

Wor kload Character ization of M ultithreaded Java Servers

Yue Luo and Lizy Kurian John
Department of Electrical and Computer Engineering

The University of Texas at Austin
{luo,ljohn}@ece.utexas.edu

Abstract

Java has gained popularity in the commercial server
arena, but the characteristics of Java server applications
are not well understood. In this research, we
characterize the behavior of two Java server benchmarks,
VolanoMark and SPECjbb2000, on a Pentium III system
with the latest Java Hotspot Server VM. We compare
Java server applications with SPECint2000 and also
investigate the impact of multithreading by increasing the
number of clients. Java servers are seen to exhibit poor
instruction access behavior, including high instruction
miss rate, high ITLB miss rate, high BTB miss rate and,
as a result, high I-stream stalls. With increasing number
of threads, the instruction behavior improves, suggesting
increased locality of access. But the resource stalls
increase and eventually dwarf the diminishing I-stream
stalls. With more clients, the instruction count per unit
work increases and becomes a hindrance to the
scalability of the servers.

1. Introduction

Java has emerged as a competitive paradigm for server
platforms because of its “write once run everywhere”
property and its enhanced security features. Typically,
Java execution suffers from software translation
overhead, but the overhead of Just-In-Time (JIT)
compilation can be easily amortized in long-running
server applications. Moreover, Java provides the unique
opportunity for dynamic optimization, which will further
boost server performance.

Server workloads differ significantly from those of the
clients. Therefore, not surprisingly, performance
characteristics unveiled by studying client workloads may
not be applicable to the server side. One of the major
distinctive characteristics of server applications is that
they usually need to support many concurrent client
connections. Traditionally, there are three techniques to
handle concurrent connections, i.e. I/O multiplexing,
polling and signals. Unfortunately, in the current Java,
none of these techniques is directly available. To

compensate for the lack of these features, a Java
developer usually creates one or more separate threads to
manage each client connection [11]. Therefore the
performance under the condition of a large number of
threads is crucial for a Java server to support multiple
clients simultaneously. Sun Microsystems Inc. is
proposing a solution for this problem in JDK 1.4 beta
[16].

The number of threads, and thus the number of
simultaneous clients that a particular system can support
is generally constrained by the system resources and the
resource requirement of each thread. Optimization to
maximize the number of threads is out of the scope of this
paper. The goal of this paper is to provide a detailed
characterization of the impact of multithreaded Java
server applications on the processor performance. For
this purpose, we perform two types of experiments. First
we compare the Java server benchmarks with SPECint
2000, a more “ traditional” workload, to find out the
characteristics of the Java server applications. Then we
increase the number of simultaneous threads of the Java
server benchmarks to determine how multithreading
would impact the processor microarchitecture.

The rest of the paper is structured as follows. In the
next section we introduce some related work. Section 3
provides our experimental methodology as well as some
background on the benchmarks we use. Sections 4 and 5
present our main results for the two types of experiments.
Section 6 summarizes the key observations and offers the
concluding remarks.

2. Related work

As commercial applications are becoming more and
more important, there have been ongoing efforts to
characterize the performance of commercial workloads
[1, 2, 5, 8, 10, 13]. The majority of these studies have
been focused on OLTP and DSS applications as well as
on web servers, which are highly optimized and well-
established applications developed in C or C++ and
compiled into native machine binaries.

Java has also been the subject of active research for
years. Most of the results of Java workload

characterization are based on the study of SPECjvm98 [9,
12, 15], which is a client type benchmark suite.
SPECjvm98 is found to show as high as 31% kernel
activity, most of which is utlb, a TLB service routine.
These applications exhibit poor ILP and are insensitive to
wider issue width [9]. However, they show better
instruction cache performance than C/C++ applications
[12]. At the client level, software translation is seen to
dominate when the applications are short-running [12].
However, we do not expect the same dominance at the
server level.

Commercial pure Java servers are just emerging and so
are the research efforts in quantifying their behavior,
especially the multithreading impact. Cain et al. [4]
studied the effect of multithreading on branch prediction
and cache behavior in SPECjbb2000 and TPC-W by full
system simulation of a coarse-grained multithreaded
processor. In this research they found destructive
interference between threads. However, some
constructive interference between threads in
multithreading was reported in the past by Hily et al. [6].
They studied the behavior of branch prediction while
simultaneously executing several threads of instructions.
It was observed that some branch prediction algorithms
do benefit slightly from multithreading within a program.

In this paper we present our study of two Java server
benchmarks on a real machine with a modern processor
and a state-of-the-art JVM. The objective is to understand
the behavior of Java servers, particularly multithreading,
based on actual execution rather than simulation. The
impact of a large number of threads on caches, TLBs,
branch predictors, etc is investigated.

3. M ethodology

3.1. Benchmarks

In this paper, we use the VolanoMark benchmark and
SPECjbb2000 to study multithreaded Java servers. To
compare the two benchmarks to more “ traditional”
applications, we also measured SPECint2000 on the same
platform. SPECint2000 comprises such a wide variety of
applications that we did not expect the Java server
applications to stand out in terms of microarchitecture
metrics. We do find, however, that these Java servers
have some unique properties.

VolanoMark [17] is a pure Java server benchmark with
long-lasting network connections and high thread counts.
It can be divided into two parts, a server and a client,
though they are provided in one package. The server is a
slightly modified commercial chat server, VolanoChat,
which accepts connections from the chat client (Figure 1).
The chat client simulates many chatting users: it creates a
number of chat rooms, continuously sends messages to
the server and waits for the server to broadcast the

messages to all the users in the same chat room. The
VolanoMark server creates two threads for each client
connection. VolanoMark can be run to test both the speed
and the scalability of a system. In the speed test, it is run
in a loopback fashion with the server and the client on the
same machine. In the scalability test, on which our
experiment is based, the server and the client are run on
two separate machines with high-speed network
connections.

Figure 1. VolanoMark environment

Figure 2. SPECjbb2000 environment [19]

SPECjbb2000 (Java Business Benchmark) [18] is

SPEC's first benchmark for evaluating the performance of
server-side Java. The whole benchmark is implemented
within a single JVM. It is a Java program emulating a
three-tier client/server system with emphasis on the
middle tier (Figure 2). The emulation of the other tiers
isolates the middle tier and simplifies the benchmark by
not requiring user emulation or a database. (The
implication is that combining a JVM with a high
SPECjbb2000 throughput and a database tuned for online
transaction processing will provide a business with a fast
and robust multi-tier environment.) SPECjbb2000, like
TPC-C, models a wholesale company with warehouses
serving a number of districts. Customers initiate a set of
operations such as placing new orders or requesting the
status of an existing order. Additional operations are
generated within the company, such as processing orders
for delivery, entering customer payments, and checking
stock levels. SPECjbb2000 assigns one active customer
per warehouse, which is a 25MB data set stored in binary

user1 user2 user3 user1 user2 user3

Server

M
es

sa
ge

 1

Chat r oom 1 Chat r oom 2

Client

business logic
engine

(primary focus of
measurement)

client
threads

object
trees

trees (Btrees). SPECjbb2000 is memory resident without
inherent disk I/O. One warehouse maps directly to one
Java thread. As the number of warehouses increases
during the full benchmark run, so does the number of
threads.

3.2. Platform

Our monitoring experiments were performed on a Dell

Precision 410 PC with one Pentium III processor and 1
GB of physical memory. The Pentium III is a superscalar
out-of-order machine capable of issuing up to 5 uops and
retiring up to 3 uops in one cycle. The processor has a 40-
entry reorder buffer to facilitate retirement of instructions
in order. The processor employs speculative execution
using a two level branch predictor and a 512-entry branch
target buffer (BTB). The processor has separate L1 data
cache and L1 instruction cache. Each cache is 16 Kbytes
in size, 4-way set associative with 32-byte block size, and
employs LRU replacement algorithm. The data cache is
write-allocate, non-blocking and dual-ported. The
processor also has a unified 512 Kbyte 4-way set
associative non-blocking L2 cache with 32-byte block
size. The operating system on the system under
measurement is Windows NT Workstation 4.0 with
Service Pack 6a. We use the Sun JDK 1.3.0 with Hotspot
Server (build 2.0fcs-E, mixed mode) as the Java virtual
machine.

3.3. Monitor ing method

The Intel P6 family processor has 2 performance

counters. Events in nonprivileged user code (user mode)
and privileged operating system code (OS mode) can be
counted separately. Our lab developed PMON [14] to
access these counters. PMON consists of two parts, a
device driver and a control program. The driver reads the
performance counters [3,7] of the Pentium III processor
while the control program controls the measurement
process and logs the results. Since we developed the
whole tool ourselves, we have better control over it than
any other performance counter tools like Intel’s P6Perf.
The overhead of PMON is extremely small because it
does not have GUI displays and does not write results to
disks during measurements. Thus the tool incurs no disk
I/O activity given enough memory. The low overhead
associated with the tool allows us to perform the
measurements in a non-invasive fashion. The operation of
the tool was verified by several test cases and by
comparing with VTune and P6Perf.

Our experiment with VolanoMark follows a procedure
similar to that of the scalability test. We run VolanMark
client on a different machine from the server. Each chat
room has 20 users in it, a default value in VolanoMark.
We vary the number of chat rooms from 1 to 40 resulting

in a connection number range of 20 to 800. We measure
only the server activity. SPECjbb2000 is a data intensive
application with 25M bytes data for each
warehouse/thread. The maximal number of threads that
our system can afford without significant memory
swapping is 25. Therefore, we increase the number of
warehouses from 1 to 25 in our experiments.

Though it is desirable to have quick starting and
shutdown processes, the most important aspect of server
performance is how the server responds to client requests.
To synchronize our measurements with the client
connections in the VolanoMark test, we add a wrapper to
the client program. The wrapper sets up an extra
connection to the server to trigger PMON immediately
before it starts the actual client. PMON ends the
measurement as soon as the wrapper closes the extra
connection, which signals the end of the client program.
In this way, we only measure connection creation,
message transmission and connection closure and skip the
starting and shutdown of the server. To avoid counter
overflow, the counters are sampled every 3 seconds and
these samples are accumulated to get the final results.
Since SPECjbb2000 does not have a separate client
program, it is impossible to isolate the server transaction
activity from data initialization and report generation
without instrumentation of the benchmark itself. The
benchmark program has the ability to measure itself for
reporting benchmark scores. We modify Company.java
file to send signals to PMON so that our measurement is
synchronized with the benchmark’s own measurement
interval. To minimize the effect of instrumentation we
only recompile Company.java and leave all other class
files untouched. As can be seen from our measuring
method, the JIT compiling part should be negligible in the
results because we skipped the starting of the program,
where most compilation is done, and if any compilation
slipped into our measurement, it would only account for a
very small part in the long running of the benchmarks.

4. Comparing Java server benchmarks and

SPECint2000

In this section, we compare VolanoMarks and
SPECjbb2000 with SPECint2000. We run VolanoMark
with 1, 10, and 30 chat rooms (the number of connection
threads is 40, 400, and 1200, shown in figures and tables
as volano01, volano10 and volano30), and run
SPECjbb2000 with 1, 10 and 25 warehouses (the number
of warehouse threads is 1, 10 and 25, shown in figures
and tables as jbb01, jbb10 and jbb25). The
microarchitectural parameters measured are similar to
those measured by Bhandarkar et al. [3].

Table 1 shows the percentage of cycles spent in OS
mode. SPECjbb2000 has neither file accesses nor
network connections. And since it is a memory resident

Java database program, few page faults occur. Therefore,
OS cycle time constitutes less than 0.7% of the total
execution time, which is not very different from
SPECint2000. VolanoMark, on the other hand, has
significant OS part because it spends most of its time in
receiving and sending network messages, which is mainly
the task of the operating system. The number of threads
is also large. Thus scheduling and synchronizing these
threads constitutes a major task of the operating system.
Adding to this is the relatively simple operation of
distributing messages in user code. Consequently, more
than half of the execution time of VolanoMark is in OS
mode.

Table 1. Java servers vs. SPECint2000

Benchmar k OS Cycle
Percent CPI

Data
References

per
Instruction

M emory
Transactions

per 1000
Instructions

volano30 65.32% 3.03 0.620 10.67
volano10 58.25% 3.72 0.670 18.39
volano01 57.86% 3.68 0.722 9.51

jbb25 0.67% 2.31 0.572 15.97
jbb10 0.63% 2.29 0.578 14.14 Ja

va
 S

er
ve

rs

jbb01 0.57% 2.28 0.593 13.14
vortex 1.06% 1.27 0.674 2.80
twolf 0.37% 2.25 0.593 17.22
gcc 1.04% 2.25 0.629 11.36
eon 0.24% 1.36 0.839 0.01

crafty 0.27% 1.22 0.499 0.35
perlbmk 0.81% 1.13 0.535 1.06
parser 0.41% 1.64 0.638 6.61

gap 0.47% 1.32 0.646 9.48
bzip2 0.44% 1.36 0.579 7.28
vpr 0.38% 1.79 0.697 10.18
mcf 0.34% 6.65 0.620 95.92

SP
E

C
in

t 2
00

0

gzip 0.48% 1.24 0.382 1.21

In table 1 Java server benchmarks show higher CPI

than most of SPECint2000 programs. Operating system
code on servers is known to have worse CPI than user
code [8]. With a much larger OS part, VolanoMark
shows much higher CPI than SPECjbb2000.

The Pentium III processor has a microarchitecture
similar to the Pentium Pro discussed in [3]. Most
instructions are converted directly into single uops. Some
are decoded into one to four uops, and the more complex
instructions require microcode. The processor has 3
decoders that can handle up to 3 instructions every cycle.
Up to 5 uops can be issued every clock cycle to the
various execution units and up to 3 uops can be retired
every cycle. But in Java servers, instruction level
parallelism is seen to be limited: most of the time (more
than 60%), the decoders are idle when executing Java
server benchmarks (Figure 3a) and no uops can be retired
in more than 60% cycles (Figure 3b). Only mcf in
SPECint2000 shows worse decode/retirement profile, but,
as we will see in Figure 4, it is caused by the

extraordinarily high L1 data cache misses and L2 cache
misses.

Figure 3. Instruction decode/retirement
behavior

Figure 4. Cache and ITLB behavior

Table 1 shows the number of data references per

instruction and the number of memory transactions per
thousand instructions. On average, Java server programs
show a data reference rate similar to that of the
SPECint2000. The L1 data cache and L2 cache misses
per instruction of the Java servers are within the range of
SPECint2000 although on the higher end (Figure 4a). As
might be expected, there is a strong correlation between
L2 cache misses and memory transactions (Table 1). The
most significant effect in Figure 4a about the Java servers
is that they have much higher instruction miss rate. High
instruction cache miss rates have also been observed in
traditional commercial server applications written in C or
C++ [1, 2]. Server applications are complex and usually
have large instruction footprint. Dynamically compiled
code for consecutively invoked methods may not be
located in contiguous address spaces [12]. Thus the
instruction locality is poor. And the OS code, which is

(a) Instruction decode profile (b) Instruction retirement profile

(a) Cache misses per 1000
instructions

(b) ITLB misses per 1000
instructions

0% 20% 40% 60% 80% 100%

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex
jbb01
jbb10
jbb25

volano01
volano10
volano30

0 instr_decoded 1 instr_decoded
2 instr_decoded 3 instr_decoded

0% 20% 40% 60% 80% 100%

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex
jbb01
jbb10
jbb25

volano01
volano10
volano30

0 uops retired 1 uops retired

2 uops retired 3 uops retired

0 1 2 3 4 5

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex
jbb01
jbb10
jbb25

volano01
volano10
volano30

0 40 80 120

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex
jbb01
jbb10
jbb25

volano01
volano10
volano30

L2

L1 Instr
L1 Data

the major part in VolanoMark, incurs more instruction
cache misses when number of connections is small
(Figure 7a). This causes VolanoMark to show very poor
instruction cache behavior. Figure 4b shows that Java
server programs also incur high instruction TLB miss
rates. This phenomenon and poor instruction cache
behavior together suggest a large and scattered instruction
footprint generated by JIT.

State-of-the-art high performance microprocessors
employ speculative execution as a means to enhance
performance. Though the two-level adaptive branch
prediction scheme of Pentium III does a fairly good job in
terms of miss prediction rate, the BTB miss rates for Java
servers are higher compared to SPECint2000 (Figure 5a).
While we do not isolate the causes of the BTB misses and
mispredictions, it is clear that the current BTB
architecture does not work very satisfactorily for Java
server code. We also investigate the extent of speculation
in these applications. As in [3], we determine the
speculative factor, computed as the number of instructions
decoded divided by the number of instructions retired.
Applications with higher branch miss prediction rate
generally show higher speculative factor. But speculative
factor is also sensitive to branch frequency in the code.
We investigate the speculative factor of these applications
in an effort to understand whether there is a marked
difference in the way speculative microarchitecture is
utilized by the Java servers and the SPECint programs.
We observe that the speculative factors of Java servers are
within the range of SPECint2000 indicating that their
speculative behavior is similar (Figure 5b).

Figure 5. Speculation behavior

Figure 6 shows the I-stream stalls and resource stalls,

measured in terms of the cycles in which the stall
conditions occur. I-stream stalls are caused mainly by
instruction cache misses and ITLB misses. Resource
stalls show the number of cycles in which resources such
as reorder buffer entries, memory buffer entries, or

execution units are not available [3]. Because of the high
instruction cache miss rate and ITLB miss rate, Java
server benchmarks demonstrate higher I-stream stalls than
SPECint2000 benchmarks.

Figure 6. Stall cycles per instruction

In summary, the Java server benchmarks show worse

instruction stream behavior than SPECint2000. Higher
instruction cache miss rate, higher ITLB miss rate, higher
BTB miss rate and consequently, higher I-stream stall
cycles are observed in the multithreaded Java server
applications in comparison to the integer programs in the
SPECint2000 suite.

5. Impact of multithreading on the processor

microarchitecture

To study the impact of multithreading on the processor
microarchitecture, we vary the number of threads in the
benchmarks and study the cache performance, branch
predictor performance, etc. We increase the number of
threads in VolanoMark and SPECjbb2000 from a small
number to the maximal number that our system can
properly support, and measure the user and the OS
activity. In SPECjbb2000 less than 1% of the cycles are
in the OS mode. Though the OS part may show different
behavior, its effect on overall results is negligible in
SPECjbb2000. Therefore, we only present the combined
effect of the OS and user code in the case of
SPECjbb2000. In VolanoMark, however, the OS part
constitutes more than half of all cycles. So the OS part,
the user part and the total effect are shown for
VolanoMark.

Table 2 illustrates the changes in CPI and data cache
performance with increasing number of threads. CPI is
the compound effect of many factors including branch
prediction accuracy and cache misses. Data footprint is
expected to increase with increasing number of threads,
hence the increase in data cache misses. But as shown in

(a) Branch behavior (b) Speculative factor

(a) I-stream stall cycles per
instruction

(b) Resource stall cycles per
instruction

0 0.5 1 1.5 2

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex
jbb01
jbb10
jbb25

volano01
volano10
volano30

0 0.2 0.4 0.6 0.8

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex
jbb01
jbb10
jbb25

volano01
volano10
volano30

BTB Miss
Ratio

Brach Miss
Pred ratio

Branch per
Instr

0 0.5 1 1.5 2

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex
jbb01
jbb10
jbb25

volano01
volano10
volano30

0 2 4 6

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex
jbb01
jbb10
jbb25

volano01
volano10
volano30

Table 2, CPI does not increase steadily. In VolanoMark
we even observe a dropping OS CPI. This indicates that
some of the stalls disappear with heavier multithreading.

Table 2. Impact of multithreading

(a) CPI and data references per instruction for VolanoMark

CPI Data References per
Instruction

Number of
connec-

tions User OS Overall User OS Overall
20 2.84 4.68 3.68 0.629 0.833 0.722

200 3.29 4.10 3.72 0.620 0.715 0.670
400 2.79 3.56 3.23 0.615 0.651 0.636
600 2.70 3.24 3.03 0.618 0.621 0.620
800 2.56 2.97 2.82 0.612 0.581 0.592

(b) L1 data cache misses per data reference and L2 cache

miss rate for VolanoMark
L1 Data Cache M isses per

Data Reference
L2 Cache M iss Rate (Local) Number of

connec-
tions User OS Overall OS User Overall

20 0.047 0.059 0.053 0.049 0.039 0.043
200 0.046 0.106 0.080 0.115 0.084 0.095
400 0.042 0.146 0.104 0.128 0.078 0.093
600 0.039 0.171 0.120 0.134 0.070 0.086
800 0.037 0.190 0.132 0.144 0.072 0.089

(c) Metrics for SPECjbb2000

Number of
Warehouses CPI

Data
References

per
Instruction

L1 Data
Cache M isses

per Data
Reference

L2 Cache
M iss Rate

(Local)

1 2.28 0.5926 0.03976 0.1440
5 2.29 0.5787 0.04075 0.1591

10 2.29 0.5778 0.04094 0.1612
15 2.27 0.5723 0.04095 0.1623
20 2.28 0.5696 0.04129 0.1742
25 2.31 0.5715 0.04160 0.1888

The data set of one warehouse (25M bytes) in

SPECjbb2000 is big enough to overwhelm the L1 and L2
cache. Therefore L1 data cache miss rate and L2 cache
miss rate of SPECjbb2000 do not increase as quickly as
those of VolanoMark when the number of threads
increases. Though VolanoMark has much smaller data
set for one thread, it involves larger OS part. The
properties of OS code change significantly as we can see
from the drastic drop in the OS data reference per
instruction. The changing OS behavior and its interaction
with the user part make VolanoMark’s overall L1 data
cache and L2 cache miss rate not very straightforward to
explain. But in general, if there are more threads, the data
set is correspondingly bigger and the data cache miss
rates are also higher (see also Figure 13).

As shown in Figure 7, the impact of multithreading on
the instruction cache behavior is very different compared
to the data cache behavior. Multithreaded Java servers
respond to each client connection request with one or
more threads. Except for a few specialized threads (e.g.
logging), all threads share the same user code. This will
create some beneficial interference for instruction cache

in that the user instructions of the currently running thread
may have been fetched into L1 instruction cache by
previously running threads. With more client
connections, some relatively small parts in the programs
get executed more frequently. For example, when there
are more warehouses in SPECjbb2000, the underlying
Btrees become bigger and thus more time is spent in the
Java methods accessing these Btree structures. This
localized execution also contributes to the improvement
in the instruction cache behavior. For the OS part in
VolanoMark, the hotspot effect is more phenomenal,
indicated not only by the sharp drop in the instruction
cache miss rate but also by the changes in the number of
data references per instruction. With VTune we find that
at 600 client connections more than 35% of the OS cycles
are spent in afd.sys, a small driver (66KB) providing
sockets emulation. While at 20 client connections,
afd.sys accounts for only 11% of the OS cycles.
Accompanying the improvement in the instruction cache
behavior is the decrease in the number of instruction TLB
misses per instruction (Figure 8).

Figure 7. L1 instruction cache misses per
instruction

Figure 8. Instruction TLB misses per
instruction

As a result, the I-stream stalls are lowered for both the
OS part and the user part and thus more instructions can
enter the execution stage in one clock cycle, causing more
pressure on processor resources. As we can see, the
resource stalls increase and soon exceed the I-stream

(a) VolanoMark (b) SPECjbb2000

(a) VolanoMark (b) SPECjbb2000

0%

2%

4%

6%

8%

10%

12%

14%

20 200 400 600 800

connections

USER OS OVERALL

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

20 200 400 600 800

connections

USER OS OVERALL

0.25%

0.26%

0.27%

0.28%

0.29%

0.30%

0.31%

0.32%

0.33%

0.34%

1 5 10 15 20 25
warehouses

3.0%

3.2%

3.4%

3.6%

3.8%

4.0%

4.2%

4.4%

4.6%

4.8%

1 5 10 15 20 25
warehouses

stalls (Figure 9). The same localized execution and
beneficial interference also decrease the BTB miss rates.
And this in turn contributes to the improved branch
prediction accuracy with increasing number of threads
(Figure 10,11).

(c) SPECjbb2000 resource and instruction stream stalls per

instruction
Figure 9. Resource and instruction stream stalls

per instruction

Figure 10. BTB miss rate
All the above microarchitecture metrics affect

throughput of the server, but instruction count variation
with increased number of threads also needs to be studied.
Therefore, we present the results from a different angle,
normalizing all the metrics to a unit of useful work the
servers perform. In VolanoMark measurement, each
simulated client user sends the same number of messages.
Thus the server performs the same amount of useful work

for each connection. In SPECjbb2000, there are five
types of transactions. To measure the average effect, we
do not distinguish each transaction but normalize the
results by the total number of transactions.

Figure 11. Branch miss prediction rate

Figure 12. Instructions per unit work

The number of instructions executed for each unit of
useful work increases in both cases. The most significant
increase is in the OS part in VolanoMark (Figure 12).
This increase is largely due to network communications,
thread scheduling and synchronization. With increased
number of simultaneous clients, the VolanoMark server
has to spend more time in this overhead. For
SPECjbb2000, in addition to a higher thread management
overhead, the bigger Btree structures require more
instructions for each search and update operation. In
either case, the instruction count increase will certainly
affect the scalability of the Java server negatively.
Operating system code as well as the Java virtual machine
may be further optimized to alleviate the problem.

Cache misses per unit work also change with increased
number of threads. When the number of threads is small,
instruction cache misses constitute the major part of
cache misses. As the number of threads increase, the
fraction of L1 data cache misses and L2 cache misses
increases while the fraction of instruction cache misses
drops slowly (Figure 13). In VolanoMark the OS L1 data

(a) VolanoMark resource stalls
per instruction

(b) VolanoMark instruction
stream stalls per instruction

(a) VolanoMark (b) SPECjbb2000

(a) VolanoMark (b) SPECjbb2000

(a) VolanoMark (b) SPECjbb2000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

20 200 400 600 800
connections

USER OS OVERALL

0

0.5

1

1.5

2

2.5

20 200 400 600 800
connections

USER OS OVERALL

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

1 5 10 15 20 25
warehouses

Resource Instruction

0%

10%

20%

30%

40%

50%

60%

70%

20 200 400 600 800
connections

USER OS OVERALL

32%

34%

36%

38%

40%

42%

44%

1 5 10 15 20 25
warehouses

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20 200 400 600 800

chat rooms

USER OS OVERALL

5.8%

6.0%

6.2%

6.4%

6.6%

6.8%

7.0%

1 5 10 15 20 25

warehouses

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

4.00E+07

4.50E+07

20 200 400 600 800

connections

OS

USER

62,000

64,000

66,000

68,000

70,000

72,000

74,000

76,000

78,000

80,000

82,000

1 5 10 15 20 25
warehouses

cache misses increase so fast that it soon replaces
instruction cache misses as the dominant component in
the overall L1 cache misses. A possible reason is that the
operating system needs to manage a large number of
network messages and may need to copy them between
user and OS space. Please note that the increase in the
number of L1 data cache and L2 cache misses is
accompanied by the increase in the number of instructions
(and data references). This explains why no dramatic
cache miss rate increase is observed in Table 2.

(a) VolanoMark

(b) SPECjbb2000
Figure 13. Cache misses per unit work

6. Conclusions

Multithreading is an important characteristic of server
applications, especially for Java servers due to the lack of
effective mechanisms in the current Java to share threads
among client connections. In this paper, we present the
detailed workload characterization of two multithreaded
Java server benchmarks: VolanoMark and SPECjbb2000.
We measured their transaction activity on a state-of-the-
art HotSpot JVM on a real superscalar uniprocessor
machine. We compared Java servers to SPECint2000 and
studied the impact on processor with increasing number
of threads. Our main findings are as follows:
1. Java server benchmarks show worse instruction stream

behavior than SPECint2000. Higher instruction cache
miss rate, higher ITLB miss rate, higher BTB miss rate
and consequently, higher I-stream stall cycles are

observed in the multithreaded Java server applications
in comparison to the integer programs in the SPECint
suite.

2. With increasing number of threads, the instruction
behavior improves due to increased locality of access.
All the aforementioned miss rates and stalls drop. If the
server has network connections as in VolanoMark, the
phenomenon is stronger.

3. Resource stalls in the processor increase with increased
number of threads, and eventually exceed the
diminishing I-stream stalls.

4. When there are more connections/clients, the number of
instructions that the processor executes per unit of work
(e.g. one transaction) increases, which affects the
scalability of the system negatively. Further
enhancement in the operating system and the Java
virtual machine may be expected to alleviate this
problem.

Acknowledgement

This work is partially sponsored by Tivoli Corporation,
IBM, Intel, Microsoft, Sun Microsystems, and by
National Science Foundation under grant numbers CCR-
9796098 and EIA-9807112.

References

[1] A. Aliamaki, D. J. DeWitt, M. D. Hill and D. A. Wood.

DBMSs on a Modern Processor: Where Does Time Go? In
Proceedings of the 25th VLDB Conference, Edinburgh,
Scotland, 1999.

[2] L. A. Barroso, K. Gharachorloo and E. Bugnion. Memory
System Characterization of Commercial Workloads. In
Proceedings of the 25th International Symposium on
Computer Architecture, 1998.

[3] D. Bhandarkar and J. Ding. Performance Characterization
of the Pentium Pro Processor. In Proceedings of The third
International Symposium on High-Performance Computer
Architecture, 1997.

[4] H. W. Cain, R. Rajwar, M. Marden, M. H. Lipasti. An
Architectural Evaluation of Java TPC-W. In Proceedings of
The Seventh International Symposium on High-
Performance Computer Architecture, 2001.

[5] Q. Cao, P. Trancoso, J.-L. Larriba-Pey, J. Torrellas, R.
Knighten, Y. Won. Detailed Characterization of a Quad
Pentium Pro Server Running TPC-D. In Proceedings of
International Conference on Computer Design, 1999.

[6] S. Hily, A. Seznec. Branch Prediction and Simultaneous
Multithreading. In Proceedings of the Conference on
Parallel Architectures and Compilation Techniques, 1996.

[7] Intel Corporation. Intel Architecture Software Developer’s
Manual (Volum3: System Programming), 1999.

[8] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and
W. E. Baker. Performance Characterization of a Quad
Pentium Pro SMP Using OLTP Workloads. In
Proceedings of the 25th International Symposium on
Computer Architecture, Barcelona, Spain, June 1998.

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

20 200 400 600 800
connections

OS L2

USER L2

OS D-CACHE

USER D-CACHE

OS I-CACHE

USER I-CACHE

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1 5 10 15 20 25
warehouses

L2

L1 Dcache

L1 Icache

[9] T. Li, L. K. John, N.Vijaykrishnan, A. Sivasubramaniam,
A.Murthy, and J. Sabarinathan, Using Complete System
Simulation to Characterize SPECjvm98 Benchmarks. In
Proceedings of International Conference on
Supercomputing, 2000.

[10] A. M. G. Maynard, C. M. Donnelly and B. R. Olszewski.
Contrasting characteristics and cache performance of
technical and multi-user commercial workloads. In
Proceedings of the 6th International Conference on
Architectural Support for Programming Languages and
Operating Systems, San Jose, October 1994.

[11] S. Oaks and H. Wong. Chapter 1 in Java Threads, 2nd
Edition, O'Reilly & Associates, January 1999.

[12] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, and A.
Sivasubramaniam. Architectural Issues in Java Runtime
Systems. In Proceedings of the Sixth International
Conference on High Performance Computer Architecture,
January 2000.

[13] P. Ranganathan, K. Gharachorloo, S. V. Adve and L. A.
Barroso. Performance of Database Workloads on Shared-
Memory Systems with Out-of-Order Processors. In

Proceedings of the 8th International Conference on
Architectural Support for Programming Languages and
Operating Systems, October 1998.

[14] PMON webpage.
http://www.ece.utexas.edu/projects/ece/lca/pmon.

[15] B. Rychlik and J. P. Shen. Characterization of Value
Locality in Java Programs. Workshop on Workload
Characterization, ICCD, September 2000.

[16] Sun Microsystems, Inc. JDK1.4.0 Beta Release Notes.
2001.

[17] Volano LLC. VolanoMark benchmark.
http://www.volano.com/benchmarks.html.

[18] Standard Performance Evaluation Corporation.
SPECjbb2000 Benchmark.
http://www.spec.org/osg/jbb2000/

[19] Standard Performance Evaluation Corporation.
Architecture schematic of the SPEC JBB2000 benchmark
process.
http://www.spec.org/osg/jbb2000/images/arch.jpg.

