict whether the cache is warmed up enough in the
next sampling unit, so SMA may mispredict and end
functional warm-up prematurely. In Table 5 the
average error is only about 0.2%, so SMA is very
accurate and rarely mispredicts.

For MRRL, we choose the p-value to be 99.9%,
which is the default value suggested in [12]. For
BLRL, we use the p-value of 90%. Both methods are
also accurate, exhibiting an average error of 0.4% and
0.3%. However, SMA clearly shows the overall
advantage. The SMA technique requires only 1/3 of the
warm-up length of MRRL or 1/2 of the warm-up
length of BLRL yet it achieves an error that is smaller
than the other two techniques.

SMA is better in both warm-up length and
accuracy, so changing the p-value for all benchmarks
will not affect the overall conclusion. Using different
p-values for different benchmarks may improve the
overall result of MRRL and BLRL, but asking the user
to fine tune the p-value for each benchmark and
different processor configuration is not practical.

4.3. Adaptivity to cache configuration

Unlike previous methods, SMA adapts to the cache
configuration being simulated. In the last section, we
show how SMA performs with a cache size that is
common to workstations. To evaluate its adaptivity, in
this section we simulate a small cache configuration
that is typical in an embedded processor. Table 6
shows the cache configuration used in our experiment,

Table 5. Comparison of SMA with MRRL and BLRL
Avg warm up length per sampling unit

(1000 instructions)
Error in CPI Benchmark # of

sampling
units SMA MRRL BLRL SMA MRRL BLRL

bzip2-source 545 8,710 100,227 78,577 0.1440% 0.0124% 0.0546%
gcc-166 235 13,221 7,064 12,369 0.1860% 0.9730% 0.4667%
crafty 960 5,337 3,688 14,868 1.0300% 1.5700% 1.0374%
eon-cook 403 14,367 6,667 3,191 0.0419% 0.2974% 0.2805%
gap 1346 8,861 11,629 12,094 0.0434% 0.9620% 0.1123%
gzip-graphic 519 9,315 7,945 5,227 0.5110% 0.1710% 0.0865%
mcf 310 2,706 34,739 7,611 0.0039% 0.0177% 0.0254%
twolf 1733 5,970 15,308 5,420 0.2070% 0.0207% 0.2606%
vortex-1 595 23,162 39,095 34,878 0.1400% 0.1918% 1.0884%
vpr-route 421 7,624 91,877 55,362 0.0269% 0.0066% 0.0236%
Average 9,927 31,824 22,960 0.2334% 0.4223% 0.3436%

which is modeled after Intel XScale PXA255
embedded processor. Although SPECint is not the best
benchmark suite for embedded processor, we still
choose it so that we can compare with the warm-up
length for the large cache configuration. Because we
do not need to profile for MRRL or BLRL in this
experiment we use a segment size of 100 million
instructions to increase sample size. Using the same
warm-up heuristic parameters as in the previous
section, the average warm-up length per sampling unit
for different benchmarks is shown in Figure 1. The
first bar for each benchmark shows the warm-up length
for the large cache configuration in Table 2, and the
second bar is the warm-up length for the small cache
configuration in Table 6. It is clear that SMA adapts
well to the cache configuration. For the small caches
the warm-up length is on average only 1/6 of that
required by the large caches.

Table 6. Configuration for small caches

Cache Block
Size

(bytes)

Associ-
ativity

of
Sets

Replacement
Policy

L1 Data 32 32 32 LRU
L1 Instr 32 32 32 LRU
L2 None

Neither MRRL nor BLRL can adapt to the cache

configuration. Using the warm-up length for MRRL or
BLRL in the previous section for the small caches will
result in 15~20X larger overhead than SMA. The only
way to reduce warm-up length for the two techniques
is to reduce the p-value. However, to come up with a
good p-value for each configuration by experiment is
highly impractical and defeats the goal of reducing
simulation time.

SMA reduces warm-up overhead for small caches,
but we also need to make sure that it does not
compromise the accuracy of warm-up. We do not have
a good microarchitecture configuration for Intel
XScale PXA255 so we did not do the cycle accurate
simulation. Instead, we do the cache simulation and

measure the accuracy in cache misses. Inadequate
warm-up will cause overestimation of cache misses
and eventually lead to error in CPI. Table 7 shows the
absolute error in the number of data cache misses per
sampling units compared with full cache warm-up.
This error is extremely small so SMA does not lose
accuracy when adapting to the small caches.

Table 7. Absolute error in the number of data cache
misses per sampling unit.
Benchmark Error

bzip2-source 0
gcc-166 0
crafty 0.002614
eon-cook 0
gap 0
gzip-graphic 0
mcf 0
twolf 0.00318
vortex-1 0
vpr-route 0

5. Conclusion and discussion

Sampling can greatly reduce simulation time.
However, effective sampling requires efficient and
accurate warm-up of microarchitecture structures. In
this paper, we studied the warm-up process of
microprocessor caches. It is found that the warm-up
process varies widely for different benchmarks, for
different portion in one benchmark execution, and for
different cache configurations. Based on this
observation, we propose the self-monitored adaptive
cache warm-up scheme. The simulator monitors the
cache warm-up process and decides when the warm-up
is enough based on a simple heuristic. The
experiments show that SMA is accurate, exhibiting an
average warm-up error of about 0.2%. SMA does not
only offers superior overall accuracy but also reduces
the warm-up length to 1/2 ~ 1/3 of two recently
proposed methods. Unlike previous methods, SMA is
adaptive to cache configuration so it can reduce warm-
up overhead by an order of magnitude for simulating
small caches. Because SMA continues to monitor the
cache accesses during cycle accurate simulation, the
user can get the number of cold-start cache accesses in
each sampling unit as an indicator of the accuracy of
the warm-up.

SMA has one weakness: the user does not know
beforehand when the cycle-accurate simulation begins.
This is not a problem for simple random sampling, but
poses difficulty for sampling techniques that use a
predefined set of sampling units such as SimPoint.
Currently we are looking into statistical sampling

0

5

10

15

20

25

bz
ip2

-s
ou

rc
e

gc
c-

16
6

cr
af

ty

eo
n-

co
ok ga

p

gz
ip-

gr
ap

hic
m

cf
tw

olf

vo
rte

x-
1

vp
r-r

ou
te

w
ar

m
 u

p
 l

en
g

th
 (

m
il

li
o

n
 i

n
st

ru
ct

io
n

s) large caches

small caches

Figure 1. Average warm up length per sampling unit for
different cache configurations

theory for designing better sampling techniques to
work with SMA.

SMA also looks promising for warming up other
microarchitecture structures such as the branch
predictor and the value predictor. Both of them share
the same property with caches that once an element is
warmed up, it never goes back to cold-start state again,
so they are also candidate for SMA. Unlike caches,
one access to a branch table element is not sufficient to
put it into a known state, so designing accurate warm-
up method by tracking reuse latency as in MRRL or
BLRL is not easy, but monitoring the warm-up process
with Vengroff et al’s deterministic finite automaton
[17] may be much simpler. Extending SMA to warm
up other structures is also part of our future research.

Acknowledgements

This research is partially supported by the National
Science Foundation under grant number 0113105, by
IBM through a CAS award and a SUR grant, and by
AMD, Intel and Microsoft corporations. Lieven
Eeckhout is a Postdoctoral Fellow of the Fund for
Scientific Research - Flanders (Belgium) (F.W.O.
Vlaanderen).

References
 [1] D. Burger, and T. M. Austin, The SimpleScalar tool set,
version 2.0. Technical Report 1342, Computer Sciences
Department, University of Wisconsin-Madson, June 1997.

[2] R. E.Wunderlich, T. F. Wenisch, B. Falsafi, and J. C.
Hoe, SMARTS: Accelerating microarchitecture simulation
via rigorous statistical sampling. In Proceedings of the 30th
Annual International Symposium on Computer Architecture,
pp 84-95. June 2003.

[3] H. W. Cain, K. M. Lepak, B. A. Schwartz, and M. H.
Lipasti, “Precise and accurate processor simulation”, 5th
Workshop On Computer Architecture Evaluation Using
Commercial Workloads (CAECW), February 2002.

[4] P. Crowley and J. L. Baer. On the Use of Trace Sampling
for Architectural Studies of Desktop Applications.
Proceedings of the 1999 SIGMETRICS Conference. May
1999.

[5] A. Agarwal, M. Horowitz, and J. Hennessy. An analytical
cache model. ACM Transactions on Computer Systems,
7(2):184–215, May 1989.

[6] J. W. C. Fu, and J. H. Patel. Trace driven simulation
using sampled traces. In Proceedings of the Twenty-Seventh
Hawaii International Conference on System Sciences Vol. I:
Architecture, pp 211–220, January 1994.

[7] S. Laha, J. H. Patel, and R. K. Iyer. Accurate low-cost
methods for performance evaluation of cache memory
systems. IEEE Transactions on Computers, 37(11):1325–
1335, November 1988.

[8] D. A. Wood, M. D. Hill, and R. E. Kessler. A model for
estimating trace-sample miss ratios. In Proceedings of the
ACM SIGMETRICS Conference for the Measurement and
Modeling of Computer Systems, pp 79–89, June 1991.

[9] J. W. Haskins, Jr. and K. Skadron. Minimal Subset
Evaluation: rapid warm-up for simulated hardware state. In
proceedings of the International Conference on Computer
Design, Sept, 2001.

[10] L. Eeckhout, S. Eyerman, B. Callens, K. De Bosschere.
Accurately warmed-up trace samples for the evaluation of
cache memories. High Performance Computing Symposium
2003, Orlando, Florida.

[11] E. Perelman, G. Hamerly, and B. Calder, Picking
Statistically Valid and Early Simulation Points, International
Conference on Parallel Architectures and Compilation
Techniques, September 2003

[12] J. W. Haskins, Jr. and K. Skadron. Memory Reference
Reuse Latency: Accelerated Sampled Microarchitecture
Simulation. In Proceedings of the 2003 IEEE International
Symposium on Performance Analysis of Systems and
Software, pp. 195-203, Mar. 2003

[13] Z. Hu, S. Kaxiras and M. Martonosi. Timekeeping in the
Memory System: Predicting and Optimizing Memory
Behavior. The 29th International Symposium on Computer
Architecture (ISCA-29), May 2002.

[14] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior.
In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems pp45-57, October 2002.

[15] Erez Perelman, Greg Hamerly, and Brad Calder, Picking
Statistically Valid and Early Simulation Points , International
Conference on Parallel Architectures and Compilation
Techniques, September 2003.

[16] SimpleScalar LLC. http://www.simplescalar.com/

[17] Darren Vengroff and Guang Gao. Partial sampling with
reverse state reconstruction: A new technique for branch
predictor performance estimation. Fourth International
Symposium On High-Performance Computer Architecture
(HPCA), 1998.

[18] J. W. Harskins. Memory Reference Reuse Latency:
Rapid Warm Up for Sampled Microarchitecture Simulation.
http://www.cs.virginia.edu/~jwh6q/mrrl-web/

