Bottlenecks in Multimedia Processing with SIMD style Extensions
and Architectural Enhancements

Deepu TallaMember, IEEELizy Kurian JohnSenior Member, IEEEand Doug Burger;*
Member, IEEE

Laboratory for Computer Architecture, Department of Electrical and Computer Engineering
*Computer Architecture and Technology Laboratory, Department of Computer Sciences
The University of Texas Austin
Austin, TX 78712
{deepu, ljohn}@ece.utexas.edu, dburger@cs.utexas.edu

Abstract — Multimedia SIMD extensions such as MMX and AltiVec speedup media processing,
however, our characterization shows that the attributes of current general-purpose processors enhanced
with SIMD extensions do not match very well with the access patterns and loop structures of media
programs. We find that 75-85% of the dynamic instructions in the processor instruction stream are
supporting instructions necessary to feed the SIMD execution units rather than true/useful computations,
resulting in the underutilization of SIMD execution units (only 1-12% of the peak SIMD execution units’
throughput is achieved). Contrary to focusing on exploiting more data level parallelism (DLP), in this
paper, we focus on the instructions that support the SIMD computations and exploit both fine- and coarse-
grained instruction level parallelism (ILP) in the supporting instruction stream. We propose the
MediaBreeze architecture that uses hardware support for efficient address generation, looping and data
reorganization (permute, packing/unpacking, transpose, etc). Our results on multimedia kernels show that
a 2-way processor with SIMD extensions enhanced with MediaBreeze provides a better performance than
a 16-way processor with current SIMD extensions. In the case of application benchmarks, a 2-/4-way
processor with SIMD extensions augmented with MediaBreeze outperforms a 4-/8-way processor with
SIMD extensions. A first-order approximation using ASIC synthesis tools and cell-based libraries shows
that this acceleration is achieved at a 10% increase in area required by MMX and SSE extensions (0.3%

increase in overall chip area) and 1% of total processor power consumption.

Preliminary versions of parts of this paper appeared in the Proceedings of IEEEatitieah Conference on
Computer Design, Sep. 2001 and ACM Computer Architecture News, Dec. 2001. This research was supported in
part by a State of Texas Advanced Technology program grant. L. K. John is also partially supported by the National
Science Foundation under grants EIA-9807112 and ECS-0113105 and by Dell, Intel, Microsoft, Tivoli, Motorola
and IBM Corporations. D. Burger is supported by a grant from the Intel Research Council, an NSF CAREER
Award, an IBM University partnership Award, and a Sloan Foundation Fellowship.

Index Terms — Media processing, subword parallelism, bottlenecks in SIMD extensions, workload
characterization, performance evaluation, hardware address generation, low-overhead looping, data

reorganization, and superscalar general-purpose processors.

1 Introduction

Contemporary computer applications are multimedia-rich, involving significant amounts of audio
and video compression, 2D image processing, 3D graphics, speech and character recognition,
communications, and signal processing. While dedicated media-processors and media-tailored ASICs are
used in small, low-power embedded devices such as PDAs, cell-phones, and set-top boxes, augmenting
the general-purpose processor with media-tailored enhancements has been the course of action in general-
purpose computing such as in desktop PCs and workstations. Hardware solutions such as ASICs give
advantages of high performance and low power, however, their flexibility and adaptability to new
applications is very limited. The necessity to run a variety of workloads including desktop, database,
media, Java, scientific and technical applications justifies not abandoning the aggressive general-purpose
core in favor of a media-specific solution. The most popular solution in the past five years has been the
enhancement of the general-purpose processor with multimedia extensions such as Intel's MMX, SSE1,
and SSE2, Sun’'s VIS, HP’s MAX, Compaqg's MVI, MIPS’'s MDMX, and Motorola’s AltiVec [1][2]. The
key idea in these extensions is the exploitation of subword parallelism in a single instruction multiple data
(SIMD) fashion. Four, eight or sixteen data elements of 32-, 16-, or 8-bits width can be operated
simultaneously in a single register (128-bits wide). Such techniques have been implemented not only in
commercial general-purpose processors, but also in DSP processors such as the TMS320C64 processor
from Texas Instruments [3] and the TigerSharc processor from Analog Devices [4].

Obviously the microprocessor design community has embraced the SIMD paradigm for media
extensions. Although compiler capabilities to automatically exploit the SIMD extensions have been
meager [50][51][52][53], media-rich applications have exploited the paradigm through the use of
assembly libraries and compiler intrinsics and have shown significant performance benefits [5][6][7][8].
While the improvement in performance has been encouraging and exciting, we notice that performance
does not scale with increasing the SIMD execution resources. Hence, we embark on a study to understand
the behavior of multimedia applications on SIMD extensions and the nature of the data level parallelism
(DLP) in multimedia applications. More specifically, we attempt to answer the following:
 SIMD enhanced general-purpose processors (GPPs) typically exploit the sub-word parallelism

between independent loop iterations in the inner loops of multimedia programs. Where does DLP in

media applications reside? Does most of the DLP reside in the inner loops, or is there significant DLP
in the outer loops?

* Nested loops are required for processing multimedia data streams and this necessitates the use of
multiple indices while generating addresses. GPPs contain limited support to compute addresses of
elements with multiple indices. How many levels of nesting are required in common media
algorithms? Are the addressing sequences primarily sequential?

* While SIMD extensions are capable of performing multiple computations in the same cycle, it is
essential to provide data to the SIMD computation units in a timely fashion in order to make efficient
use of the sub-word parallelism. Providing data in a timely fashion requires supporting instructions
for address generation, address transformation (data reorganization such as packing, unpacking, and
permute), processing multiple nested loop branches, and loads/stores. Are these supporting
instructions a dominant part of the instruction stream?

* What percentage of the peak computation rate is achieved for the SIMD execution units in GPPs? If
the computation rate is low, what are the reasons that prevent the SIMD execution units from
achieving a good computation rate?

* What are effective techniques to further enhance the performance of media applications on SIMD
enhanced GPPs?

This paper has two major contributions. The first contribution of the paper is the characterization
of media workloads from the perspective of support required for efficient SIMD processing. Typically,
studies have focused on the true/core computation part of the algorithms, whereas we show that
significant additional performance enhancements can be achieved by focusing on the supporting
instructions. The second contribution of the paper is the MediaBreeze architecture, which illustrates how
characterization studies can be used to design cost-effective architectural enhancements. The major focus
of the proposed architecture is on the instructions that support the true/core computations, rather than on
the true/core computations themselves.

The rest of the paper is organized as follows. In section 2 we describe the benchmarks used in the
study. Section 3 performs sensitivity experiments on the scalability of conventional instruction level
parallelism (ILP) and DLP techniques. In section 4 we describe studies to detect bottlenecks in the
execution of SIMD programs on GPPs. In section 4.1, we describe the loop nesting and access patterns in
multimedia applications and their mapping onto GPPs with SIMD extensions. In section 4.2, we classify
dynamic instructions into two fundamental categories, the true/core computation instructions and the

overhead/supporting instructions and analyze their mix in media benchmarks. In section 4.3, we measure

3

the percent of peak computation rate achieved for the SIMD execution units in GPPs by conducting
experiments on two different superscalar processors. Section 4.4 identifies additional bottlenecks in
conventional ILP processors that limit the computation rate of the SIMD execution units. Based on the
understanding of the behavior of multimedia applications and the bottlenecks in GPPs with SIMD
extensions, in section 5 we propose the MediaBreeze architecture that incorporates explicit hardware
support for processing the overhead/supporting instructions efficiently. The cost of incorporating the
MediaBreeze hardware support to a SIMD enhanced GPP is evaluated in section 6. Section 7 discusses

related work, and the paper is summarized in section 8.

2 Description of Benchmarks

We use nine multimedia benchmarks to study the architectural implications of GPPs with SIMD
extensions. Table 1 lists the benchmarks along with a small description and the dynamic instruction
count. Sample source code for each of the benchmarks is provided in [9]. SIMD version of the
benchmarks was created for two processors, namely, Pentium Ill and Simplescalar based superscalar
processor. The Pentium Il MMX code was generated using assembly and compiler intrinsics, while the
Simplescalar SIMD code was generated using instruction annotations and assembly code. The code was
compiled by Intel C/C++ compiler version 4.5 and gcc version 2.6 respectively, using maximum compiler
optimizations (including loop unrolling). Our suite includes applicatioggl(, aud, jpeg, ijpegand
decryd) and kernelsdfa, dct, motest andscale) The kernels used are major components in image and
video processing standards such as JPEG, MPEG, H.263, etc. Many of these benchmarks are also part of
media benchmark suites such as MediaBench [10].

Table. 1. Description of the multimedia benchmarks

Benchmark Description Instruction count
Kernels
Color filter array interpolation of a 2 million pixel image with a 5x5 filtgr
cfa (16-bit data) 349,447,42(Q
dct 2-D discrete cosine transform of a 2 million pixel image (16-bit data) 160,05(,834
motest Motion estimation routine on a frame of 2 million pixels (8-bit data) 136,801 J609
scale Linear scaling of an image of 2 million pixels (8-bit data) 3,129,815
Applications
G.711 speech coding standard (A-law to u-law and vice-vgrsa)
g711 conversions on 2 million audio samples (8-bit data) 63,360,233
Audio effects on 2 million audio samples (echo, signal mixing fnd
aud filtering) (16-bit data) 283,199,979
jpeg JPEG image compression on a 800-by-600 pixel image 208,940,079
ijpeg JPEG image de-compression resulting in a 800-by-600 pixel image 136,143,916
decrypt IDEA decryption on 192,000 bytes of data 125,683,876

4

3 A Scalability test

Media applications are known to contain significant amount of DLP and a logical approach to
improve performance is to scale the processor resources to extract more parallelism. To understand the
ability of wide out-of-order superscalar processors to increase performance of multimedia programs, we
performed experiments scaling the various resources of the processor (using a modified Simplescalar-3.0
simulator [11] enhanced with 64-bit SIMD execution units). All components are scaled as in Table 2.
Each of the nine benchmarks was modified to incorporate SIMD code using assembly and instruction
annotations of the modified Simplescalar simulator. Fig. 1(a) shows the instructions per cycle (IPC) for
different processor configurations for each of the benchmarks. We, incidentally, also note that almost the
same performance can be achieved even if the SIMD execution units were not scaled; i.e. the non-SIMD
components are scaled up to the 16-way processor keeping the SIMD component constant as a 2-way
processor (i.e. 2 SIMD ALUs and 1 SIMD multiplier). The IPC for this case is depicted in Fig. 1(b). The
percentage increase in IPC when scaling both the SIMD and non-SIMD resources over the case of scaling

only the non-SIMD resources is shown in Fig. 1(c).

‘ W 2-way @ 4-way [J8-way [J16-way ‘

6 —
o 4]
il [] wi || ol o
cfa dct mot scale aud g711 jpeg ijpeg decrypt
(a)
6 —
O 4
S (1 T e ol [l s]
o Lol 11 w11 ol 1 1 ol 1 ol 1] T
cfa dct mot scale aud g711 jpeg ijpeg decrypt
(b)
cfa dct mot scale aud g711 ipeg ijpeg decrypt

4-way <1% <1% <1% <2% <4% <1% <1% <1% <1%

8-way <1% <1% <1% <3% <1% <1% <1% <1% <1%

16-way <1% <1% <1% <1% <1% <1% <1% <19 <1%
()

Fig. 1. (a) IPC with both the SIMD and non-SIMD resources scaled, (b) IPC witkSheID resources
scaled, but SIMD resources are constant (same as 2-way processor configuration), and (c) performance
improvement of (a) over (b)

Table. 2. Processor and memory configurations

Parameters 2-way 4-way 8-way 16-way
Fetch width, Decode width, Issue width, and Commit width 2 4 8 16
RUU Size 32 64 128 256
Load Store Queue 16 32 64 128
Integer ALUs (latency/recovery = 1/1) 2 4 8 16
Integer Multipliers (latency/recovery = 3/1) 1 2 4 8
Load/Store ports (latency/recovery = 1/1) 2 4 8 16

L1 I-cache (size in KB, hit time, associativity, block size in bytes) 16,1,1,32 16,1,1,32 16,1,1,132 32,1,1, 64
L1 D-cache (size in KB, hit time, associativity, block size in bytes) 16,1,4,32 16,1, 4, 32 16,1, 4,32 16,1, 4} 32

L2 unified cache (size in KB, hit time, associativity, block size) 256, 6, 4, 64 256, 6, 4,64 256, 6, 4, 64 256, 6,14, 64
Main memory width 64 bits 128 bits 256 bits 256 bits

Main memory latency (first chunk, next chunk 65, 4 65, 4 65, 4 65,4

Branch Predictor — bimodal (size, BTB size) 2K, 2K 2K, 2K 2K, 2K 2K, 2K

SIMD ALUs 2 4 8 16

SIMD Multipliers 1 2 4 8

The observation suggests that SIMD execution units are already underutilized and bottlenecks are
concealed elsewhere in the non-SIMD portion of the application.

4 |dentification of Bottlenecks

It is evident that there are bottlenecks in SIMD style media processing and that it is not possible
to get significant amounts of additional performance improvements by merely increasing the SIMD
resources. We investigate characteristics of media programs that point towards the bottlenecks in current
SIMD architectures.

4.1 Nested loops in multimedia applications

In this section we investigate the nature of multimedia loops to understand the levels of nesting,
stride patterns, and the location of the parallelism. Desktop/workstation multimedia applications such as
streaming video encoding/decoding (MPEG 1/2/4 and Motion JPEG), audio encoding/decoding
(ADPCM, G.7xx, MP3, etc), video conferencing (H.323, H.261, etc), 3D games, and image processing
(JPEG, filtering) typically operate on sub-blocks in a large 1- or 2-dimensional block of data. Audio
applications operate on chunks of one-dimensional data samples at a time (for example, the MP3 codec
operates on “frames” which are smaller components of the complete audio signal that last a fraction of a
second). Image and video applications operate on sub-blocks of two-dimensional data at a time (for
example, the DCT algorithm operates on 8x8 pieces of data in a large image such as 1600x1200 pixels).
Such a division of data into sub-blocks results in the data being accessed with different strides at various
instances in the algorithm. Fig. 2 depicts a 2-dimensional block of data that is accessed with four different
strides—two in the vertical direction and two in the horizontal direction.

6

Stride-4 (horz) Stride-2 (horz)

Stride-3 (vert) L]

TP

P sub-block

[1] [T 11 [T 11

Fig. 2. A 2-D data structure in which sub-blocks of data are processed. The data elements surrounded by
the dotted ellipse form one sub-block. Each sub-block requires two strides (one each along the rows and
columns of the sub-block, namely stride-4 and stride-3). Additional two strides (stride-2 and stride-1)
are rguired for accessipdifferent sub-blocks in the horizontal and vertical direction.

Source code for the aforementioned algorithms involves the usage of multiple nested loops
(commonly ‘for’ loops in C language) to process the data streams. Much of the available parallelism in
multimedia applications is seen to be DLP that resides at the various levels of nesting. The dimensions of
each sub-block for most multimedia algorithms are small (filtering typically uses 3x3 or 5x5 or 7x7 sub-
blocks, DCT operates on 8x8 sub-blocks, and motion estimation operates on 16x16 sub-blocks) resulting
in limited parallelism in the innermost loop [12]. However, the number of sub-blocks themselves is large
since the size of the data stream can be on the order of several MB. Consequently, a significant part of the
DLP in multimedia applications resides outside the innermost loop; the way applications are coded
currently.

Existing GPPs with SIMD extensions exploit DLP between independent loop iterations in the
innermost loops leading to significant untapped available DLP in multimedia applications. Fig. 3 shows
the SIMD C-code implementation of the discrete cosine transform (the DCT is a major component in
JPEG image and MPEG video coding) which operates on 8x8 sub-blocks in an image of a given height
and width. The second matrix is transposed before doing the computation because accessing the second
matrix in column-major order results in a significant amount of overhead. This is particularly true when
using SIMD instructions because a SIMD register needs to be packed with an element from different rows
(and hence not contiguous). If a SIMD register holds eight elements, then all eight rows of a matrix need
to be loaded into the cache and then elements belonging to the same column are packed into the register.
It is possible to eliminate one of the transpose operations (either from row or column 1D-DCT) if a
transposed version of the DCT coefficients is available. In Fig. 3, there are a total of five nested for-loops
for the DCT routine. Current SIMD instructions exploit data level parallelism (DLP) in the innermost for-
loop (variable ‘m’). The number of iterations would be scaled down according to the width of the
available SIMD datapath (currently 64 or 128 bits wide) and size of each element (8-bit, 16-bit, or 32-bit).

void 2D_DCT(IMAGE[IMAGE_WIDTH][IMAGE_HEIGHT]) void 1D_XXX_DCT(DCT_COEFF[8][8]BLOCK[8][8])
{

for(i=0;i < IMAGE_HEIGHT/8; i++) Transpose (BLOCK [8][8]);

for(j = 0; j < IMAGE_WIDTH/8; j++) for(k = 0; k < 8; k++)

{ {
1D_ROW_DCT (DCT_COEF [8][8], BLOCK [8][8]); for(1=0; 1< 8; I++)
1D_COL_DCT (DCT_COEF [8][8], BLOCK [8][8]):; {

} temp = 0;

} for(m = 0; m < 8/SIMD_WIDTH; m++)
temp +=

SIMD_MUL (DCT_COEFF [k][m], BLOCK [l][m];

output[K][l] = SIMD_REDUC (temp)
11}

Fig. 3. C-code for 2D-DCT implementation

Next, we analyze the access patterns in media applications. Analysis of media and Digital Signal
Processing (DSP) applications unveils invocation of several address patterns, often multiple simultaneous
sequences [13]. Fig. 4 shows the typical access patterns in media and DSP kernels. Table 3 lists several
key multimedia and DSP kernels and the typical number of nested loops required along with their
corresponding primitive addressing sequences. Hardware to generate multiple address sequences is not
overly complicated, but supporting them using general-purpose instruction sets is not very efficient, as the
available addressing modes are limited. Furthermore, there is not enough support for keeping track of
multiple indices/strides efficiently in GPPs. Similarly, keeping track of multiple loop nests/bounds
involves a combination of several addressing modes and instructions. Thus, even though GPPs are
enhanced with SIMD extensions to extract DLP in multimedia programs, there is a mismatch between the
requirements of media applications (for address generation and nested loops) and the ability of GPPs with
SIMD extensions. Simple ASICs can perform these tasks efficiently; however, loss of programmability

and flexibility is a weakness of that approach.

(2]

Given a sequence of length L, if,Ais address m in the range<Om < L-1, most multimedia and DSP kerne
can be considered to be composed of primitive addressing sequences such as the following:

® Sequential addressingofAg, Ay, .. .Ant

(i) Sequential with offset (k)/stride addressings. 4 A+ Az+k -y Anc1+k

(iii) Shuffled addressing (base r, N/t = p)oAAp, Azp -y Ar, Apir, Aopin ooy Aoy Agpia ooy Agpi o,

An1
(iv) Bit-reversed addressing (e.g. N = 8)5,M4, Az, As, A1, As, Az, A7
(V) Reflected addressing:oAAN.1, A1, An2s s Amy Ancmy -+ Anyz-1, Aniz

Fig. 4. Typical access patterns in multimedia and DSP kernels [13]

Table. 3. Summary of key media algorithms and the required nested loops
along with their primitive addressing sequences

Multimedia/DSP algorithm I\Il(if;esd Addressing Sequences
Discrete Cosine Transform (JPEG & MPEG 5 Sequential and sequential with multiple

coding) offsets/strides
Sequential and sequential with multiple

Motion Est./Comp. (MPEG, H.263, etc) 5 offsets/strides
Sequential and sequential with multiple
Wavelet Transform (JPEG2000) 2-6 offsets/strides
Color _Space Conversion (JPEG, MPEG, 3D >4 Sequential, sequential with offsets, and shuffled
graphics)
: . . . , Sequential and sequential with multiple
Scaling and matrix operations (image/video) 3 offsets/strides
Fast Fourier transform >3 Shuffled and bit-reversed
: L : Sequential and sequential with multiple
Color Filter Array, median filtering, correlation 2-5 offsets/strides
Convolution, FIR, and IIR filtering 3-4 Sequential, sequential with offsets, and reflected

Sequential and sequential with multiple
offsets/strides
Up/Down sampling, 3-D transformation Sequential and sequential with multiple
(graphics) offsets/strides
Sequential and sequential with multiple
offsets/strides

Sequential and sequential with multiple
offsets/strides

Edge detection, alpha saturation (image/videq 5

o
N
|

Quantization (JPEG, MPEG) 2-4

ADPCM, G.711 (speech) 2-3

4.2 Overhead/Supporting instructions

The discussion in the previous section points to the need of several instructions to compute
addresses and otherwise support the core SIMD computations. In this section, we analyze the media
instruction stream by focusing on the two distinct sets of operationstrtigécore computations as
required by the algorithm and tlowerhead/supporting instructionssuch as address generation, address
transformation (data movement and data reorganization such as packing and unpacking), loads/stores, and
loop branches. Consider the DCT code in Fig. 3. The true/core computation instructions for the DCT
routine are the multiply (of DCT coefficients and data) and the accumulate operations (addition of
multiplied values). This is shown in bold in Fig. 3. All the other instructions are denotederbiead
their sole purpose is to aid in the execution of the true/core computation instructions. Many of them arise
due to the programming conventions of general-purpose processors, abstractions and control flow

structures used in programming, and mismatch between how data is used in computations versus the

9

sequence in which data is stored in memory. A similar kind of classification of instructions into access
and execute instructions was performed in decoupled access-execute (DAE) processors [14][15]. In our
classification, the overhead component includes loop branches and reduction operations [16] that are
specific to multimedia applications (e.g. packing/unpacking, and permute) in addition to the memory
access task. The instructions contributing to the overhead are:

» Address generation — considerable processing time is dedicated in performing the address calculations
required to access the components of the data structures/arrays, which is sometimes called address
arithmetic overhead.

» Address transformation — transforming the physical pattern of data into the logical access sequence
(transposing the matrix in Fig. 3, packing/unpacking data elements in SIMD computations, and
reorganizing data in other ways.

* Loads and Stores — data is not always available in registers and has to be fetched from memory or
stored to memory, the so-called access overhead.

» Branches — performing control transfer (for each of the 5 nested for-loops in the example).

Fig. 5 shows the assembly code classified into true/core computation and overhead instructions
(for two processors) for the 1D-DCT routine from Fig. 3 excluding the transpose function, i.e. the three
inner level nested loop structure. Transposing the second matrix before multiplication will necessitate
additional overhead instructions for address transformation. The first processor is a Pentium Il processor
based on the P6 microarchitecture [17], and the second processor is based on a modified Simplescalar
processor enhanced with SIMD extensions. The SIMD registers in the case of Simplescalar are aliased to
the floating-point registers. From Fig. 5, it can be seen that a significant number of overhead/supporting
instructions are necessary to feed the SIMD computation units.

In order to quantify the amount of overhead/supporting instructions in multimedia programs, we
evaluated the performance of six of the nine benchmarks listed in Talyed.ijpeg, anddecryptare not
used in this experiment because the source code for these three benchmarks includes initialization
routines and file I/0. Five of the six benchmarks (exogpt1l)were mapped in such a way that the SIMD
execution units perform every true/core computation. Fig. 6 shows the breakdown of dynamic instructions
into various classes (memory, branch, integer, SIMD overhead, and SIMD/true computation). It is seen
that the overhead/supporting instructions that are required to assist the SIMD computation (true/core
computations) instructions dominate the dynamic instruction stream (75-85%). A significant number of

instructions are required for processing the loop branches and computing the strides for accessing the data

10

Pentium Il —= MMX code

True Computation

Simplescalar-SIMD —

lea ebx, DWORD PTR [ebp+128] load/address overhepd move $11,$0 address overhead
mov DWORD PTR [esp+28], ebx load/address overhead |.d $f6,$LC1 load overhead
$B1%$2: $L33:
xor eax, eax address overhead move $10,%$0 address overhead
mov edx, ecx address overhead move $9,$5 address overhead
lea edi, DWORD PTR [ecx+16] load/address overheal $L37:
mov DWORD PTR [esp+24], ecx load/address overhead mtcl $0,$f4 initialization overhead
$B1$3: mtcl $0,$5 initialization overhead
mov(q mm1, MMWORD PTR [ebp] load overhead move $8,$0 address overhead
pxor mmO, mmO initialization overhead|| move $7,%$9 address overhead
pmaddwd mm1, MMWORD PTR [eax+esi] move $3,$4 address overhead
True Computation $LAL:
movq mm2, MMWORD PTR [ebp+8] load overhead |.simd $f0,0($3) SIMD load overhead
pmaddwd mm2, MMWORD PTR [eax+esi+8] I.simd $f2,0($7) SIMD load overhead

mul.simd $f0,$f0,$f2

add eax, 16 address overhead addu $8,$8,1 address overhead
paddw mml, mmO True Computation add.simd $f4,$f4,$f0 True Computation
paddw mm2, mml True Computation slt $2,$8,2 branch related

movq mmO0, mm2 load related overhead | overhead

psrig mm2, 32 SIMD reduction addu $7,$7.8 address overhead
overhead addu $3,$3,8 address overhead
movd ecx, mmO SIMD load overhead bne $2,$0,$L41 loop branch overhead
movd ebx, mm2 SIMD load overhead redu.simd $f4,$4,$f6 SIMD reduction

add ecx, ebx SIMD conv. Overhead| overhead

mov WORD PTR [edX], cx store overhead addu $9,$9,16 address overhead
add edx, 2 address overhead addu $10,$10,1 address overhead
cmp edi, edx branch related slt $2,$10,8 branch related
overhead overhead

ig $B1$3 loop branch overhead|| s.simd $4,0($6) SIMD store overhead
$B1%$4: bne $2,$0,$L37 loop branch overhead
mov ecx, DIWORD PTR [esp+24] load/address overhead addu $6,$6,16 address overhead
add ebp, 16 address overhead addu $4,$4,16 address overhead
add ecx, 16 address overhead addu $11,$11,1 address overhead
mov eax, DWORD PTR [esp+28] load/address overhegd slt $2,$11,8 branch related

cmp eax, ebp branch related overhead

overhead bne $2,$0,$L33 loop branch overhead
ig $B1$2 loop branch overhead

gcc code

True Computation

Fig. 5. Optimized assembly code for the 1D-DCT routine shown in Fig. 3 (excluding matrix transpose)

organized in sub-blocks. The Pentium Ill processor has more memory references than the Simplescalar

based processor because the x86 ISA has fewer logical registers (8 versus 32 in conventional RISC

processors).

4.3 SIMD throughput and efficiency

In this section, we evaluate the throughput of the SIMD units to understand the impact of the

overwhelming number of instructions needed to support the SIMD computations. We define SIMD

efficiency as the ratio of the execution cycldeally necessary for the true/core computation instructions

to the overall execution cycleactually consumed. In other words, SIMD efficiency indicates what

fraction of the peak throughput of the SIMD units is actually achieved. The actual execution cycles are
11

‘ @ memory B branch Jinteger B SIMD-overhead W SIMD-computation ‘

100% - - —

s00s | | @é} % || g | B
60% - -
40% - — % = % %
20%

N E N E OIS

cfa-Pll cfa-SS dct-Pll dct-SS scale- scale- motest- motest- aud-Pll aud-SS g711- g711-
Pl SS Pl SS Pl SS

Fig. 6. Breakdown of dynamic instructions into various classes

obtained by measurement with processor performance counters or by simulation, while the ideal cycles
are computed assuming that the overhead instructions can be perfectly overlapped with the true/core
computation instructions. In the ideal case, overhead instructions such as address generation, memory
access, data reorganization, and loop branches do not consume additional processor cycles. The number
of ideal execution cycles depends on the amount of SIMD resources in a machine. For example, consider
a matrix multiplication algorithm of twd\xN matrices, with computational complexi®(N°). This is
assuming that there is one multiplier and it is pipelined and the addition/accumulation can take place in
parallel. Thus, an 8x8 matrix multiply should take 512 cycles on a machine with one multiplier (in the
pure dataflow model), and take 128 cycles on a machine with 4 multipliers (assuming that there are at
least 4 adders for the accumulation). If this algorithm were to take 2500 cycles on a real machine with one
multiplier, then the efficiency of computation is 20% (512/2500). The important thing to note here is that

if efficiency achieved is low, it suggests opportunities for further enhancement.

We measure the SIMD efficiency on two platforms, a Pentium Il machine and a 2-way
Simplescalar simulator, for each of the first six benchmarks described in Table 1. The MMX extensions in
the Pentium Il processor provide fixed-point SIMD capability with two 64-bit MMX ALUs and one 64-
bit MMX multiplier. The SSE extensions provide floating-point SIMD capability. The Simplescalar
processor execution core is similarly configured to contain two 64-bit SIMD ALUs and one 64-bit SIMD
multiplier. Table 4 shows the execution statistics and SIMD efficiency for each of the benchmarks. The
ideal number of execution cycles is computed by identifying the number of required true/core
computation operations and the available SIMD execution units (2 ALUs and 1 multiplier in both the
processors).

12

Table. 4. Execution statistics and efficiency of media programs

Pentium Ill - MMX & SSE Simplescalar - SIMD
Benchmark
Inst. Couni (e _| Efficiency | Inst. Coun (e Efficiency
Cycle coun Cycle count

cfa 404,290,544 231,616,93p 5.16% 349,447,420 338,685 3.53 %

dct 188,798,806 123,944,326 62% 160,050,834 131,587, 5.84 %
scale 2,170,274 20,756,924 2.31% 3,129,815 4,626, 10.36 ¥
motest 156,734,613 113,623,185 338% 136,801,609 129,364 5.94 %
aud 220,320,505 150,386,375 11.97% 283,199,976 191,516 9.40 %
g711 59,066,806 64,006,729 1.12 4 63,360,233 49,302, 1.45 %

SIMD efficiency ranges from 1% to 12% and 1.5% to 10.5% for the Pentium Ill and Simplescalar
based processor respectively. The SIMD efficiency is alarmingly low because the overhead/supporting
instructions dominate the dynamic instruction stream. The execution time is also increased because of
conventional architectural limitations such as cache misses, misalignment issues, resource stalls, BTB
misses, TLB misses, and branch mis-speculations. The efficiency of the Pentium Ill processor is slightly
higher than the Simplescalar based processor in four of the six benchmarks because it is able to issue
three micro-ops (equivalent to 2.7 x86 CISC instructions for the benchmarks above) while the
Simplescalar processor issues two instructions per cycle. The L1 cache latency of the Pentium Il
processor is 3 cycles, while that of the Simplescalar configuration is 1 cycle. Hence two memory-
intensive benchmarks¢aleandg711) achieve a better efficiency for the Simplescalar configuration. We
also measured similar statistics for the Pentium Ill and the Simplescalar based processor without SIMD
extensions. We found that the execution time is worse than SIMD enhanced processors, but the efficiency
is higher for non-SIMD processors (2.5% - 16.5%). This is because a 64-bit SIMD execution unit counts
towards a peak rate of either 4 or 8 computations per cycle (16-bit or 8-bit data), whereas the scalar
execution unit counts toward a single computation per cycle. While it is true that SIMD enhancements
were not added to improve efficiency of processing but to speedup multimedia programs, our
characterization highlights the gap between peak rate and achieved rate for SIMD programs and points to
ample opportunities for performance improvement.

4.4 Memory access and branch bottlenecks

Memory latency prevents processors from fetching data in a timely fashion to achieve peak
throughput. Also, supporting wide issue processors requires the ability to fetch across multiple branches.
In this section, we investigate how memory latency and branch prediction impact the performance of
these media kernels and applications. Table 5 shows the IPC with unit cycle memory access (i.e. a perfect

L1 cache) and perfect branch prediction for the 2-, 4-, 8-, and 16-way processors with SIMD extensions.

13

Table. 5. Performance (IPC) with unit cycle memory accesses and perfect branch prediction

cfa dct mot scale aud g711 ipeg ijpeg | decrypt

Unit cycle memory access

2-way 1.04 1.26 1.06 1.43 1.5) 1.99 1.33 184 1|75

4-way 2.19 1.78 2.14 2.84 2.50 3.0 2.00 2.30 2|52

8-way 2.71 2.30 2.85 5.5¢ 3.66 5.22 2.37 3.p1 2{95

16-way 2.71 2.95 2.86 9.54 5.2f 7.76 5.10 4.07 3{89
Perfect branch prediction

2-way 1.75 1.60 1.79 0.64 1.62 1.29 1.24 1.42 1|70

4-way 3.44 3.09 3.59 1.0% 2.69 2.29 1.92 2.60 2{40

8-way 6.47 5.91 7.03 2.3% 4.3b 3.79 2.46 3.09 2(86

16-way 10.49 11.19 11.61 3.91 6.37 5.55 5.45 666 3.79

It is seen that different programs vary in their sensitivity to memory latency and branch
prediction.Scaleandg711benchmarks are memory bound programs and improve significantly due to a
unit cycle memory access but show negligible increase in IPC due to perfect branch pre@itdjalct,
andmotare benchmarks that operate on sub-blocks in a 2-D structure requiring five levels of loop nesting
and benefit the most from perfect branch prediction and the ability to fetch across multiple branches in a
single cycle. A unit cycle memory access has negligible performance impact on these three benchmarks.
The remaining four benchmarkaud, jpeg ijpeg, anddecryp} benefit equally from both perfect branch
prediction and unit cycle memory access. It is evident from this experiment that it is extremely important
to provide low latency memory access and excellent branch prediction extending over multiple branches
in order to achieve good performance.

5 Hardware Support for Efficient SIMD Processing

5.1 Decoupling Computation and Overhead

The characterization of media applications presented in the previous sections showed that
supporting or overhead related instructions dominate the instruction stream. Obviously,
overhead/supporting instructions need to be either eliminated, alleviated, or overlapped with the true/core
computations for better performance, i.e. the higher the overlap of overhead/supporting instructions, the
higher the SIMD efficiency. We exploit the observed characteristics of the media programs and propose
to augment GPPs (having SIMD execution units) with specialized hardware to efficiently overlap the
overhead/supporting instructions. We refer to this as the MediaBreeze architecture. Fig. 7 illustrates the
block diagram of the proposed architecture.

14

/

Load/Store
units

L1 D-cache [*

v

L2 cache

v

Main memory

o

Starting of

Breeze instructio

SIMD
pipeline

Instruction
stream
¢ - 4

Instruction |semsssl> Non-SIMD

Decoder ali 1
Normal pipeline
superscalar
execution

- new hardware

existing hardware used
differently

%eful computations
1s-2 | 1%
» SIMD
1S-3|< computation
> unit
Data —
Reorganization/ (O L
Address <
transformation IS - input stream
Data Station OS - output stream
Overhead _/

In order to perform the SIMD operations, the MediaBreeze architecture introduces new hardware

Address calculation: address arithmetic functions are moved from the execution unit subsystem in
current processors to a dedicated hardware unit where address arithmetic hardware would generate all
input and output address streams/data structures concurrently with the SIMD computations. The CPU

Fig. 7. The MediaBreeze Architecture

15

units as well as uses existing hardware units. The new hardware units (darkly shaded blocks in Fig. 7) are
the address generation units, hardware looping, and Breeze instruction memory & decoder. The existing
hardware units used (lightly shaded blocks in Fig. 7) are load/store units, SIMD computation unit, data

reorganization/address transformation, and the data station. The SIMD computation unit handles the
true/core computation part while the remaining units handle the overhead/supporting instructions. The
hardware units that process the overhead/supporting instructions are:

in current ILP processors performs address calculations explicitly. Dedicated address arithmetic
hardware would allow for the SIMD computation unit to stream at the peak rate.

Address transformation: In many algorithms, the logical access sequence of data is vastly different
from the physical storage pattern. Various permute operations including pack, unpack instructions are
used. For example, the first element in eight columns of a matrix needs to be packed into a single row
(or SIMD register). Similarly a single element (16-bits wide) needs to be unpacked into all the four
sub-words of a SIMD register (64-bits wide). MediaBreeze efficiently handles the task of reordering
data with explicit hardware support.

Loads and stores: The same load/store units present in conventional ILP processors are used for this
purpose.

Branch processing: To eliminate branch instruction overhead, MediaBreeze employs zero-overhead
branch processing using dedicated hardware loop control and supports up to five levels of loop
nesting. All branches related to loop increments (based on indices used for referencing data) are
handled by this technique. This is done in many conventional DSP processors such as the Motorola
56000 and TMS320C5x from Texas Instruments [18].

Data Station: This is the register-file for the SIMD computation and is implemented as a queue.
Dedicated register-files are present in conventional machines for SIMD either as a separate register
file (as in AltiVec) or aliased to the floating-point register file (as in MMX).

Breeze instruction memory and decoder: In order to program/control the hardware units in the
MediaBreeze architecture, a special instruction called the Breeze instruction is formulated. The
Breeze instruction is a multidimensional vector instruction. The Breeze instruction memory stores
these instructions once they enter the processor. Fig. 8 illustrates the structure of the Breeze
instruction.

Five loop index counts (bounds) are indicated in the Breeze instruction to support five level

nested loops (in hardware) [18][42]. None of our benchmarks required more than five nested loops. The

MediaBreeze architecture allows for three input data structures/streams and produces one output

structure. This was chosen because some media algorithms can benefit from this capability (current SIMD

execution units sometimes operate on three input registers to produce one output value). Each data

structure/stream has its own dedicated address generation unit to compute the address every clock cycle

with the base address specified in the Breeze instruction. Due to the sub-block access pattern in media

programs, data is accessed with different strides at various points in the algorithm (as described in section

4.1). The Breeze instruction facilitates multiple strides (one at each level of loop nesting, i.e., a total of

five strides) for each of the three input streams and one output stream. The strides indicate address

16

Loopl-count| Loop2-count| Loop3-count| Loop4-count| Loop5-count

Starting Starting Starting Starting OPR/

L
Address of Address of Address of Address of RedOp/) egend
1S-1 1S-2 1S-3 oS Shift/ LL IS - input stream
Stride-11S-1| Stride-21S-1| Stride-31S-1| Stride-41S-1| Stride-51S-1 OS - output stream

Stride-11S-2| Stride-21S-2| Stride-31S-2| Stride-41S-2| Stride-5 IS-2 OPR - operation code

Stride-11S-3| Stride-21S-3| Stride-31S-3| Stride-4 1S-3| Stride-51S-3
Stride-1 OS | Stride-20S | Stride-30S | Stride-4 OS | Stride-5 0S

RedOp - reduction operation

LL - loop level to write results

Masks - Masks - Multicast and data types of each stream with
IS-1and 1S-2| IS-3and OS remaining bits unused
S 32.its

Fig. 8. Structure of the Breeze Instruction

increment/decrement values based on the loop-nest level. Depending on the mask values for each stream
(indicated in the Breeze instruction) and the loop-nest level, one of the five possible strides is used to
update the address pointer. If an application does not need five levels of nesting, hon-constant strides ()
can be generated with the extra levels of looping [19].

Data types of each stream/structure are also indicated in the Breeze Instruction. Depending on the
size of each element in the data structures, the SIMD parallelism is computed. For example, if one data
stream is 8-bit data (16-way parallelism for a 128-bit wide execution unit) and the other is 16-bit data (8-
way parallelism), the SIMD processing achieves only 8-way parallelism. The maximum achievable SIMD
parallelism is the minimum of all the data structures (all commercial SIMD extensions have this
limitation). Current SIMD extensions provide data reorganization instructions for solving the problem of
having different element sizes across the data structures (packing, unpacking, and permute) and introduce
additional instruction overhead. By providing this information in the Breeze Instruction, special hardware
in the MediaBreeze performs this function. The MediaBreeze performs reduction operations and this is
also indicated in the Breeze Instruction (for example, multiple independent results in a single SIMD
register are combined together in dot product which require additional instructions in current DLP
techniques). Support for signed/unsigned arithmetic, saturation, shifting/scaling of final results is all
indicated in the Breeze Instruction. This eliminates additional instructions that are otherwise needed for
conventional RISC processors.

With the support for multiple levels of looping and multiple strides, the Breeze Instruction is a
complex instruction and decoding such an instruction is a complex process in current RISC processors.
MediaBreeze instead handles the task of decoding of the Breeze Instruction. MediaBreeze has its own
instruction memory to hold a Breeze instruction. Two additional 32-bit instructions are also added to the
ISA of the general-purpose processor for starting and interrupting the MediaBreeze. These 32-bit
instructions (fetched and decoded by the traditional instruction issue logic) indicate the start and the

17

length of the Breeze Instruction. Whenever a Breeze instruction is encountered in the dynamic instruction
stream, the dynamic instructions prior to the Breeze instruction are allowed to finish after which the
MediaBreeze instruction interpreter decodes the Breeze instruction. In our current implementation, we
halt the superscalar pipeline until the execution of the Breeze instruction is completed because
MediaBreeze uses existing hardware units. Otherwise, arbitration of resources is necessary to allow for
overlap of the Breeze instruction and other superscalar instructions.

Encoding all the overhead/supporting operations along with the SIMD true/core computation
instructions has the advantage that the Breeze instruction can potentially replace millions of dynamic
RISC instructions that have to be fetched, decoded, and issued every cycle in a normal superscalar
processor. SIMD instructions in GPPs themselves reduce the number of instruction fetches because one
instruction operates on multiple data. The Breeze instruction additionally captures all the overhead
operations along with the SIMD computation operations thereby drastically reducing repeated (and
unnecessary) fetch and decode of the same instructions. This results in giving the MediaBreeze
architecture advantages similar to ASIC-based acceleration in [20].

It is possible that an exception or interrupt occurs while a Breeze instruction is in progress. The
state of all five loops, their current counts, and loop bounds are saved and restored when the instruction
returns. This is similar to the handling of exceptions during move instructions with REP (Repeat Prefix)
in x86. MediaBreeze has registers to hold the loop parameters for all the loops and parts of the operating
system might have to be modified similar to the Pentium Il SSE extensions. Code development for the
MediaBreeze architecture is currently done by hand and the programmer has to schedule the dependencies
in the code. Compiler technology for SIMD extensions is still in its infancy [50][51][52][53]. Similar to
developing code for SIMD extensions, compiler intrinsics have to be employed to utilize the
MediaBreeze architecture. We do not underestimate the challenge of compiling for the MediaBreeze
architecture; however, the effort will be slightly higher to that of compiling for SIMD extensions. In spite
of the lack of adequate compiler support for SIMD extensions, it has been clear that SIMD extensions still

enhance media application performance.

5.2 Multicast: A technique to aid in data transformation

The MediaBreeze uses a technigue caldulticast to eliminate the need for transposing data
structures, to allow for reordering of the computations, and to increase reuse of data items soon after fetch
by exploiting DLP in outer level loops. Multicasting means copying one/many data items into several
registers or buffers at the same item. For example, a data value A may be copied into 8 registers (or 8

sections of a big SIMD register) resulting in a pattern A /AAAAA A A or two items A and B may be

18

copied to 8 registers in the pattern A/A,B,B,A,A,B,B or A,B,A,B,A B,A,B or another such pattern. The
usefulness of multicasting can be illustrated by the well-understood matrix-multiply routine. In a matrix-
multiply routine, usually the first matrix is traversed in row-order and the second matrix in column-order.
Spatial locality can be exploited in the first matrix due to multiple data elements in each cache block,
while the second matrix incurs a compulsory miss on each column the first time; assuming that two
consecutive rows do not fit in a cache-block. In a machine with no SIMD execution units, during each
iteration for the second matrix, a new cache-line has to be loaded as data belongs to the same column but
different cache-line. However, for the case of SIMD processing, multiple cache-lines need to be loaded
and data belonging to the required column needs to be reorganized from a vertical to a horizontal
direction (packing). This involves substantial overhead and usually, the second matrix is transposed prior
to the computation to eliminate the column-access pattern.

The transposing overhead can be eliminated using the Multicast technique. Instead of using
column-access pattern, row-order access pattern is used for matrix B, while for matrix A, a single element
is multicast to all eight sub-element locations in the SIMD register. Then instead of doing the eight
multiplications to generate the first element C1,1 of the result matrix, all eight multiplications using A1,1
(i.e. the first partial product of each of the result terms in the first row) are performed. The sequence of
multiplications in a normal SIMD matrix multiply and a multicast matrix multiply are illustrated in Fig. 9.
After 64 multiplications, all eight result terms of the first row of the result matrix will be simultaneously
generated. The algorithm using the multicast technique is always operating on multiple independent
output values, while traditional techniqgues compute one result term at a time. This eliminates the need for
transposing the second matrix. It also increases the reuse of items that were loaded, thus improving the
cache behavior of the code. The MediaBreeze architecture provides hardware support for multicasting.
This allows the use of cache-friendly algorithms to perform many media algorithms. In this example,
broadcast rather than multicast was employed, because one element is transmitted to all eight registers.
However, in several applications such as horizontal/vertical downsampling/upsampling, and filtering,
several elements are multicast into the sub-element locations, many-to-many mapping as opposed to one-
to-many mapping and hence the name multicast. The multicast technique is a superset of existing data
reorganization instructions in current SIMD extensions such as AltiVec's splat [2] and MDMX'’s packed

accumulators [6][16].

19

SIMD Matrix-multiply Multicast Matrix-multiply

A 11 A 1,2 A 1,3 A 14 A 15 A 16 A 1,7 A 18 A 1,1 A 1,1 A 1,1 A 1,1 A 1,1 A 1,1 A 1,1 A 1,1
* * * % * * * * * * * * * * * *
B 1,1 B 2,1 B 3,1 B 4,1 B 51 B 6,1 B 7,1 B 8,1 B 1,1 B 1,2 B 1,3 B 14 B 1,5 B 1,6 B 1,7 B 1,8
N-bitg|wide lN—bit ide
P R|[P_R|PR|PR|PR|PR|PR[PR ACC |ACC | ACC| ACC| ACC| ACC|ACC | ACC
—
3N-bits wide
(6] (¢ (¢ e © (¢ (¢ (¢
(6] (¢ (¢ e © (¢ (¢ (¢

N_bqwide ACC |ACC | ACC | ACC| ACC| ACC|ACC | ACC

PR|PR|PR|PR|PRPR|PR|PR l l l l l l l3N-blESWide
3NX-bits wide
C,; C
Add all partial results to get €g Ci1 €12 C1s Cia C1s Cue C17 Cus

Fig. 9. Multicast technique versus traditional SIMD matrix multiply

If the dimension of the matrices to be multiplied is large, then the multicast method needs
temporary registers or an accumulator to store the accumulated results. However, multimedia applications
operate on sub-blocks in huge matrices as opposed to processing the entire matrix as a whole. A SIMD
parallelism of 8 or 16 is quite adequate to capture most media sub-block rows/columns. Other common
operations where multicast is extremely useful include 1-D and 2-D filtering, and convolution. For
example, when using MMX for implementing a finite impulse response (FIR) filter, multiple copies of the
filter coefficients are needed (equal to the SIMD parallelism) to reduce considerable overhead due to
misalignment of coefficient data.

5.3 Example encoding using the Breeze instruction

The Breeze instruction is a densely encoded instruction and hence most media algorithms can be
processed in just a few Breeze instructions. Fig. 10 shows the pseudo-code for the implementation of the
Breeze instruction. Given a start address for each of the data streams, each address is incremented based
on the stride and the loop level during each cycle. Common kernels such as the DCT, color space

20

conversion, motion estimation, and filtering can be mapped to either one or two Breeze instructions. Fig.

11 illustrates the Breeze instruction mapping of the 1-D DCT routine assuming an 8-way SIMD for 16-bit

data. For the 1-D DCT routine, only four of the five possible loop nests are needed with the loop

boundaries indicated in the Breeze instruction. The starting address of each stream is represented by the

starting address of each of the arrays. The third input stream is not used for this algorithm. The value of

the strides is computed based on the loop indices and the value of the address pointer in the previous

cycle. The address pointer is updated each clock cycle choosing one stride depending on the nesting level

of the loops.

IS1 = start_address_IS1; IS2 = start_address_1S2;
IS3 = start_address_I1S3; OS1 = start_address_OS;

increment_address level) {
if (mask_IS1 [level]) IS1 += stride_IS1[level];
if (mask_IS2 [level]) 1S2 += stride_IS2[level];
if (mask_1S3 [level]) 1S3 +=stride_IS3[level];
if (mask_OS [level]) OS +=stride_OS]Jlevel];

—_—

else increment_address(5);

SIMD_data_reorganization (R1, R2);
SIMD_compute (MAC, R1, R2, R4);
SIMD data reoganization(R4):

}
if ((i_5+ 1) =loopl_count) increment_address(4);
elseif ((i_4 + 1) =loop2_count) increment_address(d
elseif ((i_3+ 1) =loop3_count) increment_address(4
elseif ((i_2 + 1) =loop4_count) increment_address(1);

);
);

~—

Fig. 10. Pseudo-code representing a MediaBreeze compute instruction

In a scenario in which all the loop nests and data streams are processed, MediaBreeze executes

(in hardware) the following equivalent number of dynamic software instructions (in conventional ILP

processors) during each cycle -
» five branches

+ three loads and one store

» four address value generation (one on each stream with each address generation representing multiple

RISC instructions)

* one SIMD operation (2-way to 16-way parallelism depending on each data element size)

21

» one accumulation of SIMD result and one SIMD reduction operation
» four SIMD data reorganization (pack/unpack, permute, etc) operations

» shifting & saturation of SIMD results

1D_DCT(image[1200][1600], dct_coef[8][8], output[8][8])
{
for (i=0; i<1200/8; i++)
for (j=0;j<1600/8; j++)
for (k=0; k < 8; k++) {
temp_simd_vector = 0;
for I=0;1<8;1++)

/* Since there is 8-way SIMD parallelism, the innermost loop folds into ¢ne
iteration and is not required */

temp_simd_vector += multicast(dct_coef[k][|] *image[i*8+k][j*8+l]);
output[i*8][k*8] = temp_simd_vector >> s_bits;

0 1200/8 1600/8 8 8
Starting Starting = | --memeemeeeee- Starting OPR = MAC
Address of Address of NONE Address of Shift = s_bits
image dctcoeff | --mmemmeeeeee- output LL=4
NONE 16 bytes -22384 bytes -22400 bytes 3200 bytes
NONE -126 bytes -126 bytes 2 bytes 2 bytes
NONE NONE NONE NONE NONE
NONE -22384 bytes 3200 bytes NONE NONE
1S-1=01111 1S-3 = 00000 Multicast is used for dct coefficients
IS-2 = 01111 0S =01100 data types of each stream is set to 16-bit data

Fig. 11. Breeze instruction mapping of 1D-DCT

54 Performance Evaluation and Results

To measure the impact of the MediaBreeze architecture, we modifiedPtBA version of
Simplescalar-3.0 (sim-outorder) to simulate Breeze instructions using instruction annotations. We use the
same SIMD execution units’ configuration as in a Pentium Il processor (two 64-bit SIMD ALUs and one
64-bit SIMD multiplier). The memory system for the MediaBreeze architecture is modified to allow for
cache miss stalls and memory conflicts (i.e., the SIMD pipeline stalls in the event of a cache miss) since

22

O2-way + SIMD @ 2-way + MB m4-way + SIMD O 4-way + MB

16.68 1668 543 543 1072 1672 4.13
366

2,60

Q. | —
- .03
2, 178 187 195 166
$ 140 155 153l 140199 154 143146
& 1 1 1 1100I100 1 1110 1 II 1 “ 1 i]ﬂ
cfa dct motest scale aud g711 jpeg ijpeg decrypt

Fig. 12. Performance of MediaBreeze (MB) versus SIMD

the MediaBreeze operates in an in-order fashion. Fig. 12 shows the speedup obtained for each of the
benchmarks using the MediaBreeze architecture with a 2-way processor as the baseline.

The speedup of the 2-way MediaBreeze architecture over a 2-way SIMD enhanced processor
ranges from 1.0x to over 16x. In four of the nine benchmacksg ¢Iict, mot scale— which are kernels) all
of the benchmark code translates into one or two Breeze instructions with no other superscalar
instructions necessary. The remaining five benchmaaksl, (g711, jpeg ijpeg, anddecrypt— which are
applications) require scalar superscalar instructions along with Breeze instructions. G711 and decrypt are
applications that have the least amount of SIMD instructions (i.e., it is the superscalar pipeline that
accounts for a bulk of the execution time rather than the MediaBreeze pipeline) and a 2-way MediaBreeze
architecture is only slightly faster than a 2-way SIMD processor. On the other hand for the remaining
three benchmarks(d, jpeg andijpeg), a 2-way MediaBreeze architecture is significantly faster than a 2-
way SIMD processor.

The MediaBreeze pipeline is susceptible to memory latencies because it operates in-order. Thus
MediaBreeze is unable to achieve maximum SIMD efficiency on three of the four kecfelsl¢t, and
scalg in spite of them being mapped completely to one or two Breeze instructions. To reduce the impact
of memory latencies on the MediaBreeze architecture, we introduced a prefetch engine to load future data
into the L1 cache. Since the access pattern of each data stream is known in advance based on the strides,
the prefetch engine does not load any data that is not going to be used. The regularity of the media access
patterns prevents the risk of superfluous fetch very commonly encountered in many prefetching
environments. The prefetch engine ‘slips’ ahead of the loads for computation and the computation itself
to gather data into the L1 cache. Table 6 shows the speedup of the MediaBreeze architecture with

prefetching for the 2-way and 4-way configurations (prefetching was also incorporated into the baseline

23

architecture). We observe that prefetching in the MediaBreeze architecture achieves unit cycle memory

access performance in the Breeze instruction portion of the program.

Table. 6. Performance of the MediaBreeze architecture with prefetching
cfa dct mot scale aud g711 ipeg ijpeg decrypt
2-way 1 1 1 1 1 1 1 1 1
E'KA"""BV 27.92 16.52 16.84 2.14 3.6 1.21 1.44 1.61 1.04
4-way 2.12 1.46 2.03 1.98 1.59 1.78 1.56 1.66 1.43
f‘r“,(/l"gy 27.92 16.52 16.84 454 5.61 2.22 2.02 2.68 1.46

The geometric mean of the speedup of the 2-way MediaBreeze processor over a 2-way SIMD
processor for the five applications (not including the kerneffa-dct, mot andscalg is 1.73 while that
of a 4-way SIMD processor over a 2-way SIMD processor is 1.59. Therefore, on average, a 2-way GPP
with SIMD extensions augmented with the MediaBreeze hardware achieves a performance slightly better
than a 4-way superscalar SIMD processor on media applications. A similar trend is observed for the case
of a 4-way GPP with SIMD extensions augmented with the MediaBreeze hardware being slightly
superior to an 8-way superscalar SIMD processor.

Since the Breeze instruction is densely encoded, few Breeze instructions are needed for any
media-processing algorithm. The number of dynamic instructions that need to be fetched and decoded is
shrunk tremendously (as shown in Fig. 13), leading to a reduced use of the instruction fetch, decode, and
issue logic in a superscalar processor. The instruction fetch and issue logic are a significant consumer of

power in speculative out-of-order processors. Once a Breeze instruction is interpreted, the instruction

E % Reduction in dynamic instructions
9990 9990 9990 99.90
91.00

100.00 -
80.00 |
60.00 1 4260 4170
40.00 |
20.00 - 11.30 030
0.00 - ‘

motest scale g711 aud jpeg ijpeg decrypt

% eliminated instructions

Fig. 13. Reduction in dynamic instructions by using the MediaBreeze architecture.
Power savings proportional to the instruction count savings can be expected for fetch,
decode and renamndreneny.

24

fetch, decode, and issue logic in the superscalar processor can be shut down for the duration of the loop
nest. The use of the vector-style Breeze instruction can eliminate more than half of the instructions from
the original program (65% on average). The instructions required to implement looping, address
computations, and transformations are removed. Each eliminated instruction results in energy savings in

the fetch, decode and register renaming stages.

6 Hardware cost of the MediaBreeze Architecture

6.1 Implementation methodology

To estimate the area, power, and timing requirements of the MediaBreeze architecture, we
developed VHDL models for the various components. Using Synopsys synthesis tools [21], we used a
cell-based methodology to target the VHDL models to two ASIC cell-libraries from LSI Logic [22][23].
Table 7 lists the libraries and technologies used for evaluating the implementation cost.

Table. 7. Cell-based Libraries (LSI Logic) used in synthesis

Library name Description

A 0.18-micron L-drawn (0.13-micron L-effective) CMOS process.
Icbg12-p (G12-p) | Highest performance solution at 1.8 V with high drive cells optimized for long
interconnects associated with large designs.

Ichg11-p (G11-p) A_0.25-micron L-drawn (O.;B-micron L-effective) CMOS process.
Highest performance solution at 2.5 V.

The Synopsys synthesis tools estimate area, power, and timing of circuits based on information
provided in the ASIC technology library. The ASIC technology library provides four kinds of
information.

» Structural information. This describes each cell’'s connectivity to the outside world, including cell,
bus, and pin descriptions.

* Functional information. This describes the logical function of every output pin of every cell so that
the synthesis tool can map the logic of a design to the actual ASIC technology.

» Timing information. This describes the parameters for pin-to-pin timing relationships and delay
calculation for each cell in the library.

* Environmental information. This describes the manufacturing process, operating temperature, supply
voltage variations, and design layout. The design layout includes wire load models that estimate the
effect of wire length on design performance. Wire load modeling estimates the effect of wire length

and fanout on resistance, capacitance, and area of nets.
25

We use the default wire load models provided by LSI Logic’'s ASIC libraries. The Synopsys
synthesis tools compute timing information based on the cells in the design and their corresponding
parameters defined in the ASIC technology library. The area information provided by the synthesis tools
is prior to layout and is computed based on the wire load models of the associated cells in the design.
Average power consumption is measured based on the switching activity of the nets in the design. In our
experiments, the switching activity factor originates from the RTL models as the tool gathers this
information from simulation. The area, power, and timing estimates are obtained after performing
maximum optimizations for performance in the synthesis tools. The hardware cost results obtained by this
technique is only a first order approximation based on the accuracy of the synthesis tools and cell-based
libraries. The interested reader is referred to [21] for further information regarding the capabilities and
limitations of the synthesis tools.

6.2 Hardware implementation of MediaBreeze units

Address generation — The MediaBreeze architecture supports three input and one output data
structures/streams. Each of the four data streams has a dedicated address generation hardware unit.
Address arithmetic on each stream is performed based on the strides and mask values indicated in the
Breeze instruction. For each clock cycle, depending on the mask bits and loop index counts, one of the
five possible strides is selected. The new address value is then computed based on the selected stride and
the previous address value. Fig. 14 depicts the block diagram of the address generation circuitry for a
single data stream/structure.

The last_val comparatorsletermine which of the four inner level loop counters have reached
their upper bound. The outermost loop comparison is not necessary because the Breeze instruction
finishes execution at the instant when the outermost loop counter reaches its upper bound-coimel
andinc-combineblocks generatiag signals based on the output from fhst_val comparatorand mask
values from the Breeze instruction. If none of ftag signals are true, thestride-5is used to update the
prev-addressptherwise, the appropriattride- (1-4)is selected depending dlag- (1-4).The address-
generateblock uses a 32-bit adder to add the selected stride to the previous address. On either an
exception or a stall, only therev-addresvalue needs to be stored as the loop counters are stored by the
hardware looping circuitry. For each of the four data structures/streamgsth&al comparatorgortion

of the logic is shared, but the remaining hardware needs to be replicated.

26

Loop(2-5)-count indice-(2-5)

s; lastval-(2-5)

ast_val comparators

prev-address >

address-generate

i updated-address

mask-1 mask-2 mask-3 mask+4
v 4 4 v
inc-condl inc-cond?2 inc-cond3 inc-cond4
inc-combinel | | inc-combine2 | | inc-combine3 | | inc-combine4
flag- flag-2 flag-3 g-4
stride-(1-5)

Fig. 14. Block diagram of address generation hardware (per data stream)

Looping — The MediaBreeze architecture incorporates five levels of loop nesting in hardware to
eliminate branch instruction overhead for loop increments. A similar mechanism was commercially
implemented in the TI ASC [24] (two levels of do-loop nesting in addition to a self-increment loop).
Conventional DSP processors such as the Motorola 56000 and the TMS320C5x from Tl also use such a
technique for one or more levels of loop nesting. Fig. 15 shows the block diagram of the looping
hardware. Loop index values are produced every clock cycle based on the loop bound for each level of
nesting (bounds for each of the five loops are specified in the Breeze instruction). The value of a loop
index varies from 1 (lower bound) to the corresponding loop bound (upper bound), and resets to its lower
bound once the upper bound is reached in the previous cycle. The execution of the Breeze instruction
ends when the outermost loop (loopl in Fig. 15) reaches its upper bound. On encountering either an
exception or a stall, the loop indices are stored and the increment logic is halted; the counting process is
started once the exception/stall is serviced. Each of thechweparatorg32-bit wide) operates in parallel

to generatdlag (1-bit wide) signals that arpriority encodedto determine which one of the five loop

counters to increment. When a loop countemisremented-by-Icircuit for incrementing a 32-bit value

27

Loopl-count Loop2-count Loop3-count Loop4-count Loop5-count
indexc1.... l index:2..... L index:3..... l index-4........ l index:5........
| comparator-1 | | comparator-2 | | comparator-3 | | comparator-4 | | comparator-5
flag-1 ‘ﬂaq-z flag-3 flaq-lzl flag-b
Vi V]
| priority encoder |
End-of-all-loops |
\l/TncLl incL2\/ incL3 incL4 %
Increment-by-1 Increment-by-1 Increment-by-1 Increment-by-1 Increment-by-1
index-1 index-2 index-3 index-4 index-5
index-1 index-2 index-3 index-4 index-5

Fig. 15. Block diagram of the five hardware loops

by 1), all the loop counters belonging to its inner level are reset (for example, if loop&r&nented-by-

1, then loop4 and loop5 are reset to their lower bound).

Breeze instruction decoder— A stand-alone instruction decoder for the Breeze instructions eliminates

the need to modify the conventional instruction decoder of current GPPs. A Breeze instruction needs to be
decoded only once since various control parameters are stored in hardware registers after the decoding
process. The implementation of the Breeze instruction decoder was merged into the address generation
and looping circuitry.

Breeze instruction memory — The Breeze instruction memory stores the Breeze instruction once it
enters the processor. We do not estimate the cost of this storage because the ASIC libraries are not
targeted for memory cells. However, the area, power, and timing estimates of the Breeze instruction
memory are similar to an SRAM structure. One Breeze instruction occupies 120 bytes. The Breeze
instruction memory holds one or more Breeze instructions.

Existing hardware units — The remaining hardware units that are required for the operation of the
MediaBreeze architecture are the SIMD computation unit, data reorganization, load/store units, and data
station. These hardware units are already present in commodity SIMD GPPs. However, the Breeze
instruction decoder controls the operation of these units as opposed to the conventional control path. This
mandates an extra multiplexer to differentiate between control from the conventional control path and the
Breeze instruction decoder. We do not model any of the existing hardware units.

6.3 Area, power, and timing results
Table 8 shows the composite estimates of timing, area, and power consumption for the hardware
looping and address generation circuitry when implemented using the cell-based methodology. The power

28

and area estimates in Table 8 correspond to a clock frequency of 1 GHz. The hardware cost of
commercial SIMD implementations [25][26] is also shown in Table 8.

Area — The overall chip area required for implementing the hardware loops, address generation (for all
four data streams), and the Breeze instruction interpreter (merged into looping and address generation
logic) is approximately 0.31 mfrin the 0.18-micron library. In a 0.29-micron process, the increase in
chip area for implementing the Visual Instruction Set (VIS) hardware into the Sparc processor family was
4 mnt, MMX into the Pentium family was 15 mfand AltiVec into the PowerPC family was 30 rim

[25]. In a 0.25-micron process, the AltiVec hardware was expected to occupy £5Iman0.18-micron
technology, the die size of a Pentium Ill processor was 106 with the MMX and SSE execution units
requiring approximately 3.6 ni26]. Thus, the increase in area due to the MediaBreeze units for SIMD-
related hardware is less than 10% and the overall increase in chip area is less than 0.3%.

Table .8. Timing, Area, and Power estimates for hardware looping and address generation (the Breeze
instruction decoder was merged into the looping and address generation)

Hardware Looping Address Generation
(5 loops) (per stream)
Time Area Power Time Area Power
(ns) (L) (mW) (ns) (T115) (mW)
G12-p (0.1§) 1.00 ns| 72830um*| 88.57 mW 1.74ns 57398um*| 85.16 mW
G11-p (0.2 1.49 ns| 273249um* | 249.30 mW 2.60 n$ 165099um” | 193.20 mW

Area of commercial SIMD and GPP units for comparison [25][26]

VIS — 4 mnt in a 0.29-micron process

MMX — 15 mnfin a 0.29-micron process

AltiVec — 15 mnf in a 0.25-micron process

Pentium IIl processor — 106 mnf in a 0.18-micron process

MMX + SSE in a Pentium Il processor — 3.6 mnf in a 0.18-micron process

Power — The power consumed by the looping, address generation (all four streams), and the Breeze
instruction interpreter is approximately 430 mW in the 0.18-micron library. General-purpose processors

with speeds over 1 GHz typically consume a power ranging from 50 W to 150 W and MediaBreeze

hardware increases power by less than 1%. We believe that the overall energy consumption of the
MediaBreeze architecture would be less than that of a superscalar processor with SIMD extensions
because the Breeze instruction reduces the total dynamic instruction count (0.2 to 40% in our media
applications not including kernels). The instruction fetch and issue logic are expected to consume greater
than 50% of the total execution power (not including the clock power) in future speculative processors

[27]. Once a Breeze instruction is interpreted, the instruction fetch, decode, and issue logic in the

superscalar processor can be shutdown to save power.

29

Timing — Pipelining the hardware looping logic into two stages (in a 0.18-micron technology) would
allow for incorporating it into current high-speed superscalar out-of-order processors with over 1 GHz
clock frequency. Similarly the address generation stage needs to be divided into three pipe stages to
achieve frequencies greater than 1 GHz. The timing results show that incorporating the MediaBreeze
hardware into a high-speed processor does not elongate the critical path of the processor (after appropriate
pipelining). The Breeze instruction decoder multiplexers that control the hardware units introduce an
extra gate delay in the pipeline. However, using a cell-based methodology gives a conservative estimate
while custom design (typically used in commercial GPPs) would allow for greater clock frequencies for
the added MediaBreeze hardware. In spite of adding five pipeline stages, the overall pipeline depth of a
processor is not affected because the looping and address generation stages bypass the conventional fetch,
decode and issue pipeline stages.

7 Related Work

The proposed solution combines the advantages of SIMD, vector, DAE, and DSP processors. The
DAE concept present in the IBM System 360/370, CDC 6600 [30], CDC7600, CRAY-1, CSPI MAP-200,
SDP [31], PIPE [32], SMA [19], WM [33], DS [34], etc demonstrated the potential of decoupling
memory accesses and computations [14][15]. There also has been research in specialized access
processors and address generation coprocessors [13][35]. The concept of embedding loops in hardware
was implemented commercially in the TI ASC [24] (do-loop in this case). The SMA architecture [19]
provided similar flexibility in accessing matrices. This concept was seen to be successful in all these
machines as well as many DSP processors [18]. Typically all these techniques were successful only for a
limited class of applications. This work extends beyond past work to create an integrated environment in
which both media and general-purpose workloads can excel.

Previous media characterizations have concentrated on measuring the performance benefits of
media extensions [5][6][7][8]. There are a few research efforts in identifying the bottlenecks in exploiting
sub-word parallelism using SIMD extensions. Fridman discusses approaches to data alignment for sub-
word parallelism in the TigerSharc processor using four sub-word MAC units in [28]. Thakkar and Huff
discuss the need for data alignment for SSE extensions in [29]. We perform a comprehensive detection of
bottlenecks in SIMD-style extensions.

The proposed Breeze instruction captures all the overhead/supporting operations in addition to
capturing the DLP in the true/core computation and has some similarities to the vector parameter file in
the TI ASC machine. Compiling for SIMD extensions is still in its infancy [50][51][52][53][54][55]; a

MediaBreeze compiler is a challenge. Given the ability of the TI ASC vectorizing compiler to handle the

30

vector parameter file leads us to believe that programming with Breeze instructions is going to be an
achievable hurdle in exploiting the MediaBreeze architecture.

Corbal et al. [36] proposed to exploit DLP in two dimensions instead of one dimension as in
current SIMD extensions. A 20% performance improvement was achieved using their Matrix-oriented
architecture named MOM. However, the overhead factor is not significantly reduced. Vassiliadis et al.
[37][38] have concurrently proposed the Complex Streamed Instruction set (CSI) that can exploit two
levels of looping. Though they are able to eliminate some overhead because each of their complex
instructions can eliminate two loops, our solution is more comprehensive. Lee and Stoodley [39]
proposed simple vector microprocessors for media applications, but they used in-order simple processors
for scalar processing and vectors for media processing. While we commend the approach, such an
architecture cannot achieve good performance over several application domains because the scalar
processor is in-order. Ranganathan et al. [5] observe that out-of-order execution is beneficial to media
applications. There are several components in many multimedia applications that cannot exploit DLP, but
require good branch prediction and speculation to exploit ILP, and hence we also favor the use of the out-
of-order processor. It is important to have a general-purpose processor achieve sustained performance on
different domains of workloads.

Rixner et al. [40] developed the Imagine architecture for bandwidth-efficient media processing.
This architecture is based on clusters of ALUs processing large data streams and is built as a co-processor
for a high-end multimedia system. The methodology adopted is to put additional computation units, while
our approach is to improve the utilization of the existing computation units by reducing the overhead.
Another related effort is the PipeRench coprocessor that is reconfigurable [41]. The Burroughs Scientific
Processor (BSP) [42] was a pure-SIMD array processor that had special-purpose hardware (called
Alignment networks) for packing and unpacking data. In addition, they have powerful SIMD instructions
of which many are being used in current SIMD extensions. Vermuelen et al. [20] described how DCT,
Reed-Solomon code and other similar media oriented operations could be enhanced with a hardware
accelerator that works in conjunction with a GPP. However, the accelerator has to be designed for each
algorithm. Retargeting the accelerator to another algorithm incurs significant effort, while, in our case,

only Breeze instruction encoding needs to be performed.

8 Conclusion

This paper analyzes multimedia workloads and proposes architectural enhancements for
improving their performance on general-purpose processors. Based on an investigation of loop structures

and access patterns in multimedia algorithms, we find that significant amount of parallelism lies outside

31

the innermost loops (between loop levels 3 and 6 as indicated in Table 3), and it is difficult for SIMD

units to exploit the parallelism. The characteristics preventing SIMD computation units from computing

at their peak rate are analyzed. The major findings of the bottleneck analysis are:

Approximately 75-85% of instructions in the dynamic instruction stream of media workloads are not
performing true/core computations. They are performing address generation, data rearrangement, loop
branches, and loads/stores.

The efficiency of the SIMD computation units is very low because of the overhead/supporting
instructions. Our measurements on a Pentium Ill processor with a variety of media kernels and
applications illustrate SIMD efficiency ranging only from 1% to 12%.

Increasing the number of SIMD execution units does not impact performance positively leading us to
conclude that resources for overhead/supporting instructions need to be scaled. We observe that a
significant increase in scalar resources is required to increase the SIMD efficiency using conventional
ILP techniques. An 8-way or 16-way integer processor is necessary to process the overhead
instructions for the SIMD width in current processors.

The paper then addresses the issue of executing the overhead instructions efficiently. Many

recent enhancements such as increasing the SIMD width have targeted exploiting additional parallelism in

the true/core computation while the MediaBreeze architecture proposed in the paper focuses on the

overhead instructions and the ability of the hardware to eliminate, alleviate, and overlap the overhead.

MediaBreeze exploits the nature of the overhead instructions to devise simple hardware by combining the

advantages of SIMD, vector, DAE, and DSP processors. The major findings are:

Eliminating and reducing the overhead using specialized hardware that works in conjunction with
state-of-the-art superscalar processor and SIMD extensions can dramatically improve the
performance of media workloads without deteriorating the performance of general-purpose
workloads. On multimedia kernels, we find that a 2-way processor with SIMD extensions augmented
with hardware support significantly outperforms a 16-way processor with SIMD extensions.

On multimedia applications, a 2-way processor with SIMD extensions with the supporting
MediaBreeze hardware outperforms a 4-way superscalar processor with SIMD extensions. Similarly a
4-way processor with SIMD extensions added with MediaBreeze hardware is superior to an 8-way
superscalar with SIMD extensions.

The cost of adding the MediaBreeze hardware to a SIMD GPP is negligible compared to the

performance improvements. Using ASIC synthesis tools and libraries, we find that the MediaBreeze

32

hardware units occupy less than 0.3% of the overall processor area, consumes less than 1% of the

total processor power, and on appropriate pipelining does not elongate the critical path of a GPP.

Our analysis shows that increasing the number of SIMD execution units to get more parallelism is
not the right approach. But if any media processor designer decides to exploit more parallelism just by
scaling the current architectures, they should scale the non-SIMD part much more aggressively than the
SIMD part.

Acknowledgments: We thank members of the Laboratory for Computer Architecture for their

comments and suggestions that improved several drafts of this paper.

References

[1] R. B. Lee, “Multimedia extensions for general-purpose processBrsg. IEEE Workshop on Signal
Processing Systemgp. 9-23, Nov. 1997.

[2] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scales, “AltiVec extension to PowerPC
accelerates media processinEEE Micro, vol. 20, no. 2, pp. 85-95, Mar/Apr 2000.

[3] TMS320C64x DSP Technical Brief. Available:
http://mwww.ti.com/sc/docs/products/dsp/c6000/c64xmptb.pdf.

[4] J. Fridman and Z. Greenfield, “The TigerSHARC DSP architectdeeEE Micro, vol. 20, no. 1, pp.
66-76, Jan/Feb. 2000.

[5] P. Ranganathan, S. Adve, and N. Jouppi, “Performance of image and video processing with general-
purpose processors and media ISA extensiomtc. IEEE/ACM Int. Sym. on Computer
Architecture pp. 124-135, May 1999.

[6] E. Salami, J. Corbal, M. Valero, and R. Espasa, “An Evaluation of different DLP alternatives for the
embedded domainProc. Workshop on Media Processors and DSPs in conjunction with Micyo-32
Nov. 1999.

[71 R. Bhargava, L. K. John, B. L. Evans, and R. Radhakrishnan, “Evaluating MMX technology using
DSP and multimedia applicationsProc. IEEE/ACM Int. Sym. on Microarchitectyrep. 37-46,

Dec. 1998.

[8] H. V. Nguyen, and L. K. John, “Exploiting SIMD parallelism in DSP and multimedia algorithms
using the AltiVec technology,Proc. ACM Int. Conf. on Supercomputingp. 11-20, Jun. 1999.

[9] Sample source code for the Benchmarks. Available:
http://www.ece.utexas.edu/projects/ece/lca/mediabenchmarks/

[10] C. Lee, M. Potkonjak and W.H. Smith, “MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications System&toc IEEE/ACM Int. Sym. on Microarchitecturpp.
330-335, Dec 1997.

[11] D. Burger, and T. M. Austin, “The SimpleScalar tool set,” Version Z'@chnical Report 1342
Univ. of Wisconsin-Madison, Comp. Sci. Dept, 1997.

[12] J. Fritts, and W. Wolf, “Dynamic parallel media processing using speculative broadcast loop (SBL),”
Proc.Workshop on Parallel and Distributed Computing in Image Processing, Video Processing, and
Multimedia (held in conjunction with IPDPS'Q1Apr. 2001.

[13] P. T. Hulina, L. D. Coraor, L. Kurian, and E. John, “Design and VLSI implementation of an address
generation coprocessoilEE Proc. on Computers and Digital Techniquesl. 142, No. 2, pp. 145-

151, Mar. 1995.

33

[14] J. E. Smith, “Decoupled access/execute computer architect&€sf’ Trans. on Computer Systems
vol. 2, No. 4, pp. 289-308, Nov. 1984.

[15] J. E. Smith, S. Weiss, and N. Y. Pang, “A simulation study of decoupled architecture computers,”
IEEE Trans. on Computersol. C-35, No. 8, pp. 692-701, Aug. 1986.

[16] J. Corbal, R. Espasa, and M. Valero, "On the efficiency of reductions in micro-SIMD media
extensions,Proc. Int. Conf. on Parallel Architectures and Compilation Technig&ep. 2001.

[17] Intel Architecture Optimization Reference Manual. Available:
http://developer.intel.com/design/pentiumii/ manuals/245127.htm.

[18] P. Lapsley, J. Bier, A. Shoham, and E. A. L&SP Processor Fundamentals: Architectures and
Features Chapter 8, IEEE Press series on Signal Processing, ISBN 0-7803-3405-1, 1997.

[19] A. R. Pleszkun, and E. S. Davidson, “Structured memory access architedure,”|EEE Int. Conf.
on Parallel Processingpp. 461-471, 1983.

[20] F. Vermeulen, L. Nachtergaele, F. Catthoor, D. Verkest, and H. De Man, “Flexible hardware
acceleration for multimedia oriented microprocessor&foc. IEEE/ACM Int. Sym. on
Microarchitecture pp. 171-177, Dec. 2000.

[21] Synopsis Sold Documentation, version 2000-0.5-1. Distributed with Synopsys CAD tools.

[22] LSI Logic ASIC technologies. Available: http://www.lIsilogic/products/asic/technologies/index.html.

[23] LSI Logic ASKK Documentation System. Distributed with LSI Logic CAD tools.

[24] H. G. Cragon, and W. J. Watson, “The Tl advanced scientific computeEE Computer Magazine
pp. 55-64, Jan. 1989.

[25] L. Gwennap, “AltiVec vectorizes PowerPQylicroprocessor Repoyvol. 12, no. 6, May 11, 1998.

[26] Pentium Ill implementation (IA-32). Available: http://www.sandpile.org/impl/p3.htm.

[27] K. Wilcox and S. Manne, “Alpha processors: A history of power issues and a look at the future,”
Cool Chips Tutorial in conjunction with IEEE/ACM Int. Sym. on Microarchitectitev. 1999.

[28] J. Fridman, “Sub-word parallelism in digital signal processingEE Signal Processing Magazine
pp. 27-35, vol. 17, no. 2, Mar. 2000.

[29] S. Thakkar and T. Huff, “Internet streaming SIMD extensions,” IEEE Computer Magazine, pp. 26-
34, vol. 32, no. 12, Dec. 1999.

[30] J. E. Thornton, “Parallel operation in the Control Data 66F@&|l Joint Computers Conferenceol.

26, pp. 33-40, 1961.

[31] R. R. Shively, “Architecture of a programmable digital signal procesd&EE Trans. Computers
vol. C-31, pp. 16-22, Jan. 1978.

[32] J. R. Goodman, T. J, Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter, and H. C. Young, “PIPE: A
VLSI decoupled architecture,Proc. IEEE Int. Sym. on Computer Architectump. 20-27, Jun.
1985.

[33] Wm. A. wolf, “Evaluation of the WM architecture,Proc. IEEE/ACM Int. Sym. on Computer
Architecture pp. 382-390, May 1992.

[34] Y. Zhang, and G. B. Adams, “Performance modeling and code partitioning for the DS architecture,”
Proc. IEEE/ACM Int. Sym. on Computer Architectysp. 293-304, Jun. 1998.

[35] A. S. Berrached, P. T. Hulina, and L. D. Coraor, “Specification of a coprocessor for efficient access
of data structures,Proc. Ann. Hawaii Int. Conf. on System Scienggs 496-505, Jan. 1992.

[36] J. Corbal, M. Valero, and R. Espasa, “Exploiting a new level of DLP in multimedia applications,”
Proc. IEEE/ACM Int. Sym. on Microarchitectynep. 72-79, Nov. 1999.

[37] S. Vassiliadis, B. Juurlink, and E. A. Hakkennes, “Complex streamed instructions: introduction and
initial evaluation,”Proc. IEEE Euromicro Confvol. 1, pp. 400-408, Sep. 2000.

[38] B. Juurlink, D. Tcheressiz, S. Vassiliadis, and H. Wijshoff, "Implementation and evaluation of the
complex streamed instruction setProc. Int. Conf. on Parallel Architectures and Compilation
TechniquesSep. 2001.

[39] C. G. Lee, and M. G. Stoodley, “Simple vector microprocessors for multimedia applicatins,.”
IEEE/ACM Int. Sym. on Microarchitecturpp. 25-36, Dec. 1998.

34

[40] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-Lagunas, P. R. Mattson, and J. D.
Owens, “A bandwidth-efficient architecture for media processiiydc. IEEE/ACM Int. Sym. on
Microarchitecture pp. 3-13, Dec, 1998.

[41] S. C. Goldstein, H. Schmit, M. Moe, M. Nudiu, S. Cadambi, R. R. Taylor, and R. Laufer,
“PipeRench: A coprocessor for streaming multimedia accelerat@rgt. IEEE/ACM Int. Sym. on
Computer Architecturepp. 28-39, May 1999.

[42] D. J. Kuck, and R. A. Stokes, “The Burroughs scientific processor (BSEEE Trans. on
Computersvol. 31, no. 5, pp. 363-376, 1982.

[43] T. M. Conte, P. K. Dubey, M. D. Jennings, R. B. Lee, A. Peleg, S. Rathnam, M. Schlansker, P. Song,
and A. Wolfe, “Challenges to combining general-purpose and multimedia proces$6EE”
Computer Magazingp. 33-37, Dec. 1997.

[44] P. Ranganathan, S. Adve, and N. Jouppi, “Reconfigurable caches and their application to media
processing,’Proc. IEEE/ACM Int. Sym. on Computer Architectupp. 214-224, Jun. 2000.

[45] S. A. Mckee, “Maximizing memory bandwidth for streamed computatioRh,D. ThesisSchool of
Engineering and Applied Science, University of Virginia, May 1995.

[46] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHIMAERA: A high-performance architecture
with a tightly-coupled reconfigurable functional unitProc. IEEE/ACM Int. Sym. on Computer
Architecture pp. 225-235, Jun. 2000.

[47] H. Lieske, J. Wittenburg, W. Hinrichs, H. Kloos, M. Ohmacht, P. Pirsch, "Enhancements for a
Second Generation Parallel Multimedia-DSPrbc. Workshop on Media Processors aD&Ps in
conjunction with Micro-32, Nov. 1999.

[48] D. Talla and L. K. John, “Cost-effective hardware acceleration of multimedia applicati®nsg:

IEEE Int. Conference on Computer Desigmp. 415-424, Sep. 2001.

[49] D. Talla, “Architectural techniques to accelerate multimedia applications on general-purpose
processors,” Ph.D. thesis, Dept. of Electrical and Computer Engineering, The University of Texas,
Austin, Aug. 2001. Available:
http://www.ece.utexas.edu/projects/ece/lca/ps/deepu_talla_dissertation.pdf.

[50] N. Sreraman and R. Govindarajan, “A vectorizing compiler for multimedia extensions,”
International Journal of Parallel Programmingol. 28, no. 4, pp. 363-400, Aug. 2000.

[51] G. Pokam, J. Simonnet, and F. Bodin, “A retargetable preprocessor for multimedia instructions,”
Proc. Workshop on Compilers for Parallel Computelsn. 2001.

[52] A. Bik, M. Girkar, P. Grey, and X. Tian, “Experiments with automatic vectorization for the Pentium
4 processor,Proc. Workshop on Compilers for Parallel Computehsn. 2001.

[53] G. Cheong and M. S. Lam, “An optimizer for multimedia instruction seBgc. SUIF Compiler
Workshop Stanford University, Aug. 1997.

[54] S. P. Amarasinghe, “Parallelizing compiler techniques based on linear inequalities,” Ph.D. thesis,
Computer Systems Laboratory, Stanford University, Jan. 1997.

[55] M. Wolfe. High performance compilers for parallel computingddison-Wesley Publishing
Company, Reading, MA, 1996.

[56] D. Rice, “High-Performance Image Processing Using Special-Purpose CPU Instructions: The
UltraSPARC Visual Instruction Set,” Master's thesis, Stanford University, 1996.

[57] D. Talla and L. K. John, “MediaBreeze: A decoupled architecture for accelerating multimedia
applications,"ACM Computer Architecture NewBCM Press, ISSN 0163-5964, vol. 29, no. 5, Dec.
2001.

[58] D. Talla, L. K. John, and D. Burger, “Hardware support to reduce overhead in fine-grain media
codes,"Technical ReportLaboratory for Computer Architecture, Dept. of Electrical and Computer
Engineering, The University of Texas, Austin, Nov. 2001.

35

Figures

Fig. 1. (a) IPC with both the SIMD and non-SIMD resources scaled, (b) IPC with non-SIMD resources
scaled, but SIMD resources are constant (same as 2-way processor configuration), and (c) performance
improvement of (a) over (b)

Fig. 2. A 2-D data structure in which sub-blocks of data are processed. The data elements surrounded by
the dotted ellipse form one sub-block. Each sub-block requires two strides (one each along the rows and
columns of the sub-block, namely stride-4 and stride-3). Additional two strides (stride-2 and stride-1) are
required for accessing different sub-blocks in the horizontal and vertical direction

Fig. 3. C-code for 2D-DCT implementation

Fig. 4. Typical access patterns in multimedia and DSP kernels [13]

Fig. 5. Optimized assembly code for the 1D-DCT routine shown in Fig. 3 (excluding matrix transpose)
Fig. 6. Breakdown of dynamic instructions into various classes

Fig. 7. The MediaBreeze Architecture

Fig. 8. Structure of the Breeze Instruction

Fig. 9. Multicast technique versus traditional SIMD matrix multiply

Fig. 10. Pseudo-code representing a MediaBreeze compute instruction

Fig. 11. Breeze instruction mapping of 1D-DCT

Fig. 12. Performance of MediaBreeze (MB) versus SIMD

Fig. 13. Reduction in dynamic instructions by using the MediaBreeze architecture. Power savings
proportional to the instruction count savings can be expected for fetch, decode and renaming energy

Fig. 14. Block diagram of address generation hardware (per data stream)

Fig. 15. Block diagram of the five hardware loops

Tables

Table. 1. Description of the multimedia benchmarks
Table. 2. Processor and memory configurations

Table. 3. Summary of key media algorithms and the required nested loops along with their primitive
addressing sequences

36

Table. 4. Execution statistics and efficiency of media programs

Table. 5. Performance (IPC) with unit cycle memory accesses and perfect branch prediction
Table. 6. Performance of the MediaBreeze architecture with prefetching

Table. 7. Cell-based Libraries (LSI Logic) used in synthesis

Table .8. Timing, Area, and Power estimates for hardware looping and address generation (the Breeze
instruction decoder was merged into the looping and address generation)

37

Biographies of the authors Pictures provided as postscript files)

Deepu Talla received his Ph.D. in Computer Engineering from The University of Texas at Austin in
August 2001. He is currently a System Architect in the Worldwide Imaging and Audio Group at Texas
Instruments, Inc. in Dallas. His research interests are in computer architecture, workload characterization,
performance evaluation and benchmarking, multimedia processing, and ASIC/FPGA design. He is a
member of the IEEE, IEEE Computer Society, ACM, and ACM SIGARCH.

Lizy Kurian John is an associate professor in the Department of Electrical and Computer Engineering at
the University of Texas at Austin. She received her PhD degree in computer engineering from the
Pennsylvania State University. Her research interests include high performance microprocessor
architecture, memory systems, computer performance evaluation and benchmarking, workload
characterization, and optimization of architectures for emerging workloads. She has published papers in
the IEEE Transactions on Computers, IEEE Transactions on VLSI, ACM/IEEE International Symposium
on Computer Architecture (ISCA), ACM International Conference on Supercomputing (ICS), IEEE

Micro Symposium (MICRO), IEEE High Performance Computer Architecture Symposium (HPCA), etc.,
and has a patent for a Field Programmable Memory Cell Array chip. Her research is supported by the US
National Science Foundation (NSF), the State of Texas Advanced Technology program, DELL Computer
Corporation, Tivoli, IBM, AMD, Motorola, Intel, and Microsoft Corporations. She is the recipient of an
NSF CAREER award and a Junior Faculty Enhancement Award from Oak Ridge Associated Universities.
She is a senior member of the IEEE and a member of the IEEE Computer Society and ACM and ACM
SIGARCH. She is also a member of Eta Kappa Nu, Tau Beta Pi, and Phi Kappa Phi.

Doug Burger has been an Assistant Professor of Computer Sciences and Electrical & Computer
Engineering at the University of Texas at Austin since 1999. He received his Ph.D. in Computer Sciences
from the University of Wisconsin-Madison, and his B.S. from Yale University in 1991. His main

research area is computer architecture, and his interests span compilers, operating systems, emerging
technologies, and distance running. He is co-leader of the TRIPS project at UT-Austin, a 2000 NSF
Career Award recipient, an IBM Center for Advanced Studies Fellow, and a Sloan Foundation Research
Fellow.

38

