
 

 
 

Wor kload Character ization of M ultithreaded Java Servers 
 

Yue Luo and Lizy Kurian John 
Department of Electrical and Computer Engineering 

The University of Texas at Austin  
{luo,ljohn}@ece.utexas.edu 

 
 

Abstract 
 

Java has gained popularity in the commercial server 
arena, but the characteristics of Java server applications 
are not well understood.  In this research, we 
characterize the behavior of two Java server benchmarks, 
VolanoMark and SPECjbb2000, on a Pentium III system 
with the latest Java Hotspot Server VM.  We compare 
Java server applications with SPECint2000 and also 
investigate the impact of multithreading by increasing the 
number of clients.    Java servers are seen to exhibit poor 
instruction access behavior, including high instruction 
miss rate, high ITLB miss rate, high BTB miss rate and, 
as a result, high I-stream stalls.  With increasing number 
of threads, the instruction behavior improves, suggesting 
increased locality of access.  But the resource stalls 
increase and eventually dwarf the diminishing I-stream 
stalls.  With more clients, the instruction count per unit 
work increases and becomes a hindrance to the 
scalability of the servers. 
 
1. Introduction 
 

Java has emerged as a competitive paradigm for server 
platforms because of its “write once run everywhere”  
property and its enhanced security features.  Typically, 
Java execution suffers from software translation 
overhead, but the overhead of Just-In-Time (JIT) 
compilation can be easily amortized in long-running 
server applications. Moreover, Java provides the unique 
opportunity for dynamic optimization, which will further 
boost server performance. 

Server workloads differ significantly from those of the 
clients. Therefore, not surprisingly, performance 
characteristics unveiled by studying client workloads may 
not be applicable to the server side.  One of the major 
distinctive characteristics of server applications is that 
they usually need to support many concurrent client 
connections.    Traditionally, there are three techniques to 
handle concurrent connections, i.e. I/O multiplexing, 
polling and signals.  Unfortunately, in the current Java, 
none of these techniques is directly available.  To 

compensate for the lack of these features, a Java 
developer usually creates one or more separate threads to 
manage each client connection [11].  Therefore the 
performance under the condition of a large number of 
threads is crucial for a Java server to support multiple 
clients simultaneously.  Sun Microsystems Inc. is 
proposing a solution for this problem in JDK 1.4 beta 
[16]. 

The number of threads, and thus the number of 
simultaneous clients that a particular system can support 
is generally constrained by the system resources and the 
resource requirement of each thread.  Optimization to 
maximize the number of threads is out of the scope of this 
paper.  The goal of this paper is to provide a detailed 
characterization of the impact of multithreaded Java 
server applications on the processor performance.  For 
this purpose, we perform two types of experiments.   First 
we compare the Java server benchmarks with SPECint 
2000, a more “ traditional”  workload, to find out the 
characteristics of the Java server applications.  Then we 
increase the number of simultaneous threads of the Java 
server benchmarks to determine how multithreading 
would impact the processor microarchitecture. 

The rest of the paper is structured as follows.  In the 
next section we introduce some related work.  Section 3 
provides our experimental methodology as well as some 
background on the benchmarks we use.  Sections 4 and 5 
present our main results for the two types of experiments. 
Section 6 summarizes the key observations and offers the 
concluding remarks. 
 
2. Related work 
 

As commercial applications are becoming more and 
more important, there have been ongoing efforts to 
characterize the performance of commercial workloads 
[1, 2, 5, 8, 10, 13].  The majority of these studies have 
been focused on OLTP and DSS applications as well as 
on web servers, which are highly optimized and well-
established applications developed in C or C++ and 
compiled into native machine binaries.  

Java has also been the subject of active research for 
years.  Most of the results of Java workload 



 

characterization are based on the study of SPECjvm98 [9, 
12, 15], which is a client type benchmark suite.  
SPECjvm98 is found to show as high as 31% kernel 
activity, most of which is utlb, a TLB service routine.  
These applications exhibit poor ILP and are insensitive to 
wider issue width [9].  However, they show better 
instruction cache performance than C/C++ applications 
[12].  At the client level, software translation is seen to 
dominate when the applications are short-running [12].  
However, we do not expect the same dominance at the 
server level. 

Commercial pure Java servers are just emerging and so 
are the research efforts in quantifying their behavior, 
especially the multithreading impact.  Cain et al. [4] 
studied the effect of multithreading on branch prediction 
and cache behavior in SPECjbb2000 and TPC-W by full 
system simulation of a coarse-grained multithreaded 
processor.  In this research they found destructive 
interference between threads.  However, some 
constructive interference between threads in 
multithreading was reported in the past by Hily et al. [6].  
They studied the behavior of branch prediction while 
simultaneously executing several threads of instructions.  
It was observed that some branch prediction algorithms 
do benefit slightly from multithreading within a program.  

In this paper we present our study of two Java server 
benchmarks on a real machine with a modern processor 
and a state-of-the-art JVM. The objective is to understand 
the behavior of Java servers, particularly multithreading, 
based on actual execution rather than simulation. The 
impact of a large number of threads on caches, TLBs, 
branch predictors, etc is investigated. 

 
3. M ethodology 
 
3.1. Benchmarks 
 

In this paper, we use the VolanoMark benchmark and 
SPECjbb2000 to study multithreaded Java servers.  To 
compare the two benchmarks to more “ traditional”  
applications, we also measured SPECint2000 on the same 
platform.  SPECint2000 comprises such a wide variety of 
applications that we did not expect the Java server 
applications to stand out in terms of microarchitecture 
metrics.  We do find, however, that these Java servers 
have some unique properties. 

VolanoMark [17] is a pure Java server benchmark with 
long-lasting network connections and high thread counts.  
It can be divided into two parts, a server and a client, 
though they are provided in one package.  The server is a 
slightly modified commercial chat server, VolanoChat, 
which accepts connections from the chat client (Figure 1).  
The chat client simulates many chatting users: it creates a 
number of chat rooms, continuously sends messages to 
the server and waits for the server to broadcast the 

messages to all the users in the same chat room. The 
VolanoMark server creates two threads for each client 
connection.  VolanoMark can be run to test both the speed 
and the scalability of a system.  In the speed test, it is run 
in a loopback fashion with the server and the client on the 
same machine.  In the scalability test, on which our 
experiment is based, the server and the client are run on 
two separate machines with high-speed network 
connections. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. VolanoMark environment 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. SPECjbb2000 environment [19] 
 
SPECjbb2000 (Java Business Benchmark) [18] is 

SPEC's first benchmark for evaluating the performance of 
server-side Java.  The whole benchmark is implemented 
within a single JVM.  It is a Java program emulating a 
three-tier client/server system with emphasis on the 
middle tier (Figure 2). The emulation of the other tiers 
isolates the middle tier and simplifies the benchmark by 
not requiring user emulation or a database. (The 
implication is that combining a JVM with a high 
SPECjbb2000 throughput and a database tuned for online 
transaction processing will provide a business with a fast 
and robust multi-tier environment.)  SPECjbb2000, like 
TPC-C, models a wholesale company with warehouses 
serving a number of districts. Customers initiate a set of 
operations such as placing new orders or requesting the 
status of an existing order. Additional operations are 
generated within the company, such as processing orders 
for delivery, entering customer payments, and checking 
stock levels.  SPECjbb2000 assigns one active customer 
per warehouse, which is a 25MB data set stored in binary 
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trees (Btrees).  SPECjbb2000 is memory resident without 
inherent disk I/O. One warehouse maps directly to one 
Java thread. As the number of warehouses increases 
during the full benchmark run, so does the number of 
threads. 

 
3.2. Platform 

 
Our monitoring experiments were performed on a Dell 

Precision 410 PC with one Pentium III processor and 1 
GB of physical memory.  The Pentium III is a superscalar 
out-of-order machine capable of issuing up to 5 uops and 
retiring up to 3 uops in one cycle. The processor has a 40-
entry reorder buffer to facilitate retirement of instructions 
in order. The processor employs speculative execution 
using a two level branch predictor and a 512-entry branch 
target buffer (BTB). The processor has separate L1 data 
cache and L1 instruction cache.  Each cache is 16 Kbytes 
in size, 4-way set associative with 32-byte block size, and 
employs LRU replacement algorithm.  The data cache is 
write-allocate, non-blocking and dual-ported.   The 
processor also has a unified 512 Kbyte 4-way set 
associative non-blocking L2 cache with 32-byte block 
size.  The operating system on the system under 
measurement is Windows NT Workstation 4.0 with 
Service Pack 6a.  We use the Sun JDK 1.3.0 with Hotspot 
Server (build 2.0fcs-E, mixed mode) as the Java virtual 
machine. 

 
3.3. Monitor ing method 

 
The Intel P6 family processor has 2 performance 

counters.  Events in nonprivileged user code (user mode) 
and privileged operating system code (OS mode) can be 
counted separately.  Our lab developed PMON [14] to 
access these counters.  PMON consists of two parts, a 
device driver and a control program.  The driver reads the 
performance counters [3,7] of the Pentium III processor 
while the control program controls the measurement 
process and logs the results.  Since we developed the 
whole tool ourselves, we have better control over it than 
any other performance counter tools like Intel’s P6Perf.  
The overhead of PMON is extremely small because it 
does not have GUI displays and does not write results to 
disks during measurements. Thus the tool incurs no disk 
I/O activity given enough memory.  The low overhead 
associated with the tool allows us to perform the 
measurements in a non-invasive fashion. The operation of 
the tool was verified by several test cases and by 
comparing with VTune and P6Perf. 

Our experiment with VolanoMark follows a procedure 
similar to that of the scalability test.  We run VolanMark 
client on a different machine from the server.  Each chat 
room has 20 users in it, a default value in VolanoMark.  
We vary the number of chat rooms from 1 to 40 resulting 

in a connection number range of 20 to 800.  We measure 
only the server activity.  SPECjbb2000 is a data intensive 
application with 25M bytes data for each 
warehouse/thread.  The maximal number of threads that 
our system can afford without significant memory 
swapping is 25.  Therefore, we increase the number of 
warehouses from 1 to 25 in our experiments. 

Though it is desirable to have quick starting and 
shutdown processes, the most important aspect of server 
performance is how the server responds to client requests.  
To synchronize our measurements with the client 
connections in the VolanoMark test, we add a wrapper to 
the client program.  The wrapper sets up an extra 
connection to the server to trigger PMON immediately 
before it starts the actual client.  PMON ends the 
measurement as soon as the wrapper closes the extra 
connection, which signals the end of the client program.  
In this way, we only measure connection creation, 
message transmission and connection closure and skip the 
starting and shutdown of the server.  To avoid counter 
overflow, the counters are sampled every 3 seconds and 
these samples are accumulated to get the final results.  
Since SPECjbb2000 does not have a separate client 
program, it is impossible to isolate the server transaction 
activity from data initialization and report generation 
without instrumentation of the benchmark itself.  The 
benchmark program has the ability to measure itself for 
reporting benchmark scores. We modify Company.java 
file to send signals to PMON so that our measurement is 
synchronized with the benchmark’s own measurement 
interval.  To minimize the effect of instrumentation we 
only recompile Company.java and leave all other class 
files untouched.  As can be seen from our measuring 
method, the JIT compiling part should be negligible in the 
results because we skipped the starting of the program, 
where most compilation is done, and if any compilation 
slipped into our measurement, it would only account for a 
very small part in the long running of the benchmarks. 

 
4. Comparing Java server benchmarks and 

SPECint2000 
 

In this section, we compare VolanoMarks and 
SPECjbb2000 with SPECint2000.  We run VolanoMark 
with 1, 10, and 30 chat rooms (the number of connection 
threads is 40, 400, and 1200, shown in figures and tables 
as volano01, volano10 and volano30), and run 
SPECjbb2000 with 1, 10 and 25 warehouses (the number 
of warehouse threads is 1, 10 and 25, shown in figures 
and tables as jbb01, jbb10 and jbb25).  The 
microarchitectural parameters measured are similar to 
those measured by Bhandarkar et al. [3]. 

Table 1 shows the percentage of cycles spent in OS 
mode.  SPECjbb2000 has neither file accesses nor 
network connections. And since it is a memory resident 



 

Java database program, few page faults occur.  Therefore, 
OS cycle time constitutes less than 0.7% of the total 
execution time, which is not very different from 
SPECint2000.  VolanoMark, on the other hand, has 
significant OS part because it spends most of its time in 
receiving and sending network messages, which is mainly 
the task of the operating system.  The number of threads 
is also large.  Thus scheduling and synchronizing these 
threads constitutes a major task of the operating system. 
Adding to this is the relatively simple operation of 
distributing messages in user code.  Consequently, more 
than half of the execution time of VolanoMark is in OS 
mode. 

 
Table 1. Java servers vs. SPECint2000 

Benchmar k OS Cycle 
Percent CPI  

Data 
References 

per  
Instruction 

M emory 
Transactions 

per  1000 
Instructions 

volano30 65.32% 3.03 0.620 10.67 
volano10 58.25% 3.72 0.670 18.39 
volano01 57.86% 3.68 0.722 9.51 

jbb25 0.67% 2.31 0.572 15.97 
jbb10 0.63% 2.29 0.578 14.14 Ja

va
 S

er
ve

rs
 

jbb01 0.57% 2.28 0.593 13.14 
vortex 1.06% 1.27 0.674 2.80 
twolf 0.37% 2.25 0.593 17.22 
gcc 1.04% 2.25 0.629 11.36 
eon 0.24% 1.36 0.839 0.01 

crafty 0.27% 1.22 0.499 0.35 
perlbmk 0.81% 1.13 0.535 1.06 
parser 0.41% 1.64 0.638 6.61 

gap 0.47% 1.32 0.646 9.48 
bzip2 0.44% 1.36 0.579 7.28 
vpr 0.38% 1.79 0.697 10.18 
mcf 0.34% 6.65 0.620 95.92 

SP
E

C
in

t 2
00

0 

gzip 0.48% 1.24 0.382 1.21 

 
In table 1 Java server benchmarks show higher CPI 

than most of SPECint2000 programs. Operating system 
code on servers is known to have worse CPI than user 
code [8].  With a much larger OS part, VolanoMark 
shows much higher CPI than SPECjbb2000. 

The Pentium III processor has a microarchitecture 
similar to the Pentium Pro discussed in [3]. Most 
instructions are converted directly into single uops. Some 
are decoded into one to four uops, and the more complex 
instructions require microcode.  The processor has 3 
decoders that can handle up to 3 instructions every cycle.  
Up to 5 uops can be issued every clock cycle to the 
various execution units and up to 3 uops can be retired 
every cycle. But in Java servers, instruction level 
parallelism is seen to be limited: most of the time (more 
than 60%), the decoders are idle when executing Java 
server benchmarks (Figure 3a) and no uops can be retired 
in more than 60% cycles (Figure 3b).  Only mcf in 
SPECint2000 shows worse decode/retirement profile, but, 
as we will see in Figure 4, it is caused by the 

extraordinarily high L1 data cache misses and L2 cache 
misses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Instruction decode/retirement 
behavior 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Cache and ITLB behavior 
 
Table 1 shows the number of data references per 

instruction and the number of memory transactions per 
thousand instructions.  On average, Java server programs 
show a data reference rate similar to that of the 
SPECint2000.  The L1 data cache and L2 cache misses 
per instruction of the Java servers are within the range of 
SPECint2000 although on the higher end (Figure 4a).  As 
might be expected, there is a strong correlation between 
L2 cache misses and memory transactions (Table 1).  The 
most significant effect in Figure 4a about the Java servers 
is that they have much higher instruction miss rate.  High 
instruction cache miss rates have also been observed in 
traditional commercial server applications written in C or 
C++ [1, 2].  Server applications are complex and usually 
have large instruction footprint.  Dynamically compiled 
code for consecutively invoked methods may not be 
located in contiguous address spaces [12]. Thus the 
instruction locality is poor.  And the OS code, which is 

(a) Instruction decode profile (b) Instruction retirement profile

(a) Cache misses per 1000 
instructions 

(b) ITLB misses per 1000 
instructions 
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the major part in VolanoMark, incurs more instruction 
cache misses when number of connections is small 
(Figure 7a).  This causes VolanoMark to show very poor 
instruction cache behavior.  Figure 4b shows that Java 
server programs also incur high instruction TLB miss 
rates.  This phenomenon and poor instruction cache 
behavior together suggest a large and scattered instruction 
footprint generated by JIT. 

State-of-the-art high performance microprocessors 
employ speculative execution as a means to enhance 
performance. Though the two-level adaptive branch 
prediction scheme of Pentium III does a fairly good job in 
terms of miss prediction rate, the BTB miss rates for Java 
servers are higher compared to SPECint2000 (Figure 5a).  
While we do not isolate the causes of the BTB misses and 
mispredictions, it is clear that the current BTB 
architecture does not work very satisfactorily for Java 
server code. We also investigate the extent of speculation 
in these applications.  As in [3], we determine the 
speculative factor, computed as the number of instructions 
decoded divided by the number of instructions retired.  
Applications with higher branch miss prediction rate 
generally show higher speculative factor.  But speculative 
factor is also sensitive to branch frequency in the code.      
We investigate the speculative factor of these applications 
in an effort to understand whether there is a marked 
difference in the way speculative microarchitecture is 
utilized by the Java servers and the SPECint programs.  
We observe that the speculative factors of Java servers are 
within the range of SPECint2000 indicating that their 
speculative behavior is similar (Figure 5b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Speculation behavior 
 
Figure 6 shows the I-stream stalls and resource stalls, 

measured in terms of the cycles in which the stall 
conditions occur.  I-stream stalls are caused mainly by 
instruction cache misses and ITLB misses.  Resource 
stalls show the number of cycles in which resources such 
as reorder buffer entries, memory buffer entries, or 

execution units are not available [3].  Because of the high 
instruction cache miss rate and ITLB miss rate, Java 
server benchmarks demonstrate higher I-stream stalls than 
SPECint2000 benchmarks. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Stall cycles per instruction 
 
In summary, the Java server benchmarks show worse 

instruction stream behavior than SPECint2000. Higher 
instruction cache miss rate, higher ITLB miss rate, higher 
BTB miss rate and consequently, higher I-stream stall 
cycles are observed in the multithreaded Java server 
applications in comparison to the integer programs in the 
SPECint2000 suite. 

 
5. Impact of multithreading on the processor 

microarchitecture 
 

To study the impact of multithreading on the processor 
microarchitecture, we vary the number of threads in the 
benchmarks and study the cache performance, branch 
predictor performance, etc. We increase the number of 
threads in VolanoMark and SPECjbb2000 from a small 
number to the maximal number that our system can 
properly support, and measure the user and the OS 
activity.  In SPECjbb2000 less than 1% of the cycles are 
in the OS mode.  Though the OS part may show different 
behavior, its effect on overall results is negligible in 
SPECjbb2000.  Therefore, we only present the combined 
effect of the OS and user code in the case of 
SPECjbb2000.  In VolanoMark, however, the OS part 
constitutes more than half of all cycles. So the OS part, 
the user part and the total effect are shown for 
VolanoMark. 

Table 2 illustrates the changes in CPI and data cache 
performance with increasing number of threads. CPI is 
the compound effect of many factors including branch 
prediction accuracy and cache misses.  Data footprint is 
expected to increase with increasing number of threads, 
hence the increase in data cache misses.  But as shown in 
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(b) Resource stall cycles per 
instruction 
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Table 2, CPI does not increase steadily.  In VolanoMark 
we even observe a dropping OS CPI.  This indicates that 
some of the stalls disappear with heavier multithreading. 

 
Table 2. Impact of multithreading 

(a) CPI and data references per instruction for VolanoMark 

CPI  Data References per  
Instruction 

Number  of 
connec-

tions User  OS Overall User  OS Overall 
20 2.84 4.68 3.68  0.629 0.833 0.722 

200 3.29 4.10 3.72  0.620 0.715 0.670 
400 2.79 3.56 3.23  0.615 0.651 0.636 
600 2.70 3.24 3.03  0.618 0.621 0.620 
800 2.56 2.97 2.82  0.612 0.581 0.592 

 
(b) L1 data cache misses per data reference and L2 cache 

miss rate for VolanoMark 
L1 Data Cache M isses per  

Data Reference 
L2 Cache M iss Rate (Local) Number  of 

connec-
tions User  OS Overall OS User  Overall 

20 0.047 0.059 0.053 0.049 0.039 0.043 
200 0.046 0.106 0.080 0.115 0.084 0.095 
400 0.042 0.146 0.104 0.128 0.078 0.093 
600 0.039 0.171 0.120 0.134 0.070 0.086 
800 0.037 0.190 0.132 0.144 0.072 0.089 

 
(c) Metrics for SPECjbb2000 

Number  of 
Warehouses CPI  

Data 
References 

per  
Instruction 

L1 Data 
Cache M isses 

per  Data 
Reference 

L2 Cache 
M iss Rate 

(Local) 

1  2.28   0.5926   0.03976   0.1440  
5  2.29   0.5787   0.04075   0.1591  

10  2.29   0.5778   0.04094   0.1612  
15  2.27   0.5723   0.04095   0.1623  
20  2.28   0.5696   0.04129   0.1742  
25  2.31   0.5715   0.04160   0.1888  

 
The data set of one warehouse (25M bytes) in 

SPECjbb2000 is big enough to overwhelm the L1 and L2 
cache. Therefore L1 data cache miss rate and L2 cache 
miss rate of SPECjbb2000 do not increase as quickly as 
those of VolanoMark when the number of threads 
increases.  Though VolanoMark has much smaller data 
set for one thread, it involves larger OS part.  The 
properties of OS code change significantly as we can see 
from the drastic drop in the OS data reference per 
instruction.  The changing OS behavior and its interaction 
with the user part make VolanoMark’s overall L1 data 
cache and L2 cache miss rate not very straightforward to 
explain. But in general, if there are more threads, the data 
set is correspondingly bigger and the data cache miss 
rates are also higher (see also Figure 13). 

As shown in Figure 7, the impact of multithreading on 
the instruction cache behavior is very different compared 
to the data cache behavior. Multithreaded Java servers 
respond to each client connection request with one or 
more threads.  Except for a few specialized threads (e.g. 
logging), all threads share the same user code.  This will 
create some beneficial interference for instruction cache 

in that the user instructions of the currently running thread 
may have been fetched into L1 instruction cache by 
previously running threads.  With more client 
connections, some relatively small parts in the programs 
get executed more frequently.  For example, when there 
are more warehouses in SPECjbb2000, the underlying 
Btrees become bigger and thus more time is spent in the 
Java methods accessing these Btree structures.  This 
localized execution also contributes to the improvement 
in the instruction cache behavior.  For the OS part in 
VolanoMark, the hotspot effect is more phenomenal, 
indicated not only by the sharp drop in the instruction 
cache miss rate but also by the changes in the number of 
data references per instruction.  With VTune we find that 
at 600 client connections more than 35% of the OS cycles 
are spent in afd.sys, a small driver (66KB) providing 
sockets emulation.  While at 20 client connections, 
afd.sys accounts for only 11% of the OS cycles.  
Accompanying the improvement in the instruction cache 
behavior is the decrease in the number of instruction TLB 
misses per instruction (Figure 8). 

 
 
 
 
 
 
 
 
 
 
 

Figure 7. L1 instruction cache misses per 
instruction 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Instruction TLB misses per 
instruction 

As a result, the I-stream stalls are lowered for both the 
OS part and the user part and thus more instructions can 
enter the execution stage in one clock cycle, causing more 
pressure on processor resources.  As we can see, the 
resource stalls increase and soon exceed the I-stream 
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stalls (Figure 9). The same localized execution and 
beneficial interference also decrease the BTB miss rates.  
And this in turn contributes to the improved branch 
prediction accuracy with increasing number of threads 
(Figure 10,11). 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
(c) SPECjbb2000 resource and instruction stream stalls per 

instruction 
Figure 9. Resource and instruction stream stalls 

per instruction 
 
 
 

 
 
 
 
 
 
 
 

Figure 10. BTB miss rate 
All the above microarchitecture metrics affect 

throughput of the server, but instruction count variation 
with increased number of threads also needs to be studied.  
Therefore, we present the results from a different angle, 
normalizing all the metrics to a unit of useful work the 
servers perform.  In VolanoMark measurement, each 
simulated client user sends the same number of messages.  
Thus the server performs the same amount of useful work 

for each connection.  In SPECjbb2000, there are five 
types of transactions.  To measure the average effect, we 
do not distinguish each transaction but normalize the 
results by the total number of transactions. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Branch miss prediction rate 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Instructions per unit work 
 

The number of instructions executed for each unit of 
useful work increases in both cases.  The most significant 
increase is in the OS part in VolanoMark (Figure 12).  
This increase is largely due to network communications, 
thread scheduling and synchronization.  With increased 
number of simultaneous clients, the VolanoMark server 
has to spend more time in this overhead.  For 
SPECjbb2000, in addition to a higher thread management 
overhead, the bigger Btree structures require more 
instructions for each search and update operation.  In 
either case, the instruction count increase will certainly 
affect the scalability of the Java server negatively.  
Operating system code as well as the Java virtual machine 
may be further optimized to alleviate the problem. 

Cache misses per unit work also change with increased 
number of threads.  When the number of threads is small, 
instruction cache misses constitute the major part of  
cache misses.  As the number of threads increase, the 
fraction of L1 data cache misses and L2 cache misses 
increases while the fraction of instruction cache misses 
drops slowly (Figure 13).  In VolanoMark the OS L1 data 

(a) VolanoMark resource stalls 
per instruction 

(b) VolanoMark instruction 
stream stalls per instruction 

(a) VolanoMark (b) SPECjbb2000 
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cache misses increase so fast that it soon replaces 
instruction cache misses as the dominant component in 
the overall L1 cache misses. A possible reason is that the 
operating system needs to manage a large number of 
network messages and may need to copy them between 
user and OS space.  Please note that the increase in the 
number of L1 data cache and L2 cache misses is 
accompanied by the increase in the number of instructions 
(and data references).  This explains why no dramatic 
cache miss rate increase is observed in Table 2. 

 
 
 
 
 
 
 
 
 
 
 
 

(a) VolanoMark 
 
 
 
 
 
 
 
 
 
 
 
 

(b) SPECjbb2000 
Figure 13. Cache misses per unit work 

 
6. Conclusions 
 

Multithreading is an important characteristic of server 
applications, especially for Java servers due to the lack of 
effective mechanisms in the current Java to share threads 
among client connections.  In this paper, we present the 
detailed workload characterization of two multithreaded 
Java server benchmarks: VolanoMark and SPECjbb2000.  
We measured their transaction activity on a state-of-the-
art HotSpot JVM on a real superscalar uniprocessor 
machine.  We compared Java servers to SPECint2000 and 
studied the impact on processor with increasing number 
of threads. Our main findings are as follows: 
1. Java server benchmarks show worse instruction stream 

behavior than SPECint2000. Higher instruction cache 
miss rate, higher ITLB miss rate, higher BTB miss rate 
and consequently, higher I-stream stall cycles are 

observed in the multithreaded Java server applications 
in comparison to the integer programs in the SPECint 
suite. 

2. With increasing number of threads, the instruction 
behavior improves due to increased locality of access.  
All the aforementioned miss rates and stalls drop. If the 
server has network connections as in VolanoMark, the 
phenomenon is stronger.  

3. Resource stalls in the processor increase with increased 
number of threads, and eventually exceed the 
diminishing I-stream stalls. 

4. When there are more connections/clients, the number of 
instructions that the processor executes per unit of work 
(e.g. one transaction) increases, which affects the 
scalability of the system negatively.  Further 
enhancement in the operating system and the Java 
virtual machine may be expected to alleviate this 
problem. 
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