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Abstract 

 
Simulation is the most important tool for computer 

architects to evaluate the performance of new 
computer designs.  However, detailed simulation is 
extremely time consuming.  Sampling is one of the 
techniques that effectively reduce simulation time.  In 
order to achieve accurate sampling results, 
microarchitectural structure must be adequately 
warmed up before each measurement. 

In this paper, a new technique for warming up 
microprocessor caches is proposed. The simulator 
monitors the warm-up process of the caches and 
decides when the caches are warmed up based on 
simple heuristics. In our experiments the Self-
Monitored Adaptive (SMA) warm-up technique on 
average exhibits only 0.2% warm-up error in CPI.  
SMA achieves smaller warm-up error with only 
1/2~1/3 of the warm-up length of previous methods. In 
addition, it is adaptive to the cache configuration 
simulated. For simulating small caches, the SMA 
technique can reduce the warm-up overhead by an 
order of magnitude compared to previous techniques. 
Finally, SMA gives the user some indicator of warm-up 
error at the end of the cycle-accurate simulation that 
helps the user to gauge the accuracy of the warm-up.  
 
1. Introduction 
 

Simulation of standard benchmarks has been the 
most popular method for computer architects to study 
design tradeoffs.  Modern benchmarks are no longer 
small kernels or synthesized toy programs.   Instead, 
they are very close to real world programs and often 
take a long time to execute.  Moreover, modern 
superscalar microprocessors are becoming increasingly 
complex; and so are the simulators modeling the 
processors.  As a result, running benchmarks on 
detailed microarchitecture simulation models can take 
prohibitively large simulation times.  

To reduce simulation time, several techniques have 
been proposed, among which sampling and reduced 

input sets are the most commonly used.  In this paper, 
we focus on sampling.  In a sampled simulation the 
original full instruction stream is divided into non-
overlapping chunks of continuous instructions.  Each 
chunk is a basic simulation unit, or a sampling unit. 
The sampling unit size is the number of instructions in 
each chunk.  The pre-sample of a sampling unit refers 
to the instructions before this sampling unit up to the 
end of the previous sampling unit.  A sample consists 
of the selected chunks that are actually simulated and 
measured.  The number of sampling units in a sample 
is the sample size.  Recently, Wunderlich et al. applied 
sampling theory to microarchitecture simulation [2].  
Under the assumption of no measuring error, they 
showed that CPI can be estimated to within an error of 
3% with 99.7% confidence by measuring fewer than 50 
million instructions per benchmark. This accounts for 
only 0.029% of the average dynamic instructions 
executed for a benchmark program.  It appears that 
sampling has effectively solved the problem of long 
simulation time.   

However, the above results are obtained under the 
assumption that the number of cycles or CPI for each 
sampling unit can be accurately measured.  The CPI of 
each sampling unit depends not only on the 
instructions executed in the unit, but also on the initial 
state of all microarchitecture structures at the 
beginning of this unit.  The initial state is, in turn, the 
result of the execution of all the instructions before the 
sampling unit. Executing a limited number of 
instructions before a sampling unit to get 
(approximately) correct initial state is known as 
warming up the microarchitecture.  The number of 
instructions used for warm-up before a sampling unit is 
its warm-up length. For small structures like the ROB, 
the reservation station, and the register file, thousands 
of instructions are enough to put them into correct 
state.  However, some structures in the microprocessor 
like the branch target buffer, and the caches can hold 
thousands to millions of bytes. It is difficult to ensure 
that they are in the correct initial state before every 
sampling unit in the simulation.  If the initial state is 
not correct, the error can be large.  For example, 



Haskins et al reported that in their experiment, ignoring 
warm-up could result in an error as high as 15% in 
simulated CPI [12].   Thus adequate warm-up is critical 
to the accuracy of sampled simulation.  Warm-up does 
not only affect accuracy but also incurs overhead and 
increases simulation time. When simulating a 
processor with large caches, a large number of 
instructions may be needed for adequate warm-up, 
which prolongs the simulation.  Therefore, warm-up 
issue is very important in sampled simulation.  A good 
warm-up scheme should achieve a desired level of 
accuracy while devoting as few instructions as possible 
for warm-up. 

We believe that warm-up is still an important issue 
in sampled microprocessor simulation and deserves 
active research.  But there is an opinion that warm-up 
is largely solved and little reduction in simulation time 
can be accomplished with better warm-up techniques.  
For example, MRRL is claimed to have achieved 90% 
of the maximum possible simulation speed [12].  
However, careful analysis of the experiment reveals 
functional simulation as the bottleneck because every 
benchmark is simulated functionally from beginning to 
end.  In our simulation environment, the relative speed 
of functional simulation (no microarchitecture 
simulation at all), functional warm-up (only cache and 
branch predictor simulation), and cycle-accurate 
simulation, is 1:1/2.8:1/161.  Fifty 1 million-instruction 
sampling units are used in [12].  Suppose that a 
benchmark is 100 billion instructions long and on 
average each sampling unit needs 30 million 
instructions for warm-up2.  Then the percentages of 
time spent in functional simulation, functional warm-
up and cycle simulation are 95.17%, 4.06%, and 
0.77%.  It is obvious that the functional simulation is 
the bottleneck, so even getting rid of warm-up 
overhead altogether will provide little benefit.  
However, if the user saves the checkpoints or the traces 
for each sampling unit, she no longer needs to run the 
benchmark from beginning to end and is able to 
simulate for each sampling unit directly.  In this case, 
removing the warm-up overhead will give 6.25 times 
speedup in simulation!  Therefore, better warm-up 
technique is still highly desired.  (Reducing the storage 
cost of checkpoints/traces is among our future 
research.) 

In this paper, we study the warm-up process of the 
processor caches and propose a self-monitored 
adaptive warm-up scheme for simulation.  The 

                                                        
1 The relative speed numbers are highly dependent on the simulator 
and the configuration being simulated. 
 
2 No warm up length number is given in [12].  This number is based 
on our experiment with MRRL.  See Section 4.2. 

simulator monitors the warm-up process of the caches 
and decides when the caches are warmed up based on a 
simple heuristic.  Unlike previous research, this 
method is both adaptive to the characteristics of the 
benchmark and the cache configuration being 
simulated. Overall, it achieves very good accuracy with 
lower warm-up overhead than previously proposed 
techniques. 

In the next section, we survey the existing warm-up 
techniques and discuss the strength and weakness of 
each technique.  To overcome these weaknesses, we 
present our new self-monitored adaptive cache warm-
up scheme in Section 3.  Our proposed technique is 
evaluated experimentally in Section 4.  Finally, we 
conclude and discuss future research in Section 5. 
 
2. Related work 
 

Obviously the most accurate way to warm up the 
caches is to do cache simulation throughout the 
benchmark execution.  This is how the SMARTS 
scheme [2] does the warm-up.  The simulator switches 
between functional warm-up and cycle-accurate 
simulation.  During functional warm-up, the simulator 
executes the program without simulating the pipeline 
stages, but the caches and the branch predictors are 
simulated.  During cycle simulation, the simulator does 
detailed cycle accurate simulation.  Therefore, the only 
error in warm-up is introduced by not simulating the 
effect of out-of-order execution and wrong path 
execution on the caches during functional warm-up.  It 
has been shown that this error is small [2] [3]. 
Although this warm-up scheme is by far the most 
accurate, it is still not satisfactory.  First, always 
simulating caches can be a waste of resource.  
According to sampling theory, for a specific accuracy, 
the sample size should be determined by the variability 
in the population.  If the benchmark does a lot of 
repetition, only a tiny fraction of the instruction stream 
is needed.  However, the scheme requires that caches 
be simulated for every instruction, which is inefficient.  
Secondly, always warming up the cache makes 
distributed simulation hard.  For sampling methods 
such as SimPoint [14] and Variance SimPoint [15], 
where a small number of relatively large sampling 
units are taken, each sampling unit can be simulated on 
different machines in parallel to greatly improve the 
overall simulation speed.  However, constantly 
warming up caches as in SMARTS make it difficult to 
distribute the simulation on multiple machines. 

Another simple warm-up scheme is to devote a 
fixed number of instructions to warm up the cache.  
This is called “PRIME” scheme [6] following Crowley 
et. al.’s terminology [4].  At an extreme, zero 



instructions are used to warm up the cache before 
cycle-simulating a sampling unit.  Then two types of 
assumption can be made about the initial state of the 
cache.  If all cache lines are assumed to be invalid, it is 
called “COLD” scheme, which, obviously, 
overestimates the number of cache misses.  If, on the 
other hand, the cache state is assumed to be the same 
as the state at the end of last sampling unit, the scheme 
is called “STITCH” [5].  The efficacy of these 
assumptions depends on workload, cache organization, 
and choice of sampling parameters.  The user is often 
left with a result whose error the user has no idea 
unless he/she does the full simulation.  An additional 
problem with prime is the lack of guideline for the user 
to choose the number of instructions to warm up the 
cache. 

The problem of cache warm-up is that the state of 
the cache is unknown at the beginning of each 
observation. In other words, since portions of the trace 
are unexamined between observations, it is unknown 
whether the first reference to each cache block will be 
a hit or a miss. Such references are referred to as cold-
start references.  Laha et al [7] proposed not counting 
these cold-start references when calculating cache 
misses.  This effectively assumes that the miss rate for 
the cold-start references is equivalent to the miss rate 
for all other references. Wood et al [8] show that this 
assumption is usually not true.  The miss rate for the 
cold-start references is higher than the overall miss 
rate.  Employing a renewal theoretical model, Wood et 
al propose a method to estimate the miss rate for the 
cold-start references by observing the average live and 
dead time for each cache line.  These two methods can 
be used to calculate the cache miss rate from sampled 
trace, but not directly applicable to microarchitectural 
simulation to get CPI. 

Haskins and Skadron have proposed two techniques 
to determine the warm-up length for a sampling unit.  
The Minimal Subset Evaluation (MSE) [9] technique 
uses formulas derived from combinatorics and 
probability theory to calculate, for some user-chosen 
probability p, the number of memory references prior 
to each sampling unit that must be modeled in order to 
achieve accurate cache state.  This work only handles 
warm-up for the first-level data and instruction caches.  
In their second technique, they measure the Memory 
Reference Reuse Latency (MRRL) [12], which refers 
to the elapsed time measured in number of instructions 
between a reference to some memory address and the 
next reference to the same address.  Instructions in a 
sampling unit and its pre-sample are profiled to get the 
distribution of MRRL.  Given a p-value (p%) the 
warm-up length is the p-percentile of the distribution.  
Because most of the instructions used to calculate the 
distribution of MRRL are from the pre-sample, it is 

hard to guarantee that the instructions in the sampling 
unit also follow the distribution. 

To avoid this problem, Eeckhout et al proposed the 
Boundary Line Reuse Latency (BLRL3) method [10], 
in which every memory reference in a sampling unit is 
directly examined instead of relying on aggregated 
distribution.  For a reference r to address a generated 
by instruction I in the sampling unit, they search for a 
reference r’  to the same address a in the pre-sample.  If 
reference r’  is found and it is generated by instruction 
I’ , then warming up from I’  can guarantee that we 
know whether r is a hit or miss when LRU replacement 
policy is used.  Given a p-value like 90%, the 
instructions in the pre-sample of the sampling unit are 
scanned.  The warm-up length for the sampling unit is 
chosen such that 90% of the unique references in the 
sampling unit whose addresses are referenced in the 
pre-sample are covered by the warm-up instructions.  

Neither MRRL nor BLRL takes the cache 
organization into consideration.  The cache warm-up 
process depends on both the workload and the cache 
organization.  The methods discussed so far only 
consider the workload.  A small direct mapped cache is 
intuitively easier to warm up than a large highly 
associative one, but these methods calls for the same 
warm-up length given the same p-value. Therefore, the 
cache-independent methods may be overkill depending 
on the cache being simulated. 

 
3. Self-monitored adaptive warm-up 
 

As discussed in the previous section, none of the 
existing warm-up technique is satisfactory.  One major 
problem with MRRL and BLRL is that they do not 
take cache configuration into account.  Different 
caches may require different warm-up length even for 
the same benchmark.  Therefore, using any fixed p-
value in the techniques may result in under-warm-up or 
over-warm-up for different caches.  When we carefully 
examine the previous techniques, we see that none of 
them are really warm-up method per se.  The warm-up 
method itself is simulating instructions before each 
sampling units.   All the methods just help the user to 
decide when the warm-up is enough, so why not 
monitor the warm-up process in the simulator to decide 
whether the warm-up is enough?  This is exactly the 
rationale behind the self-monitored adaptive (SMA) 
warm-up technique. 

In SMA warm-up, as in the previous techniques, the 
simulator does functional warm-up before switching to 

                                                        
3 The method was not given an official name in [10]. It is called 
“Boundary Line Reuse Latency” because it is equivalent to profiling 
the memory reuses that cross the boundary line between a sampling 
unit and its pre-sample. 



detailed cycle accurate simulation.  During the 
functional warm-up, the caches are accessed but no 
pipeline stages are simulated. The warm-up process of 
the cache is monitored.  The simulator switches to 
cycle simulation as soon as the cache is deemed 
“warmed up”.  Therefore, the warm-up length is not 
fixed but adaptive.  Unlike previous approaches, this 
technique implicitly considers both the workload 
characteristics and the cache organization.  Fewer 
instructions will be used for warming up a small direct-
mapped cache than for a large highly associative one. 

To monitor the cache warm-up process, all the 
cache blocks are initialized to the cold-start state 
before the functional warm-up.  The address/tag in a 
cold-start block is unknown because it depends on the 
previous instructions, which were not simulated.  
When a cache access is initiated, the set index to the 
cache can be calculated.  If the memory address is not 
found in this set and one or more cache block in this 
set is in cold-start state, then we call the cache access a 
cold-start access.   It is not known whether a cold-start 
access will result in a cache miss or a hit. When data is 
brought to a cold-start state cache block, the block 
changes to the “valid” state.  Once a cache block leaves 
the cold-start state, it never goes back to this state 
again.  We call any state other than the cold-start state 
a known state. 

Two aspects of the warm-up process are monitored.  
Firstly, the simulator keeps track of the percentage of 
the cache blocks in cold-start state.  This number 
monotonously decreases during warm-up.  If no cache 
block is in cold-start state, the cache is completely 
warmed up.  We can guarantee that the outcome of 
every future reference is known.  Secondly, the 
simulator monitors the number of cold-start accesses 
during an interval.  When the cache is large, or the 
working set of the program is small, it may take too 
long to completely warm up the cache.  In this case, the 
cache is deemed warmed up when the number of cold-
start accesses is below a user-defined threshold. Unlike 
a completely warmed up cache, there is no guarantee 
that all future reference will access blocks in known 
state. However, the possibility of cold-start accesses is 
low.   The detailed information on choice of 
parameters for the interval size and threshold is given 
in the next section.  Monitoring the warm-up process is 
a very low overhead operation, it only increments or 
decrements a couple of counters at a cold-start cache 
access.  There is no time overhead for accessing cache 
blocks in known state.  The number of cold-start 
accesses usually decreases quickly.  

Another problem with the previous methods is that 
the user generally does not know how accurate the 
warm-up was after the simulation.  She has to rely on 
previously published validated results.  However, the 

user’s configuration may not be the same as in the 
published paper. SMA can give the user some 
indication of the accuracy of the warm-up after the 
simulation.  After switching to cycle accurate 
simulation, the simulator continues to count the 
number of cold-start accesses. In this way, after the 
simulation the user knows how much of all the cache 
misses are due to cold-start accesses.  In the 
experiment we count a cold-start access as a cache 
miss.  So the number of cold-start accesses is usually 
the upper bound of the overestimation of cache misses.  
For example, if during cycle accurate simulation of 1 
million instructions the user only sees 20 cold-start 
cache references, then she knows that the 
overestimation of cache misses is very unlikely to go 
above 20 and the CPI result should be fairly accurate. 

 
Table 1. Benchmarks, their data set and dynamic 

instruction count. The data set name is appended to the 
benchmark name 

Benchmark # of 
Instructions 

(million) 
gcc-166 46, 918 
bzip2-source 108,878 
crafty 191,883 
eon-cook 80,614 
gap 269,036 
gzip-graphic 103,706 
mcf 61,867 
twolf 346,485 
vortex-1 118,977 
vpr-route 84,069 

 
 

Table 2. Processor configuration 
Parameter 8-way (baseline) 

Machine Width 8 
RUU/LSQ size 128/64 

Memory System 
32KB 2-way L1 I & D, 2 
ports, 
Unified 1M 4-way L2 

ITLB / DTLB 
4-way 128 entries 
4-way 256 entries 
200 cycle miss penalty 

L1/L2/Memory 
Latency 

1/12/100 cycles 

Functional Units 

4 I-ALU 
2 I-MUL/DIV 
2 FP-ALU 
1 FP-MUL/DIV 

Branch Predictor 
Combined 2K tables 
7 cycle misprediction penalty 
1 prediction/cycle 

 
 



4. Experiments and results 
 

Ten benchmarks from SPECint 2000, listed in Table 
1, are used in our experiment.  The programs, 
downloaded from the SimpleScalar web site [16], are 
compiled for the Alpha ISA.  All the experiments are 
done on our modified SimpleScalar v3.0 [1].  Table 2 
shows the main processor configuration used in our 
experiment.  This configuration is adapted from the 
SMARTS paper [2]. 
 
4.1. Variability in warm-up process 
 

Much research has been done on devising and 
comparing warm-up techniques, but few of the projects 
shed light on the warm-up process itself.  We have 
done experiments to study how the cache warm-up 
process proceeds.  In this section, we only present one 
important issue in cache warm-up, the variability in the 
warm-up length.  The effectiveness of the new warm-
up technique depends on the variability.  If a constant 
warm-up length is good for all situations, then the 
PRIME method with fixed warm-up length will be the 
best.  However, if the warm-up length changes widely, 
then a good warm-up technique needs to adapt to all 
the factors that affect the warm-up process. 

Each benchmark execution is divided into segments 
of 100 million instructions.  We study the cache warm-
up process of each segment, so the simulator sets all 
cache blocks to cold-start state at the beginning of each 
segment.  We track the warm-up process in each 
segment.  For L1 data cache, we record, for each 
segment, the warm-up length needed to put every 
cache block in known state.  Table 3 lists the average 
and the standard deviation of warm-up length.  The L2 
cache may not completely warm up at the end of 100 
million instruction segments, so we record the warm-
up length needed to warm up 50% of the cache blocks 
for each segment.  The statistics for the L2 cache 
warm-up length is shown in Table 4.  These warm-up 
lengths are not the warm-up length required in 
simulation.  Nevertheless they reflect the large 
variability in the warm-up process. As we can see, the 
warm-up length is different for different benchmarks.  
It is also widely different within one benchmark.  The 
standard deviation of the warm-up length of different 
segments is as large as the mean in many cases.  
Therefore, devoting fixed number of instructions to 
warm-up as in PRIME method is not good. Comparing 
Table 3 and Table 4 we also see that the large L2 cache 
needs much longer warm-up than the small L1 cache. 
Therefore, it is important for a good warm-up method 
to also take into consideration of the cache 
configuration.  MRRL and BLRL both adapt to the 

different segment in a benchmark but they cannot 
adapt to the cache configuration. 

 
Table 3. Warm-up length for warming up all cache 
blocks in L1 data cache (in 100,000 instructions). 

Benchmark Average Standard 
Deviation 

Max Min 

bzip2-source 17.80 16.82 184 1 
gcc-166 9.98 15.92 145 1 
crafty 110.61 51.59 439 21 
eon-cook 27.87 14.36 106 7 
gap 8.08 10.28 167 1 
gzip-graphic 4.62 2.88 14 1 
mcf 1.54 4.02 45 1 
twolf 2.82 15.04 687 2 
vortex-1 14.46 15.01 141 1 
vpr-route 3.59 3.94 66 1 

 
Table 4. Warm-up length for warming up 50% cache 

blocks in L2 cache (in 100,000 instructions). 
Benchmark Average Standard 

Deviation 
Max Min 

bzip2-source 177.32 233.17 999 1 
gcc-166 546.30 331.57 999 1 
crafty 303.68 165.11 986 28 
eon-cook 155.47 272.07 998 2 
gap 136.75 62.20 788 3 
gzip-graphic 837.82 245.56 999 5 
mcf 15.41 73.19 810 1 
twolf 34.76 22.38 920 8 
vortex-1 208.94 84.66 874 5 
vpr-route 52.69 35.47 232 2 
 

 
4.2 Comparison with MRRL and BLRL  
 

In this section we compare SMA with the two most 
recently proposed warm-up techniques, MRRL and 
BLRL.  We compare both the warm-up length and the 
accuracy in CPI.  In the experiment, we choose a 
sampling unit size of 1 million instructions.  This 
sampling unit size was used in MRRL paper [12], and 
Variance SimPoint [15].  In this section, each 
benchmark execution is divided into segments of 200 
million instructions.  We use 200 million instruction 
segment size instead of 100 million in the previous 
section to give larger gap between sampling units for 
more accurate profiling in MRRL and BLRL.  One 
sampling unit is chosen from each segment.   

In SMA the sampling units are not previously 
determined but rather depend on the cache warm-up 
process.  Once the cache is deemed warmed up 
enough, the simulator executes 4,000 instructions in 
cycle accurate mode to warm up the pipeline as 
suggested in [2], and then the CPI of 1 million 
instruction sampling unit is measured.  As discussed in 



the above section, the L2 cache may not be completely 
warmed up with reasonable number of instructions so 
we cannot use complete warm-up as the only criterion 
for the caches.  Therefore, we choose the following 
simple heuristic to judge if the cache is warmed up.  At 
the end of each interval, we calculate the average 
number of cold-start accesses for the last N intervals.  
If the average number of cold-start references falls 
below a threshold T, we assume that the cache is 
warmed up enough and end the functional warm-up.  
Because this method requires warm-up of at least N 
intervals, to take advantage of segments that reach 
complete warm-up quickly, we also monitor the 
number of cache blocks in the cold-start state in the 
cache.  The functional warm-up also ends as soon as 
the cold-start state blocks drop to zero.  For L1 data 
cache, we use N=20, T=10.  For L1 instruction cache, 
we use N=10, T=1.  For L2 cache, we use N=20, T=15.   

For MRRL and BLRL the sampling units are 
chosen to be the same as those in SMA.  4,000 
instructions are also simulated in the cycle-accurate 
mode before each sampling units to warm up the 
pipeline.   The profiler for MRRL was downloaded 
from its author’s website [18]. 

Although not implemented in the current simulator, 
we hope to further improve simulation speed by 
distributed simulation.  When sampling units are 
distributed to different machines, the end state of one 
sampling unit cannot be used as the beginning state of 
another sampling unit.  Therefore, in our experiment 
caches are emptied before warming up each sampling 
unit. 

The final error in CPI in sampled simulation comes 
from two sources: the sampling error per se and the 
warm-up error.  To fairly compare different warm-up 
techniques, only the warm-up error should be 
measured, so we additionally run a simulation with full 
cache warm-up.  In this simulation the caches are 
always simulated between every sampling units as in 

SMARTS [2]. The sampling units and the cycle-
accurate warm-up are the same in all of our 
simulations, so the difference between the CPI of a 
warm-up technique and the CPI of full cache warm-up 
is the warm-up error.  

Table 5 compares SMA with MRRL and BLRL.  
The heuristic in SMA relies on the warm-up history to 
predict whether the cache is warmed up enough in the 
next sampling unit, so SMA may mispredict and end 
functional warm-up prematurely. In Table 5 the 
average error is only about 0.2%, so SMA is very 
accurate and rarely mispredicts.  

For MRRL, we choose the p-value to be 99.9%, 
which is the default value suggested in [12].   For 
BLRL, we use the p-value of 90%.  Both methods are 
also accurate, exhibiting an average error of 0.4% and 
0.3%.  However, SMA clearly shows the overall 
advantage. The SMA technique requires only 1/3 of the 
warm-up length of MRRL or 1/2 of the warm-up 
length of BLRL yet it achieves an error that is smaller 
than the other two techniques. 

SMA is better in both warm-up length and 
accuracy, so changing the p-value for all benchmarks 
will not affect the overall conclusion.  Using different 
p-values for different benchmarks may improve the 
overall result of MRRL and BLRL, but asking the user 
to fine tune the p-value for each benchmark and 
different processor configuration is not practical. 

 
 

4.3. Adaptivity to cache configuration 
 

Unlike previous methods, SMA adapts to the cache 
configuration being simulated.  In the last section, we 
show how SMA performs with a cache size that is 
common to workstations. To evaluate its adaptivity, in 
this section we simulate a small cache configuration 
that is typical in an embedded processor.  Table 6 
shows the cache configuration used in our experiment, 

Table 5. Comparison of SMA with MRRL and BLRL 
Avg warm up length per sampling unit 

(1000 instructions) 
Error in CPI Benchmark # of 

sampling 
units SMA MRRL BLRL SMA MRRL BLRL 

bzip2-source 545  8,710   100,227  78,577 0.1440% 0.0124% 0.0546% 
gcc-166 235  13,221   7,064 12,369 0.1860% 0.9730% 0.4667% 
crafty 960  5,337   3,688  14,868 1.0300% 1.5700% 1.0374% 
eon-cook 403  14,367   6,667  3,191 0.0419% 0.2974% 0.2805% 
gap 1346  8,861   11,629  12,094 0.0434% 0.9620% 0.1123% 
gzip-graphic 519  9,315   7,945  5,227 0.5110% 0.1710% 0.0865% 
mcf 310  2,706   34,739  7,611 0.0039% 0.0177% 0.0254% 
twolf 1733  5,970   15,308  5,420 0.2070% 0.0207% 0.2606% 
vortex-1 595  23,162   39,095  34,878 0.1400% 0.1918% 1.0884% 
vpr-route 421  7,624   91,877  55,362 0.0269% 0.0066% 0.0236% 
Average   9,927   31,824  22,960 0.2334% 0.4223% 0.3436% 

 



which is modeled after Intel XScale PXA255 
embedded processor. Although SPECint is not the best 
benchmark suite for embedded processor, we still 
choose it so that we can compare with the warm-up 
length for the large cache configuration.  Because we 
do not need to profile for MRRL or BLRL in this 
experiment we use a segment size of 100 million 
instructions to increase sample size.  Using the same 
warm-up heuristic parameters as in the previous 
section, the average warm-up length per sampling unit 
for different benchmarks is shown in Figure 1.  The 
first bar for each benchmark shows the warm-up length 
for the large cache configuration in Table 2, and the 
second bar is the warm-up length for the small cache 
configuration in Table 6.  It is clear that SMA adapts 
well to the cache configuration.  For the small caches 
the warm-up length is on average only 1/6 of that 
required by the large caches. 

 
Table 6. Configuration for small caches 

Cache Block 
Size 

(bytes) 

Associ-
ativity 

# of 
Sets 

Replacement 
Policy 

L1 Data 32 32 32 LRU 
L1 Instr 32 32 32 LRU 
L2 None 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Neither MRRL nor BLRL can adapt to the cache 

configuration.  Using the warm-up length for MRRL or 
BLRL in the previous section for the small caches will 
result in 15~20X larger overhead than SMA.  The only 
way to reduce warm-up length for the two techniques 
is to reduce the p-value.  However, to come up with a 
good p-value for each configuration by experiment is 
highly impractical and defeats the goal of reducing 
simulation time. 

SMA reduces warm-up overhead for small caches, 
but we also need to make sure that it does not 
compromise the accuracy of warm-up.  We do not have 
a good microarchitecture configuration for Intel 
XScale PXA255 so we did not do the cycle accurate 
simulation.  Instead, we do the cache simulation and 

measure the accuracy in cache misses.  Inadequate 
warm-up will cause overestimation of cache misses 
and eventually lead to error in CPI.  Table 7 shows the 
absolute error in the number of data cache misses per 
sampling units compared with full cache warm-up.  
This error is extremely small so SMA does not lose 
accuracy when adapting to the small caches.  
 

Table 7. Absolute error in the number of data cache 
misses per sampling unit. 
Benchmark Error 

bzip2-source 0 
gcc-166 0 
crafty 0.002614 
eon-cook 0 
gap 0 
gzip-graphic 0 
mcf 0 
twolf 0.00318 
vortex-1 0 
vpr-route 0 

 
5. Conclusion and discussion 
 

Sampling can greatly reduce simulation time.  
However, effective sampling requires efficient and 
accurate warm-up of microarchitecture structures.  In 
this paper, we studied the warm-up process of 
microprocessor caches.  It is found that the warm-up 
process varies widely for different benchmarks, for 
different portion in one benchmark execution, and for 
different cache configurations.  Based on this 
observation, we propose the self-monitored adaptive 
cache warm-up scheme.  The simulator monitors the 
cache warm-up process and decides when the warm-up 
is enough based on a simple heuristic.  The 
experiments show that SMA is accurate, exhibiting an 
average warm-up error of about 0.2%.  SMA does not 
only offers superior overall accuracy but also reduces 
the warm-up length to 1/2 ~ 1/3 of two recently 
proposed methods.  Unlike previous methods, SMA is 
adaptive to cache configuration so it can reduce warm-
up overhead by an order of magnitude for simulating 
small caches.  Because SMA continues to monitor the 
cache accesses during cycle accurate simulation, the 
user can get the number of cold-start cache accesses in 
each sampling unit as an indicator of the accuracy of 
the warm-up. 

SMA has one weakness: the user does not know 
beforehand when the cycle-accurate simulation begins.  
This is not a problem for simple random sampling, but 
poses difficulty for sampling techniques that use a 
predefined set of sampling units such as SimPoint.  
Currently we are looking into statistical sampling 
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Figure 1. Average warm up length per sampling unit for 
different cache configurations 



theory for designing better sampling techniques to 
work with SMA. 

SMA also looks promising for warming up other 
microarchitecture structures such as the branch 
predictor and the value predictor.  Both of them share 
the same property with caches that once an element is 
warmed up, it never goes back to cold-start state again, 
so they are also candidate for SMA.  Unlike caches, 
one access to a branch table element is not sufficient to 
put it into a known state, so designing accurate warm-
up method by tracking reuse latency as in MRRL or 
BLRL is not easy, but monitoring the warm-up process 
with Vengroff et al’s deterministic finite automaton 
[17] may be much simpler.  Extending SMA to warm 
up other structures is also part of our future research. 
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