
Bottlenecks in Multimedia Processing with SIMD style Extensions
and Architectural Enhancements

Deepu Talla,Member, IEEE, Lizy Kurian John,Senior Member, IEEE,and Doug Burger*,
Member, IEEE

Laboratory for Computer Architecture, Department of Electrical and Computer Engineering
*Computer Architecture and Technology Laboratory, Department of Computer Sciences

The University of Texas Austin
Austin, TX 78712

{deepu, ljohn}@ece.utexas.edu, dburger@cs.utexas.edu

Abstract � Multimedia SIMD extensions such as MMX and AltiVec speedup media processing,

however, our characterization shows that the attributes of current general-purpose processors enhanced

with SIMD extensions do not match very well with the access patterns and loop structures of media

programs. We find that 75-85% of the dynamic instructions in the processor instruction stream are

supporting instructions necessary to feed the SIMD execution units rather than true/useful computations,

resulting in the underutilization of SIMD execution units (only 1-12% of the peak SIMD execution units’

throughput is achieved). Contrary to focusing on exploiting more data level parallelism (DLP), in this

paper, we focus on the instructions that support the SIMD computations and exploit both fine- and coarse-

grained instruction level parallelism (ILP) in the supporting instruction stream. We propose the

MediaBreeze architecture that uses hardware support for efficient address generation, looping and data

reorganization (permute, packing/unpacking, transpose, etc). Our results on multimedia kernels show that

a 2-way processor with SIMD extensions enhanced with MediaBreeze provides a better performance than

a 16-way processor with current SIMD extensions. In the case of application benchmarks, a 2-/4-way

processor with SIMD extensions augmented with MediaBreeze outperforms a 4-/8-way processor with

SIMD extensions. A first-order approximation using ASIC synthesis tools and cell-based libraries shows

that this acceleration is achieved at a 10% increase in area required by MMX and SSE extensions (0.3%

increase in overall chip area) and 1% of total processor power consumption.

Preliminary versions of parts of this paper appeared in the Proceedings of IEEE International Conference on
Computer Design, Sep. 2001 and ACM Computer Architecture News, Dec. 2001. This research was supported in
part by a State of Texas Advanced Technology program grant. L. K. John is also partially supported by the National
Science Foundation under grants EIA-9807112 and ECS-0113105 and by Dell, Intel, Microsoft, Tivoli, Motorola
and IBM Corporations. D. Burger is supported by a grant from the Intel Research Council, an NSF CAREER
Award, an IBM University partnership Award, and a Sloan Foundation Fellowship.

2

Index Terms � Media processing, subword parallelism, bottlenecks in SIMD extensions, workload

characterization, performance evaluation, hardware address generation, low-overhead looping, data

reorganization, and superscalar general-purpose processors.

1 Introduction

Contemporary computer applications are multimedia-rich, involving significant amounts of audio

and video compression, 2D image processing, 3D graphics, speech and character recognition,

communications, and signal processing. While dedicated media-processors and media-tailored ASICs are

used in small, low-power embedded devices such as PDAs, cell-phones, and set-top boxes, augmenting

the general-purpose processor with media-tailored enhancements has been the course of action in general-

purpose computing such as in desktop PCs and workstations. Hardware solutions such as ASICs give

advantages of high performance and low power, however, their flexibility and adaptability to new

applications is very limited. The necessity to run a variety of workloads including desktop, database,

media, Java, scientific and technical applications justifies not abandoning the aggressive general-purpose

core in favor of a media-specific solution. The most popular solution in the past five years has been the

enhancement of the general-purpose processor with multimedia extensions such as Intel’s MMX, SSE1,

and SSE2, Sun’s VIS, HP’s MAX, Compaq’s MVI, MIPS’s MDMX, and Motorola’s AltiVec [1][2]. The

key idea in these extensions is the exploitation of subword parallelism in a single instruction multiple data

(SIMD) fashion. Four, eight or sixteen data elements of 32-, 16-, or 8-bits width can be operated

simultaneously in a single register (128-bits wide). Such techniques have been implemented not only in

commercial general-purpose processors, but also in DSP processors such as the TMS320C64 processor

from Texas Instruments [3] and the TigerSharc processor from Analog Devices [4].

Obviously the microprocessor design community has embraced the SIMD paradigm for media

extensions. Although compiler capabilities to automatically exploit the SIMD extensions have been

meager [50][51][52][53], media-rich applications have exploited the paradigm through the use of

assembly libraries and compiler intrinsics and have shown significant performance benefits [5][6][7][8].

While the improvement in performance has been encouraging and exciting, we notice that performance

does not scale with increasing the SIMD execution resources. Hence, we embark on a study to understand

the behavior of multimedia applications on SIMD extensions and the nature of the data level parallelism

(DLP) in multimedia applications. More specifically, we attempt to answer the following:

• SIMD enhanced general-purpose processors (GPPs) typically exploit the sub-word parallelism

between independent loop iterations in the inner loops of multimedia programs. Where does DLP in

3

media applications reside? Does most of the DLP reside in the inner loops, or is there significant DLP

in the outer loops?

• Nested loops are required for processing multimedia data streams and this necessitates the use of

multiple indices while generating addresses. GPPs contain limited support to compute addresses of

elements with multiple indices. How many levels of nesting are required in common media

algorithms? Are the addressing sequences primarily sequential?

• While SIMD extensions are capable of performing multiple computations in the same cycle, it is

essential to provide data to the SIMD computation units in a timely fashion in order to make efficient

use of the sub-word parallelism. Providing data in a timely fashion requires supporting instructions

for address generation, address transformation (data reorganization such as packing, unpacking, and

permute), processing multiple nested loop branches, and loads/stores. Are these supporting

instructions a dominant part of the instruction stream?

• What percentage of the peak computation rate is achieved for the SIMD execution units in GPPs? If

the computation rate is low, what are the reasons that prevent the SIMD execution units from

achieving a good computation rate?

• What are effective techniques to further enhance the performance of media applications on SIMD

enhanced GPPs?

This paper has two major contributions. The first contribution of the paper is the characterization

of media workloads from the perspective of support required for efficient SIMD processing. Typically,

studies have focused on the true/core computation part of the algorithms, whereas we show that

significant additional performance enhancements can be achieved by focusing on the supporting

instructions. The second contribution of the paper is the MediaBreeze architecture, which illustrates how

characterization studies can be used to design cost-effective architectural enhancements. The major focus

of the proposed architecture is on the instructions that support the true/core computations, rather than on

the true/core computations themselves.

The rest of the paper is organized as follows. In section 2 we describe the benchmarks used in the

study. Section 3 performs sensitivity experiments on the scalability of conventional instruction level

parallelism (ILP) and DLP techniques. In section 4 we describe studies to detect bottlenecks in the

execution of SIMD programs on GPPs. In section 4.1, we describe the loop nesting and access patterns in

multimedia applications and their mapping onto GPPs with SIMD extensions. In section 4.2, we classify

dynamic instructions into two fundamental categories, the true/core computation instructions and the

overhead/supporting instructions and analyze their mix in media benchmarks. In section 4.3, we measure

4

the percent of peak computation rate achieved for the SIMD execution units in GPPs by conducting

experiments on two different superscalar processors. Section 4.4 identifies additional bottlenecks in

conventional ILP processors that limit the computation rate of the SIMD execution units. Based on the

understanding of the behavior of multimedia applications and the bottlenecks in GPPs with SIMD

extensions, in section 5 we propose the MediaBreeze architecture that incorporates explicit hardware

support for processing the overhead/supporting instructions efficiently. The cost of incorporating the

MediaBreeze hardware support to a SIMD enhanced GPP is evaluated in section 6. Section 7 discusses

related work, and the paper is summarized in section 8.

2 Description of Benchmarks

We use nine multimedia benchmarks to study the architectural implications of GPPs with SIMD

extensions. Table 1 lists the benchmarks along with a small description and the dynamic instruction

count. Sample source code for each of the benchmarks is provided in [9]. SIMD version of the

benchmarks was created for two processors, namely, Pentium III and Simplescalar based superscalar

processor. The Pentium III MMX code was generated using assembly and compiler intrinsics, while the

Simplescalar SIMD code was generated using instruction annotations and assembly code. The code was

compiled by Intel C/C++ compiler version 4.5 and gcc version 2.6 respectively, using maximum compiler

optimizations (including loop unrolling). Our suite includes applications (g711, aud, jpeg, ijpeg, and

decrypt) and kernels (cfa, dct, motest, andscale). The kernels used are major components in image and

video processing standards such as JPEG, MPEG, H.263, etc. Many of these benchmarks are also part of

media benchmark suites such as MediaBench [10].

Table. 1. Description of the multimedia benchmarks

Benchmark Description Instruction count

Kernels

cfa
Color filter array interpolation of a 2 million pixel image with a 5x5 filter
(16-bit data) 349,447,420

dct 2-D discrete cosine transform of a 2 million pixel image (16-bit data) 160,050,834
motest Motion estimation routine on a frame of 2 million pixels (8-bit data) 136,801,609
scale Linear scaling of an image of 2 million pixels (8-bit data) 3,129,815

Applications

g711
G.711 speech coding standard (A-law to u-law and vice-versa)
conversions on 2 million audio samples (8-bit data)

63,360,233

aud
Audio effects on 2 million audio samples (echo, signal mixing and
filtering) (16-bit data)

283,199,976

jpeg JPEG image compression on a 800-by-600 pixel image 208,940,079
ijpeg JPEG image de-compression resulting in a 800-by-600 pixel image 136,173,916
decrypt IDEA decryption on 192,000 bytes of data 125,683,876

5

3 A Scalability test

Media applications are known to contain significant amount of DLP and a logical approach to

improve performance is to scale the processor resources to extract more parallelism. To understand the

ability of wide out-of-order superscalar processors to increase performance of multimedia programs, we

performed experiments scaling the various resources of the processor (using a modified Simplescalar-3.0

simulator [11] enhanced with 64-bit SIMD execution units). All components are scaled as in Table 2.

Each of the nine benchmarks was modified to incorporate SIMD code using assembly and instruction

annotations of the modified Simplescalar simulator. Fig. 1(a) shows the instructions per cycle (IPC) for

different processor configurations for each of the benchmarks. We, incidentally, also note that almost the

same performance can be achieved even if the SIMD execution units were not scaled; i.e. the non-SIMD

components are scaled up to the 16-way processor keeping the SIMD component constant as a 2-way

processor (i.e. 2 SIMD ALUs and 1 SIMD multiplier). The IPC for this case is depicted in Fig. 1(b). The

percentage increase in IPC when scaling both the SIMD and non-SIMD resources over the case of scaling

only the non-SIMD resources is shown in Fig. 1(c).

0

2

4

6

cfa dct mot scale aud g711 jpeg ijpeg decrypt

(a)

IP
C

2-way 4-way 8-way 16-way

0

2

4

6

cfa dct mot scale aud g711 jpeg ijpeg decrypt

(b)

IP
C

Fig. 1. (a) IPC with both the SIMD and non-SIMD resources scaled, (b) IPC with non-SIMD resources
scaled, but SIMD resources are constant (same as 2-way processor configuration), and (c) performance
improvement of (a) over (b)

cfa dct mot scale aud g711 jpeg ijpeg decrypt
4-way < 1 % < 1 % < 1 % < 2 % < 4 % < 1 % < 1 % < 1 % < 1 %
8-way < 1 % < 1 % < 1 % < 3 % < 1 % < 1 % < 1 % < 1 % < 1 %
16-way < 1 % < 1 % < 1 % < 1 % < 1 % < 1 % < 1 % < 1 % < 1 %

(c)

6

Table. 2. Processor and memory configurations
Parameters 2-way 4-way 8-way 16-way

Fetch width, Decode width, Issue width, and Commit width 2 4 8 16
RUU Size 32 64 128 256
Load Store Queue 16 32 64 128
Integer ALUs (latency/recovery = 1/1) 2 4 8 16
Integer Multipliers (latency/recovery = 3/1) 1 2 4 8
Load/Store ports (latency/recovery = 1/1) 2 4 8 16
L1 I-cache (size in KB, hit time, associativity, block size in bytes) 16, 1, 1, 32 16, 1, 1, 32 16, 1, 1, 32 32, 1, 1, 64
L1 D-cache (size in KB, hit time, associativity, block size in bytes) 16, 1, 4, 32 16, 1, 4, 32 16, 1, 4, 32 16, 1, 4, 32
L2 unified cache (size in KB, hit time, associativity, block size) 256, 6, 4, 64 256, 6, 4, 64 256, 6, 4, 64 256, 6, 4, 64
Main memory width 64 bits 128 bits 256 bits 256 bits
Main memory latency (first chunk, next chunk 65, 4 65, 4 65, 4 65,4
Branch Predictor – bimodal (size, BTB size) 2K, 2K 2K, 2K 2K, 2K 2K, 2K
SIMD ALUs 2 4 8 16
SIMD Multipliers 1 2 4 8

The observation suggests that SIMD execution units are already underutilized and bottlenecks are

concealed elsewhere in the non-SIMD portion of the application.

4 Identification of Bottlenecks
It is evident that there are bottlenecks in SIMD style media processing and that it is not possible

to get significant amounts of additional performance improvements by merely increasing the SIMD

resources. We investigate characteristics of media programs that point towards the bottlenecks in current

SIMD architectures.

4.1 Nested loops in multimedia applications

In this section we investigate the nature of multimedia loops to understand the levels of nesting,

stride patterns, and the location of the parallelism. Desktop/workstation multimedia applications such as

streaming video encoding/decoding (MPEG 1/2/4 and Motion JPEG), audio encoding/decoding

(ADPCM, G.7xx, MP3, etc), video conferencing (H.323, H.261, etc), 3D games, and image processing

(JPEG, filtering) typically operate on sub-blocks in a large 1- or 2-dimensional block of data. Audio

applications operate on chunks of one-dimensional data samples at a time (for example, the MP3 codec

operates on “frames” which are smaller components of the complete audio signal that last a fraction of a

second). Image and video applications operate on sub-blocks of two-dimensional data at a time (for

example, the DCT algorithm operates on 8x8 pieces of data in a large image such as 1600x1200 pixels).

Such a division of data into sub-blocks results in the data being accessed with different strides at various

instances in the algorithm. Fig. 2 depicts a 2-dimensional block of data that is accessed with four different

strides� two in the vertical direction and two in the horizontal direction.

7

Source code for the aforementioned algorithms involves the usage of multiple nested loops

(commonly ‘for’ loops in C language) to process the data streams. Much of the available parallelism in

multimedia applications is seen to be DLP that resides at the various levels of nesting. The dimensions of

each sub-block for most multimedia algorithms are small (filtering typically uses 3x3 or 5x5 or 7x7 sub-

blocks, DCT operates on 8x8 sub-blocks, and motion estimation operates on 16x16 sub-blocks) resulting

in limited parallelism in the innermost loop [12]. However, the number of sub-blocks themselves is large

since the size of the data stream can be on the order of several MB. Consequently, a significant part of the

DLP in multimedia applications resides outside the innermost loop; the way applications are coded

currently.

Existing GPPs with SIMD extensions exploit DLP between independent loop iterations in the

innermost loops leading to significant untapped available DLP in multimedia applications. Fig. 3 shows

the SIMD C-code implementation of the discrete cosine transform (the DCT is a major component in

JPEG image and MPEG video coding) which operates on 8x8 sub-blocks in an image of a given height

and width. The second matrix is transposed before doing the computation because accessing the second

matrix in column-major order results in a significant amount of overhead. This is particularly true when

using SIMD instructions because a SIMD register needs to be packed with an element from different rows

(and hence not contiguous). If a SIMD register holds eight elements, then all eight rows of a matrix need

to be loaded into the cache and then elements belonging to the same column are packed into the register.

It is possible to eliminate one of the transpose operations (either from row or column 1D-DCT) if a

transposed version of the DCT coefficients is available. In Fig. 3, there are a total of five nested for-loops

for the DCT routine. Current SIMD instructions exploit data level parallelism (DLP) in the innermost for-

loop (variable ‘m’). The number of iterations would be scaled down according to the width of the

available SIMD datapath (currently 64 or 128 bits wide) and size of each element (8-bit, 16-bit, or 32-bit).

Fig. 2. A 2-D data structure in which sub-blocks of data are processed. The data elements surrounded by
the dotted ellipse form one sub-block. Each sub-block requires two strides (one each along the rows and
columns of the sub-block, namely stride-4 and stride-3). Additional two strides (stride-2 and stride-1)
are required for accessing different sub-blocks in the horizontal and vertical direction.

Stride-4 (horz)

Stride-3 (vert)

Stride-1 (vert)

Stride-2 (horz)

sub-block

8

Next, we analyze the access patterns in media applications. Analysis of media and Digital Signal

Processing (DSP) applications unveils invocation of several address patterns, often multiple simultaneous

sequences [13]. Fig. 4 shows the typical access patterns in media and DSP kernels. Table 3 lists several

key multimedia and DSP kernels and the typical number of nested loops required along with their

corresponding primitive addressing sequences. Hardware to generate multiple address sequences is not

overly complicated, but supporting them using general-purpose instruction sets is not very efficient, as the

available addressing modes are limited. Furthermore, there is not enough support for keeping track of

multiple indices/strides efficiently in GPPs. Similarly, keeping track of multiple loop nests/bounds

involves a combination of several addressing modes and instructions. Thus, even though GPPs are

enhanced with SIMD extensions to extract DLP in multimedia programs, there is a mismatch between the

requirements of media applications (for address generation and nested loops) and the ability of GPPs with

SIMD extensions. Simple ASICs can perform these tasks efficiently; however, loss of programmability

and flexibility is a weakness of that approach.

void 2D_DCT(IMAGE[IMAGE_WIDTH][IMAGE_HEIGHT])
{

for(i = 0; i < IMAGE_HEIGHT/8; i++)
for(j = 0; j < IMAGE_WIDTH/8; j++)
{

1D_ROW_DCT (DCT_COEF [8][8], BLOCK [8][8]);
1D_COL_DCT (DCT_COEF [8][8], BLOCK [8][8]);

}
}

void 1D_XXX_DCT(DCT_COEFF[8][8],BLOCK[8][8])
{

Transpose (BLOCK [8][8]);
for(k = 0; k < 8; k++)
{

for(l = 0; l < 8; l++)
{

temp = 0;
for(m = 0; m < 8/SIMD_WIDTH; m++)

temp +=
SIMD_MUL (DCT_COEFF [k][m], BLOCK [l][m];

output[k][l] = SIMD_REDUC (temp)
} } }

Fig. 3. C-code for 2D-DCT implementation

Given a sequence of length L, if Am is address m in the range 0≤ m ≤ L-1, most multimedia and DSP kernels
can be considered to be composed of primitive addressing sequences such as the following:

(i) Sequential addressing: A0, A1, A2, …AN-1

(ii) Sequential with offset (k)/stride addressing: A0+k, A1+k, A2+k, …, AN-1+k

(iii) Shuffled addressing (base r, N/r = p): A0, Ap, A2p, …, A1, Ap+1, A2p+1, …, A2, A2p+2, …, A2p+2, …,
AN-1

(iv) Bit-reversed addressing (e.g. N = 8): A0, A4, A2, A6, A1, A5, A3, A7

(v) Reflected addressing: A0, AN-1, A1, AN-2, …, Am, AN-m, …, AN/2-1, AN/2

Fig. 4. Typical access patterns in multimedia and DSP kernels [13]

9

Table. 3. Summary of key media algorithms and the required nested loops
along with their primitive addressing sequences

Multimedia/DSP algorithm Nested
loops

Addressing Sequences

Discrete Cosine Transform (JPEG & MPEG
coding)

5
Sequential and sequential with multiple
offsets/strides

Motion Est./Comp. (MPEG, H.263, etc) 5
Sequential and sequential with multiple
offsets/strides

Wavelet Transform (JPEG2000) 2 - 6
Sequential and sequential with multiple
offsets/strides

Color Space Conversion (JPEG, MPEG, 3D
graphics)

> 4 Sequential, sequential with offsets, and shuffled

Scaling and matrix operations (image/video) 3
Sequential and sequential with multiple
offsets/strides

Fast Fourier transform > 3 Shuffled and bit-reversed

Color Filter Array, median filtering, correlation 2 – 5
Sequential and sequential with multiple
offsets/strides

Convolution, FIR, and IIR filtering 3 – 4 Sequential, sequential with offsets, and reflected

Edge detection, alpha saturation (image/video) 2 – 5
Sequential and sequential with multiple
offsets/strides

Up/Down sampling, 3-D transformation
(graphics)

3 – 5
Sequential and sequential with multiple
offsets/strides

Quantization (JPEG, MPEG) 2 – 4
Sequential and sequential with multiple
offsets/strides

ADPCM, G.711 (speech) 2 – 3
Sequential and sequential with multiple
offsets/strides

4.2 Overhead/Supporting instructions

The discussion in the previous section points to the need of several instructions to compute

addresses and otherwise support the core SIMD computations. In this section, we analyze the media

instruction stream by focusing on the two distinct sets of operations: thetrue/core computations as

required by the algorithm and theoverhead/supporting instructionssuch as address generation, address

transformation (data movement and data reorganization such as packing and unpacking), loads/stores, and

loop branches. Consider the DCT code in Fig. 3. The true/core computation instructions for the DCT

routine are the multiply (of DCT coefficients and data) and the accumulate operations (addition of

multiplied values). This is shown in bold in Fig. 3. All the other instructions are denoted asoverhead;

their sole purpose is to aid in the execution of the true/core computation instructions. Many of them arise

due to the programming conventions of general-purpose processors, abstractions and control flow

structures used in programming, and mismatch between how data is used in computations versus the

10

sequence in which data is stored in memory. A similar kind of classification of instructions into access

and execute instructions was performed in decoupled access-execute (DAE) processors [14][15]. In our

classification, the overhead component includes loop branches and reduction operations [16] that are

specific to multimedia applications (e.g. packing/unpacking, and permute) in addition to the memory

access task. The instructions contributing to the overhead are:

• Address generation – considerable processing time is dedicated in performing the address calculations

required to access the components of the data structures/arrays, which is sometimes called address

arithmetic overhead.

• Address transformation – transforming the physical pattern of data into the logical access sequence

(transposing the matrix in Fig. 3, packing/unpacking data elements in SIMD computations, and

reorganizing data in other ways.

• Loads and Stores – data is not always available in registers and has to be fetched from memory or

stored to memory, the so-called access overhead.

• Branches – performing control transfer (for each of the 5 nested for-loops in the example).

Fig. 5 shows the assembly code classified into true/core computation and overhead instructions

(for two processors) for the 1D-DCT routine from Fig. 3 excluding the transpose function, i.e. the three

inner level nested loop structure. Transposing the second matrix before multiplication will necessitate

additional overhead instructions for address transformation. The first processor is a Pentium III processor

based on the P6 microarchitecture [17], and the second processor is based on a modified Simplescalar

processor enhanced with SIMD extensions. The SIMD registers in the case of Simplescalar are aliased to

the floating-point registers. From Fig. 5, it can be seen that a significant number of overhead/supporting

instructions are necessary to feed the SIMD computation units.

In order to quantify the amount of overhead/supporting instructions in multimedia programs, we

evaluated the performance of six of the nine benchmarks listed in Table 1.Jpeg, ijpeg, anddecryptare not

used in this experiment because the source code for these three benchmarks includes initialization

routines and file I/O. Five of the six benchmarks (exceptg711)were mapped in such a way that the SIMD

execution units perform every true/core computation. Fig. 6 shows the breakdown of dynamic instructions

into various classes (memory, branch, integer, SIMD overhead, and SIMD/true computation). It is seen

that the overhead/supporting instructions that are required to assist the SIMD computation (true/core

computations) instructions dominate the dynamic instruction stream (75-85%). A significant number of

instructions are required for processing the loop branches and computing the strides for accessing the data

11

organized in sub-blocks. The Pentium III processor has more memory references than the Simplescalar

based processor because the x86 ISA has fewer logical registers (8 versus 32 in conventional RISC

processors).

4.3 SIMD throughput and efficiency

In this section, we evaluate the throughput of the SIMD units to understand the impact of the

overwhelming number of instructions needed to support the SIMD computations. We define SIMD

efficiency as the ratio of the execution cyclesideally necessary for the true/core computation instructions

to the overall execution cyclesactually consumed. In other words, SIMD efficiency indicates what

fraction of the peak throughput of the SIMD units is actually achieved. The actual execution cycles are

Fig. 5. Optimized assembly code for the 1D-DCT routine shown in Fig. 3 (excluding matrix transpose)

Pentium III – MMX code

lea ebx, DWORD PTR [ebp+128] load/address overhead
mov DWORD PTR [esp+28], ebx load/address overhead
$B1$2:
xor eax, eax address overhead
mov edx, ecx address overhead
lea edi, DWORD PTR [ecx+16] load/address overhead
mov DWORD PTR [esp+24], ecx load/address overhead
$B1$3:
movq mm1, MMWORD PTR [ebp] load overhead
pxor mm0, mm0 initialization overhead
pmaddwd mm1, MMWORD PTR [eax+esi]

True Computation
movq mm2, MMWORD PTR [ebp+8] load overhead
pmaddwd mm2, MMWORD PTR [eax+esi+8]

True Computation
add eax, 16 address overhead
paddw mm1, mm0 True Computation
paddw mm2, mm1 True Computation
movq mm0, mm2 load related overhead
psrlq mm2, 32 SIMD reduction
overhead
movd ecx, mm0 SIMD load overhead
movd ebx, mm2 SIMD load overhead
add ecx, ebx SIMD conv. Overhead
mov WORD PTR [edx], cx store overhead
add edx, 2 address overhead
cmp edi, edx branch related
overhead
jg $B1$3 loop branch overhead
$B1$4:
mov ecx, DWORD PTR [esp+24] load/address overhead
add ebp, 16 address overhead
add ecx, 16 address overhead
mov eax, DWORD PTR [esp+28] load/address overhead
cmp eax, ebp branch related
overhead
jg $B1$2 loop branch overhead

Simplescalar-SIMD – gcc code

move $11,$0 address overhead
l.d $f6,$LC1 load overhead
$L33:
move $10,$0 address overhead
move $9,$5 address overhead
$L37:
mtc1 $0,$f4 initialization overhead
mtc1 $0,$f5 initialization overhead
move $8,$0 address overhead
move $7,$9 address overhead
move $3,$4 address overhead
$L41:
l.simd $f0,0($3) SIMD load overhead
l.simd $f2,0($7) SIMD load overhead
mul.simd $f0,$f0,$f2 True Computation
addu $8,$8,1 address overhead
add.simd $f4,$f4,$f0 True Computation
slt $2,$8,2 branch related
overhead
addu $7,$7,8 address overhead
addu $3,$3,8 address overhead
bne $2,$0,$L41 loop branch overhead
redu.simd $f4,$f4,$f6 SIMD reduction
overhead
addu $9,$9,16 address overhead
addu $10,$10,1 address overhead
slt $2,$10,8 branch related
overhead
s.simd $f4,0($6) SIMD store overhead
bne $2,$0,$L37 loop branch overhead
addu $6,$6,16 address overhead
addu $4,$4,16 address overhead
addu $11,$11,1 address overhead
slt $2,$11,8 branch related
overhead
bne $2,$0,$L33 loop branch overhead

12

obtained by measurement with processor performance counters or by simulation, while the ideal cycles

are computed assuming that the overhead instructions can be perfectly overlapped with the true/core

computation instructions. In the ideal case, overhead instructions such as address generation, memory

access, data reorganization, and loop branches do not consume additional processor cycles. The number

of ideal execution cycles depends on the amount of SIMD resources in a machine. For example, consider

a matrix multiplication algorithm of twoNxN matrices, with computational complexityO(N3). This is

assuming that there is one multiplier and it is pipelined and the addition/accumulation can take place in

parallel. Thus, an 8x8 matrix multiply should take 512 cycles on a machine with one multiplier (in the

pure dataflow model), and take 128 cycles on a machine with 4 multipliers (assuming that there are at

least 4 adders for the accumulation). If this algorithm were to take 2500 cycles on a real machine with one

multiplier, then the efficiency of computation is 20% (512/2500). The important thing to note here is that

if efficiency achieved is low, it suggests opportunities for further enhancement.

We measure the SIMD efficiency on two platforms, a Pentium III machine and a 2-way

Simplescalar simulator, for each of the first six benchmarks described in Table 1. The MMX extensions in

the Pentium III processor provide fixed-point SIMD capability with two 64-bit MMX ALUs and one 64-

bit MMX multiplier. The SSE extensions provide floating-point SIMD capability. The Simplescalar

processor execution core is similarly configured to contain two 64-bit SIMD ALUs and one 64-bit SIMD

multiplier. Table 4 shows the execution statistics and SIMD efficiency for each of the benchmarks. The

ideal number of execution cycles is computed by identifying the number of required true/core

computation operations and the available SIMD execution units (2 ALUs and 1 multiplier in both the

processors).

Fig. 6. Breakdown of dynamic instructions into various classes

0%

20%

40%

60%

80%

100%

cfa-PIII cfa-SS dct-PIII dct-SS scale-
PIII

scale-
SS

motest-
PIII

motest-
SS

aud-PIII aud-SS g711-
PIII

g711-
SS

memory branch integer SIMD-overhead SIMD-computation

13

Table. 4. Execution statistics and efficiency of media programs

Pentium III – MMX & SSE Simplescalar - SIMD
Benchmark

Inst. Count
Actual

Cycle count
Efficiency Inst. Count

Actual
Cycle count

Efficiency

cfa 404,290,544 231,616,932 5.16 % 349,447,420 338,685,938 3.53 %

dct 188,798,806 123,944,326 6.2 % 160,050,834 131,587,103 5.84 %

scale 2,170,274 20,756,929 2.31 % 3,129,815 4,626,696 10.36 %

motest 156,734,613 113,623,185 3.38 % 136,801,609 129,364,679 5.94 %

aud 220,320,505 150,386,375 11.97 % 283,199,976 191,516,819 9.40 %

g711 59,066,806 64,006,729 1.12 % 63,360,233 49,302,976 1.45 %

SIMD efficiency ranges from 1% to 12% and 1.5% to 10.5% for the Pentium III and Simplescalar

based processor respectively. The SIMD efficiency is alarmingly low because the overhead/supporting

instructions dominate the dynamic instruction stream. The execution time is also increased because of

conventional architectural limitations such as cache misses, misalignment issues, resource stalls, BTB

misses, TLB misses, and branch mis-speculations. The efficiency of the Pentium III processor is slightly

higher than the Simplescalar based processor in four of the six benchmarks because it is able to issue

three micro-ops (equivalent to 2.7 x86 CISC instructions for the benchmarks above) while the

Simplescalar processor issues two instructions per cycle. The L1 cache latency of the Pentium III

processor is 3 cycles, while that of the Simplescalar configuration is 1 cycle. Hence two memory-

intensive benchmarks (scaleandg711) achieve a better efficiency for the Simplescalar configuration. We

also measured similar statistics for the Pentium III and the Simplescalar based processor without SIMD

extensions. We found that the execution time is worse than SIMD enhanced processors, but the efficiency

is higher for non-SIMD processors (2.5% - 16.5%). This is because a 64-bit SIMD execution unit counts

towards a peak rate of either 4 or 8 computations per cycle (16-bit or 8-bit data), whereas the scalar

execution unit counts toward a single computation per cycle. While it is true that SIMD enhancements

were not added to improve efficiency of processing but to speedup multimedia programs, our

characterization highlights the gap between peak rate and achieved rate for SIMD programs and points to

ample opportunities for performance improvement.

4.4 Memory access and branch bottlenecks

Memory latency prevents processors from fetching data in a timely fashion to achieve peak

throughput. Also, supporting wide issue processors requires the ability to fetch across multiple branches.

In this section, we investigate how memory latency and branch prediction impact the performance of

these media kernels and applications. Table 5 shows the IPC with unit cycle memory access (i.e. a perfect

L1 cache) and perfect branch prediction for the 2-, 4-, 8-, and 16-way processors with SIMD extensions.

14

Table. 5. Performance (IPC) with unit cycle memory accesses and perfect branch prediction

cfa dct mot scale aud g711 jpeg ijpeg decrypt

Unit cycle memory access

2-way 1.04 1.26 1.06 1.43 1.57 1.59 1.33 1.34 1.75

4-way 2.19 1.78 2.14 2.84 2.50 3.10 2.00 2.30 2.52

8-way 2.71 2.30 2.85 5.56 3.66 5.22 2.37 3.21 2.95

16-way 2.71 2.95 2.86 9.54 5.27 7.76 5.10 4.07 3.89

Perfect branch prediction

2-way 1.75 1.60 1.79 0.68 1.62 1.29 1.24 1.42 1.70

4-way 3.44 3.09 3.59 1.05 2.69 2.29 1.92 2.60 2.40

8-way 6.47 5.91 7.03 2.35 4.35 3.79 2.46 3.99 2.86

16-way 10.49 11.19 11.61 3.91 6.37 5.55 5.45 6.66 3.79

It is seen that different programs vary in their sensitivity to memory latency and branch

prediction.Scaleandg711benchmarks are memory bound programs and improve significantly due to a

unit cycle memory access but show negligible increase in IPC due to perfect branch prediction.Cfa, dct,

andmotare benchmarks that operate on sub-blocks in a 2-D structure requiring five levels of loop nesting

and benefit the most from perfect branch prediction and the ability to fetch across multiple branches in a

single cycle. A unit cycle memory access has negligible performance impact on these three benchmarks.

The remaining four benchmarks (aud, jpeg, ijpeg, anddecrypt) benefit equally from both perfect branch

prediction and unit cycle memory access. It is evident from this experiment that it is extremely important

to provide low latency memory access and excellent branch prediction extending over multiple branches

in order to achieve good performance.

5 Hardware Support for Efficient SIMD Processing

5.1 Decoupling Computation and Overhead

The characterization of media applications presented in the previous sections showed that

supporting or overhead related instructions dominate the instruction stream. Obviously,

overhead/supporting instructions need to be either eliminated, alleviated, or overlapped with the true/core

computations for better performance, i.e. the higher the overlap of overhead/supporting instructions, the

higher the SIMD efficiency. We exploit the observed characteristics of the media programs and propose

to augment GPPs (having SIMD execution units) with specialized hardware to efficiently overlap the

overhead/supporting instructions. We refer to this as the MediaBreeze architecture. Fig. 7 illustrates the

block diagram of the proposed architecture.

15

In order to perform the SIMD operations, the MediaBreeze architecture introduces new hardware

units as well as uses existing hardware units. The new hardware units (darkly shaded blocks in Fig. 7) are

the address generation units, hardware looping, and Breeze instruction memory & decoder. The existing

hardware units used (lightly shaded blocks in Fig. 7) are load/store units, SIMD computation unit, data

reorganization/address transformation, and the data station. The SIMD computation unit handles the

true/core computation part while the remaining units handle the overhead/supporting instructions. The

hardware units that process the overhead/supporting instructions are:

• Address calculation: address arithmetic functions are moved from the execution unit subsystem in

current processors to a dedicated hardware unit where address arithmetic hardware would generate all

input and output address streams/data structures concurrently with the SIMD computations. The CPU

L1 D-cache
SIMD

computation
unit

Address
generation

units

Address
generation

units

Load/Store
units

Data
Reorganization/

Address
transformation

Data
Reorganization/

Address
transformation

Breeze Instruction
Memory

Hardware
looping

Hardware
looping

Instruction
stream

Instruction
Decoder

Non-SIMD
pipeline

Breeze
Instruction
Interpreter

Breeze
Instruction

Decoder

Starting of
Breeze instruction

Normal
superscalar
execution

L2 cache

Main memory

SIMD
pipeline

IS-1

IS-2

IS-3

OS

Data Station
IS - input stream

OS - output stream

Overhead

Useful computations

new hardware

existing hardware used
differently

Fig. 7. The MediaBreeze Architecture

16

in current ILP processors performs address calculations explicitly. Dedicated address arithmetic

hardware would allow for the SIMD computation unit to stream at the peak rate.

• Address transformation: In many algorithms, the logical access sequence of data is vastly different

from the physical storage pattern. Various permute operations including pack, unpack instructions are

used. For example, the first element in eight columns of a matrix needs to be packed into a single row

(or SIMD register). Similarly a single element (16-bits wide) needs to be unpacked into all the four

sub-words of a SIMD register (64-bits wide). MediaBreeze efficiently handles the task of reordering

data with explicit hardware support.

• Loads and stores: The same load/store units present in conventional ILP processors are used for this

purpose.

• Branch processing: To eliminate branch instruction overhead, MediaBreeze employs zero-overhead

branch processing using dedicated hardware loop control and supports up to five levels of loop

nesting. All branches related to loop increments (based on indices used for referencing data) are

handled by this technique. This is done in many conventional DSP processors such as the Motorola

56000 and TMS320C5x from Texas Instruments [18].

• Data Station: This is the register-file for the SIMD computation and is implemented as a queue.

Dedicated register-files are present in conventional machines for SIMD either as a separate register

file (as in AltiVec) or aliased to the floating-point register file (as in MMX).

• Breeze instruction memory and decoder: In order to program/control the hardware units in the

MediaBreeze architecture, a special instruction called the Breeze instruction is formulated. The

Breeze instruction is a multidimensional vector instruction. The Breeze instruction memory stores

these instructions once they enter the processor. Fig. 8 illustrates the structure of the Breeze

instruction.

Five loop index counts (bounds) are indicated in the Breeze instruction to support five level

nested loops (in hardware) [18][42]. None of our benchmarks required more than five nested loops. The

MediaBreeze architecture allows for three input data structures/streams and produces one output

structure. This was chosen because some media algorithms can benefit from this capability (current SIMD

execution units sometimes operate on three input registers to produce one output value). Each data

structure/stream has its own dedicated address generation unit to compute the address every clock cycle

with the base address specified in the Breeze instruction. Due to the sub-block access pattern in media

programs, data is accessed with different strides at various points in the algorithm (as described in section

4.1). The Breeze instruction facilitates multiple strides (one at each level of loop nesting, i.e., a total of

five strides) for each of the three input streams and one output stream. The strides indicate address

17

increment/decrement values based on the loop-nest level. Depending on the mask values for each stream

(indicated in the Breeze instruction) and the loop-nest level, one of the five possible strides is used to

update the address pointer. If an application does not need five levels of nesting, non-constant strides ()

can be generated with the extra levels of looping [19].

Data types of each stream/structure are also indicated in the Breeze Instruction. Depending on the

size of each element in the data structures, the SIMD parallelism is computed. For example, if one data

stream is 8-bit data (16-way parallelism for a 128-bit wide execution unit) and the other is 16-bit data (8-

way parallelism), the SIMD processing achieves only 8-way parallelism. The maximum achievable SIMD

parallelism is the minimum of all the data structures (all commercial SIMD extensions have this

limitation). Current SIMD extensions provide data reorganization instructions for solving the problem of

having different element sizes across the data structures (packing, unpacking, and permute) and introduce

additional instruction overhead. By providing this information in the Breeze Instruction, special hardware

in the MediaBreeze performs this function. The MediaBreeze performs reduction operations and this is

also indicated in the Breeze Instruction (for example, multiple independent results in a single SIMD

register are combined together in dot product which require additional instructions in current DLP

techniques). Support for signed/unsigned arithmetic, saturation, shifting/scaling of final results is all

indicated in the Breeze Instruction. This eliminates additional instructions that are otherwise needed for

conventional RISC processors.

With the support for multiple levels of looping and multiple strides, the Breeze Instruction is a

complex instruction and decoding such an instruction is a complex process in current RISC processors.

MediaBreeze instead handles the task of decoding of the Breeze Instruction. MediaBreeze has its own

instruction memory to hold a Breeze instruction. Two additional 32-bit instructions are also added to the

ISA of the general-purpose processor for starting and interrupting the MediaBreeze. These 32-bit

instructions (fetched and decoded by the traditional instruction issue logic) indicate the start and the

Fig. 8. Structure of the Breeze Instruction

Loop1-count Loop2-count Loop3-count Loop4-count Loop5-count

Starting
Address of

IS-1

Starting
Address of

IS-2

Starting
Address of

IS-3

Starting
Address of

OS

OPR /
RedOp /

Shift / LL

Stride-1 IS-1 Stride-2 IS-1 Stride-3 IS-1 Stride-4 IS-1 Stride-5 IS-1

Stride-1 IS-2 Stride-2 IS-2 Stride-3 IS-2 Stride-4 IS-2 Stride-5 IS-2

Stride-1 OS Stride-2 OS Stride-3 OS Stride-4 OS Stride-5 OS

Masks -

IS-1 and IS-2

Masks -

IS-3 and OS

Multicast and data types of each stream with
remaining bits unused

Stride-1 IS-3 Stride-2 IS-3 Stride-3 IS-3 Stride-4 IS-3 Stride-5 IS-3

Legend

IS - input stream

OS - output stream

OPR - operation code

RedOp - reduction operation

LL - loop level to write results

32-bits

18

length of the Breeze Instruction. Whenever a Breeze instruction is encountered in the dynamic instruction

stream, the dynamic instructions prior to the Breeze instruction are allowed to finish after which the

MediaBreeze instruction interpreter decodes the Breeze instruction. In our current implementation, we

halt the superscalar pipeline until the execution of the Breeze instruction is completed because

MediaBreeze uses existing hardware units. Otherwise, arbitration of resources is necessary to allow for

overlap of the Breeze instruction and other superscalar instructions.

Encoding all the overhead/supporting operations along with the SIMD true/core computation

instructions has the advantage that the Breeze instruction can potentially replace millions of dynamic

RISC instructions that have to be fetched, decoded, and issued every cycle in a normal superscalar

processor. SIMD instructions in GPPs themselves reduce the number of instruction fetches because one

instruction operates on multiple data. The Breeze instruction additionally captures all the overhead

operations along with the SIMD computation operations thereby drastically reducing repeated (and

unnecessary) fetch and decode of the same instructions. This results in giving the MediaBreeze

architecture advantages similar to ASIC-based acceleration in [20].

It is possible that an exception or interrupt occurs while a Breeze instruction is in progress. The

state of all five loops, their current counts, and loop bounds are saved and restored when the instruction

returns. This is similar to the handling of exceptions during move instructions with REP (Repeat Prefix)

in x86. MediaBreeze has registers to hold the loop parameters for all the loops and parts of the operating

system might have to be modified similar to the Pentium III SSE extensions. Code development for the

MediaBreeze architecture is currently done by hand and the programmer has to schedule the dependencies

in the code. Compiler technology for SIMD extensions is still in its infancy [50][51][52][53]. Similar to

developing code for SIMD extensions, compiler intrinsics have to be employed to utilize the

MediaBreeze architecture. We do not underestimate the challenge of compiling for the MediaBreeze

architecture; however, the effort will be slightly higher to that of compiling for SIMD extensions. In spite

of the lack of adequate compiler support for SIMD extensions, it has been clear that SIMD extensions still

enhance media application performance.

5.2 Multicast: A technique to aid in data transformation

The MediaBreeze uses a technique calledMulticast to eliminate the need for transposing data

structures, to allow for reordering of the computations, and to increase reuse of data items soon after fetch

by exploiting DLP in outer level loops. Multicasting means copying one/many data items into several

registers or buffers at the same item. For example, a data value A may be copied into 8 registers (or 8

sections of a big SIMD register) resulting in a pattern A,A,A,A,A,A,A,A or two items A and B may be

19

copied to 8 registers in the pattern A,A,B,B,A,A,B,B or A,B,A,B,A,B,A,B or another such pattern. The

usefulness of multicasting can be illustrated by the well-understood matrix-multiply routine. In a matrix-

multiply routine, usually the first matrix is traversed in row-order and the second matrix in column-order.

Spatial locality can be exploited in the first matrix due to multiple data elements in each cache block,

while the second matrix incurs a compulsory miss on each column the first time; assuming that two

consecutive rows do not fit in a cache-block. In a machine with no SIMD execution units, during each

iteration for the second matrix, a new cache-line has to be loaded as data belongs to the same column but

different cache-line. However, for the case of SIMD processing, multiple cache-lines need to be loaded

and data belonging to the required column needs to be reorganized from a vertical to a horizontal

direction (packing). This involves substantial overhead and usually, the second matrix is transposed prior

to the computation to eliminate the column-access pattern.

The transposing overhead can be eliminated using the Multicast technique. Instead of using

column-access pattern, row-order access pattern is used for matrix B, while for matrix A, a single element

is multicast to all eight sub-element locations in the SIMD register. Then instead of doing the eight

multiplications to generate the first element C1,1 of the result matrix, all eight multiplications using A1,1

(i.e. the first partial product of each of the result terms in the first row) are performed. The sequence of

multiplications in a normal SIMD matrix multiply and a multicast matrix multiply are illustrated in Fig. 9.

After 64 multiplications, all eight result terms of the first row of the result matrix will be simultaneously

generated. The algorithm using the multicast technique is always operating on multiple independent

output values, while traditional techniques compute one result term at a time. This eliminates the need for

transposing the second matrix. It also increases the reuse of items that were loaded, thus improving the

cache behavior of the code. The MediaBreeze architecture provides hardware support for multicasting.

This allows the use of cache-friendly algorithms to perform many media algorithms. In this example,

broadcast rather than multicast was employed, because one element is transmitted to all eight registers.

However, in several applications such as horizontal/vertical downsampling/upsampling, and filtering,

several elements are multicast into the sub-element locations, many-to-many mapping as opposed to one-

to-many mapping and hence the name multicast. The multicast technique is a superset of existing data

reorganization instructions in current SIMD extensions such as AltiVec’s splat [2] and MDMX’s packed

accumulators [6][16].

20

If the dimension of the matrices to be multiplied is large, then the multicast method needs

temporary registers or an accumulator to store the accumulated results. However, multimedia applications

operate on sub-blocks in huge matrices as opposed to processing the entire matrix as a whole. A SIMD

parallelism of 8 or 16 is quite adequate to capture most media sub-block rows/columns. Other common

operations where multicast is extremely useful include 1-D and 2-D filtering, and convolution. For

example, when using MMX for implementing a finite impulse response (FIR) filter, multiple copies of the

filter coefficients are needed (equal to the SIMD parallelism) to reduce considerable overhead due to

misalignment of coefficient data.

5.3 Example encoding using the Breeze instruction

The Breeze instruction is a densely encoded instruction and hence most media algorithms can be

processed in just a few Breeze instructions. Fig. 10 shows the pseudo-code for the implementation of the

Breeze instruction. Given a start address for each of the data streams, each address is incremented based

on the stride and the loop level during each cycle. Common kernels such as the DCT, color space

A 1,1 A 1,2 A 1,3 A 1,4 A 1,5 A 1,6 A 1,7 A 1,8

B 1,1 B 2,1 B 3,1 B 4,1 B 5,1 B 6, 1 B 7,1 B 8,1

* * * * * * * *

P_RP_RP_RP_RP_RP_RP_RP_R

N-bits wide

3N-bits wide

A 1,1 A 1,1 A 1,1 A 1,1 A 1,1 A 1,1 A 1,1 A 1,1

B 1,1 B 1,2 B 1,3 B 1,4 B 1,5 B 1,6 B 1,7 B 1,8

* * * * * * * *

ACCACCACCACCACCACCACCACC

N-bits wide

3N-bits wide

A 1,1 A 1,2 A 1,3 A 1,4 A 1,5 A 1,6 A 1,7 A 1,8

B 1,8 B 2,8 B 3,8 B 4,8 B 5,8 B 6, 8 B 7,8 B 8,8

* * * * * * * *

P_RP_RP_RP_RP_RP_RP_RP_R

N-bits wide

3N-bits wide

A 1,8 A 1,8 A 1,8 A 1,8 A 1,8 A 1,8 A 1,8 A 1,8

B 8,1 B 8,2 B 8,3 B 8,4 B 8,5 B 8,6 B 8,7 B 8,8

* * * * * * * *

ACCACCACCACCACCACCACCACC

N-bits wide

3N-bits wide

Add all partial results to get C1,1

Add all partial results to get C1,8
C 1,1 C 1,2 C 1,3 C 1,4 C 15 C 1,6 C 1,7 C 1,8

SIMD Matrix-multiply Multicast Matrix-multiply

Fig. 9. Multicast technique versus traditional SIMD matrix multiply

21

conversion, motion estimation, and filtering can be mapped to either one or two Breeze instructions. Fig.

11 illustrates the Breeze instruction mapping of the 1-D DCT routine assuming an 8-way SIMD for 16-bit

data. For the 1-D DCT routine, only four of the five possible loop nests are needed with the loop

boundaries indicated in the Breeze instruction. The starting address of each stream is represented by the

starting address of each of the arrays. The third input stream is not used for this algorithm. The value of

the strides is computed based on the loop indices and the value of the address pointer in the previous

cycle. The address pointer is updated each clock cycle choosing one stride depending on the nesting level

of the loops.

In a scenario in which all the loop nests and data streams are processed, MediaBreeze executes

(in hardware) the following equivalent number of dynamic software instructions (in conventional ILP

processors) during each cycle -

• five branches

• three loads and one store

• four address value generation (one on each stream with each address generation representing multiple

RISC instructions)

• one SIMD operation (2-way to 16-way parallelism depending on each data element size)

Fig. 10. Pseudo-code representing a MediaBreeze compute instruction

IS1 = start_address_IS1; IS2 = start_address_IS2;
IS3 = start_address_IS3; OS1 = start_address_OS;

increment_address (level) {
if (mask_IS1 [level]) IS1 += stride_IS1[level];
if (mask_IS2 [level]) IS2 += stride_IS2[level];
if (mask_IS3 [level]) IS3 += stride_IS3[level];
if (mask_OS [level]) OS += stride_OS[level];

}

if ((i_5 + 1) = loop1_count) increment_address(4);
elseif ((i_4 + 1) = loop2_count) increment_address(3);
elseif ((i_3 + 1) = loop3_count) increment_address(2);
elseif ((i_2 + 1) = loop4_count) increment_address(1);
else increment_address(5);

SIMD_data_reorganization (R1, R2);
SIMD_compute (MAC, R1, R2, R4);
SIMD data reorganization(R4);

22

• one accumulation of SIMD result and one SIMD reduction operation

• four SIMD data reorganization (pack/unpack, permute, etc) operations

• shifting & saturation of SIMD results

5.4 Performance Evaluation and Results

To measure the impact of the MediaBreeze architecture, we modified thePISA version of

Simplescalar-3.0 (sim-outorder) to simulate Breeze instructions using instruction annotations. We use the

same SIMD execution units’ configuration as in a Pentium III processor (two 64-bit SIMD ALUs and one

64-bit SIMD multiplier). The memory system for the MediaBreeze architecture is modified to allow for

cache miss stalls and memory conflicts (i.e., the SIMD pipeline stalls in the event of a cache miss) since

1D_DCT(image[1200][1600], dct_coef[8][8], output[8][8])

{

for (i = 0; i < 1200/8; i++)

for (j = 0; j < 1600/8; j++)

for (k = 0; k < 8; k++) {

temp_simd_vector = 0;

for (l = 0; l < 8; l ++)

/* Since there is 8-way SIMD parallelism, the innermost loop folds into one
iteration and is not required */

temp_simd_vector += multicast(dct_coef[k][l] * image[i*8+k][j*8+l]);

output[i*8][k*8] = temp_simd_vector >> s_bits;

0 1200/8 1600/8 8 8

Starting

Address of

image

Starting

Address of

dct coeff

NONE

Starting

Address of

output

OPR = MAC

Shift = s_bits

LL = 4

NONE 16 bytes -22384 bytes -22400 bytes 3200 bytes

NONE -126 bytes -126 bytes 2 bytes 2 bytes

NONE -22384 bytes 3200 bytes NONE NONE

IS-1 = 01111

IS-2 = 01111

IS-3 = 00000

OS = 01100

Multicast is used for dct coefficients

data types of each stream is set to 16-bit data

NONE NONE NONE NONE NONE

Fig. 11. Breeze instruction mapping of 1D-DCT

23

the MediaBreeze operates in an in-order fashion. Fig. 12 shows the speedup obtained for each of the

benchmarks using the MediaBreeze architecture with a 2-way processor as the baseline.

The speedup of the 2-way MediaBreeze architecture over a 2-way SIMD enhanced processor

ranges from 1.0x to over 16x. In four of the nine benchmarks (cfa, dct, mot, scale– which are kernels) all

of the benchmark code translates into one or two Breeze instructions with no other superscalar

instructions necessary. The remaining five benchmarks (aud, g711, jpeg, ijpeg, anddecrypt– which are

applications) require scalar superscalar instructions along with Breeze instructions. G711 and decrypt are

applications that have the least amount of SIMD instructions (i.e., it is the superscalar pipeline that

accounts for a bulk of the execution time rather than the MediaBreeze pipeline) and a 2-way MediaBreeze

architecture is only slightly faster than a 2-way SIMD processor. On the other hand for the remaining

three benchmarks (aud, jpeg, andijpeg), a 2-way MediaBreeze architecture is significantly faster than a 2-

way SIMD processor.

The MediaBreeze pipeline is susceptible to memory latencies because it operates in-order. Thus

MediaBreeze is unable to achieve maximum SIMD efficiency on three of the four kernels (cfa, dct, and

scale) in spite of them being mapped completely to one or two Breeze instructions. To reduce the impact

of memory latencies on the MediaBreeze architecture, we introduced a prefetch engine to load future data

into the L1 cache. Since the access pattern of each data stream is known in advance based on the strides,

the prefetch engine does not load any data that is not going to be used. The regularity of the media access

patterns prevents the risk of superfluous fetch very commonly encountered in many prefetching

environments. The prefetch engine ‘slips’ ahead of the loads for computation and the computation itself

to gather data into the L1 cache. Table 6 shows the speedup of the MediaBreeze architecture with

prefetching for the 2-way and 4-way configurations (prefetching was also incorporated into the baseline

1 1 1 1 1 1 1 1 11.00 1.10

2.12

1.40

2.03

1.55

1.00

1.95

2.60

16.68 5.43 16.72

3.66

1.40 1.54

1.05

1.53
1.78

1.56
1.66

1.43

16.68 5.43 16.72 4.13

1.87
1.46

0

2

4

cfa dct motest scale aud g711 jpeg ijpeg decrypt

S
pe

ed
up

2-w ay + SIMD 2-w ay + MB 4-w ay + SIMD 4-w ay + MB

Fig. 12. Performance of MediaBreeze (MB) versus SIMD

24

architecture). We observe that prefetching in the MediaBreeze architecture achieves unit cycle memory

access performance in the Breeze instruction portion of the program.

Table. 6. Performance of the MediaBreeze architecture with prefetching

cfa dct mot scale aud g711 jpeg ijpeg decrypt

2-way 1 1 1 1 1 1 1 1 1

2-way
+ MB

27.92 16.52 16.84 2.14 3.6 1.21 1.44 1.61 1.05

4-way 2.12 1.46 2.03 1.98 1.59 1.78 1.56 1.66 1.43

4-way
+ MB

27.92 16.52 16.84 4.54 5.61 2.22 2.02 2.68 1.46

The geometric mean of the speedup of the 2-way MediaBreeze processor over a 2-way SIMD

processor for the five applications (not including the kernels -cfa, dct, mot, andscale) is 1.73 while that

of a 4-way SIMD processor over a 2-way SIMD processor is 1.59. Therefore, on average, a 2-way GPP

with SIMD extensions augmented with the MediaBreeze hardware achieves a performance slightly better

than a 4-way superscalar SIMD processor on media applications. A similar trend is observed for the case

of a 4-way GPP with SIMD extensions augmented with the MediaBreeze hardware being slightly

superior to an 8-way superscalar SIMD processor.

Since the Breeze instruction is densely encoded, few Breeze instructions are needed for any

media-processing algorithm. The number of dynamic instructions that need to be fetched and decoded is

shrunk tremendously (as shown in Fig. 13), leading to a reduced use of the instruction fetch, decode, and

issue logic in a superscalar processor. The instruction fetch and issue logic are a significant consumer of

power in speculative out-of-order processors. Once a Breeze instruction is interpreted, the instruction

99.90 99.90 99.90 99.90

11.30

91.00

42.60 41.70

0.20
0.00

20.00

40.00

60.00

80.00

100.00

cfa dct motest scale g711 aud jpeg ijpeg decrypt%
el

im
in

at
ed

in
st

ru
ct

io
ns

% Reduction in dynamic instructions

Fig. 13. Reduction in dynamic instructions by using the MediaBreeze architecture.
Power savings proportional to the instruction count savings can be expected for fetch,
decode and renaming energy.

25

fetch, decode, and issue logic in the superscalar processor can be shut down for the duration of the loop

nest. The use of the vector-style Breeze instruction can eliminate more than half of the instructions from

the original program (65% on average). The instructions required to implement looping, address

computations, and transformations are removed. Each eliminated instruction results in energy savings in

the fetch, decode and register renaming stages.

6 Hardware cost of the MediaBreeze Architecture

6.1 Implementation methodology

To estimate the area, power, and timing requirements of the MediaBreeze architecture, we

developed VHDL models for the various components. Using Synopsys synthesis tools [21], we used a

cell-based methodology to target the VHDL models to two ASIC cell-libraries from LSI Logic [22][23].

Table 7 lists the libraries and technologies used for evaluating the implementation cost.

Table. 7. Cell-based Libraries (LSI Logic) used in synthesis

Library name Description

lcbg12-p (G12-p)
A 0.18-micron L-drawn (0.13-micron L-effective) CMOS process.
Highest performance solution at 1.8 V with high drive cells optimized for long
interconnects associated with large designs.

lcbg11-p (G11-p) A 0.25-micron L-drawn (0.18-micron L-effective) CMOS process.
Highest performance solution at 2.5 V.

The Synopsys synthesis tools estimate area, power, and timing of circuits based on information

provided in the ASIC technology library. The ASIC technology library provides four kinds of

information.

• Structural information. This describes each cell’s connectivity to the outside world, including cell,

bus, and pin descriptions.

• Functional information. This describes the logical function of every output pin of every cell so that

the synthesis tool can map the logic of a design to the actual ASIC technology.

• Timing information. This describes the parameters for pin-to-pin timing relationships and delay

calculation for each cell in the library.

• Environmental information. This describes the manufacturing process, operating temperature, supply

voltage variations, and design layout. The design layout includes wire load models that estimate the

effect of wire length on design performance. Wire load modeling estimates the effect of wire length

and fanout on resistance, capacitance, and area of nets.

26

We use the default wire load models provided by LSI Logic’s ASIC libraries. The Synopsys

synthesis tools compute timing information based on the cells in the design and their corresponding

parameters defined in the ASIC technology library. The area information provided by the synthesis tools

is prior to layout and is computed based on the wire load models of the associated cells in the design.

Average power consumption is measured based on the switching activity of the nets in the design. In our

experiments, the switching activity factor originates from the RTL models as the tool gathers this

information from simulation. The area, power, and timing estimates are obtained after performing

maximum optimizations for performance in the synthesis tools. The hardware cost results obtained by this

technique is only a first order approximation based on the accuracy of the synthesis tools and cell-based

libraries. The interested reader is referred to [21] for further information regarding the capabilities and

limitations of the synthesis tools.

6.2 Hardware implementation of MediaBreeze units

Address generation � The MediaBreeze architecture supports three input and one output data

structures/streams. Each of the four data streams has a dedicated address generation hardware unit.

Address arithmetic on each stream is performed based on the strides and mask values indicated in the

Breeze instruction. For each clock cycle, depending on the mask bits and loop index counts, one of the

five possible strides is selected. The new address value is then computed based on the selected stride and

the previous address value. Fig. 14 depicts the block diagram of the address generation circuitry for a

single data stream/structure.

The last_val comparatorsdetermine which of the four inner level loop counters have reached

their upper bound. The outermost loop comparison is not necessary because the Breeze instruction

finishes execution at the instant when the outermost loop counter reaches its upper bound. Theinc-cond

andinc-combineblocks generateflag signals based on the output from thelast_val comparatorsand mask

values from the Breeze instruction. If none of theflag signals are true, thenstride-5is used to update the

prev-address;otherwise, the appropriatestride- (1–4)is selected depending onflag- (1–4).Theaddress-

generateblock uses a 32-bit adder to add the selected stride to the previous address. On either an

exception or a stall, only theprev-addressvalue needs to be stored as the loop counters are stored by the

hardware looping circuitry. For each of the four data structures/streams, thelast_val comparatorsportion

of the logic is shared, but the remaining hardware needs to be replicated.

27

Looping � The MediaBreeze architecture incorporates five levels of loop nesting in hardware to

eliminate branch instruction overhead for loop increments. A similar mechanism was commercially

implemented in the TI ASC [24] (two levels of do-loop nesting in addition to a self-increment loop).

Conventional DSP processors such as the Motorola 56000 and the TMS320C5x from TI also use such a

technique for one or more levels of loop nesting. Fig. 15 shows the block diagram of the looping

hardware. Loop index values are produced every clock cycle based on the loop bound for each level of

nesting (bounds for each of the five loops are specified in the Breeze instruction). The value of a loop

index varies from 1 (lower bound) to the corresponding loop bound (upper bound), and resets to its lower

bound once the upper bound is reached in the previous cycle. The execution of the Breeze instruction

ends when the outermost loop (loop1 in Fig. 15) reaches its upper bound. On encountering either an

exception or a stall, the loop indices are stored and the increment logic is halted; the counting process is

started once the exception/stall is serviced. Each of the fivecomparators(32-bit wide) operates in parallel

to generateflag (1-bit wide) signals that arepriority encodedto determine which one of the five loop

counters to increment. When a loop counter isincremented-by-1(circuit for incrementing a 32-bit value

inc-combine1

last_val comparators

Loop(2-5)-count indice-(2-5)

lastval-(2-5)

inc-cond1 inc-cond2 inc-cond3 inc-cond4

mask-1 mask-2 mask-3 mask-4

inc-combine2 inc-combine3 inc-combine4

address-generate
stride-(1-5)

prev-address

updated-address

flag-1 flag-2 flag-3 flag-4

Fig. 14. Block diagram of address generation hardware (per data stream)

28

by 1), all the loop counters belonging to its inner level are reset (for example, if loop3 isincremented-by-

1, then loop4 and loop5 are reset to their lower bound).

Breeze instruction decoder� A stand-alone instruction decoder for the Breeze instructions eliminates

the need to modify the conventional instruction decoder of current GPPs. A Breeze instruction needs to be

decoded only once since various control parameters are stored in hardware registers after the decoding

process. The implementation of the Breeze instruction decoder was merged into the address generation

and looping circuitry.

Breeze instruction memory � The Breeze instruction memory stores the Breeze instruction once it

enters the processor. We do not estimate the cost of this storage because the ASIC libraries are not

targeted for memory cells. However, the area, power, and timing estimates of the Breeze instruction

memory are similar to an SRAM structure. One Breeze instruction occupies 120 bytes. The Breeze

instruction memory holds one or more Breeze instructions.

Existing hardware units � The remaining hardware units that are required for the operation of the

MediaBreeze architecture are the SIMD computation unit, data reorganization, load/store units, and data

station. These hardware units are already present in commodity SIMD GPPs. However, the Breeze

instruction decoder controls the operation of these units as opposed to the conventional control path. This

mandates an extra multiplexer to differentiate between control from the conventional control path and the

Breeze instruction decoder. We do not model any of the existing hardware units.

6.3 Area, power, and timing results

Table 8 shows the composite estimates of timing, area, and power consumption for the hardware

looping and address generation circuitry when implemented using the cell-based methodology. The power

comparator-1 comparator-2 comparator-3 comparator-4 comparator-5

Loop1-count Loop2-count Loop3-count Loop4-count Loop5-count
index-1 index-2 index-3 index-4 index-5

priority encoder

Increment-by-1
index-1

Increment-by-1
index-2

Increment-by-1
index-3

Increment-by-1
index-4

Increment-by-1
index-5

flag-1 flag-2 flag-3 flag-4 flag-5

End-of-all-loops

incL1 incL2 incL3 incL4

index-1 index-2 index-3 index-4 index-5

Fig. 15. Block diagram of the five hardware loops

29

and area estimates in Table 8 correspond to a clock frequency of 1 GHz. The hardware cost of

commercial SIMD implementations [25][26] is also shown in Table 8.

Area � The overall chip area required for implementing the hardware loops, address generation (for all

four data streams), and the Breeze instruction interpreter (merged into looping and address generation

logic) is approximately 0.31 mm2 in the 0.18-micron library. In a 0.29-micron process, the increase in

chip area for implementing the Visual Instruction Set (VIS) hardware into the Sparc processor family was

4 mm2, MMX into the Pentium family was 15 mm2, and AltiVec into the PowerPC family was 30 mm2

[25]. In a 0.25-micron process, the AltiVec hardware was expected to occupy 15 mm2. In a 0.18-micron

technology, the die size of a Pentium III processor was 106 mm2 with the MMX and SSE execution units

requiring approximately 3.6 mm2 [26]. Thus, the increase in area due to the MediaBreeze units for SIMD-

related hardware is less than 10% and the overall increase in chip area is less than 0.3%.

Table .8. Timing, Area, and Power estimates for hardware looping and address generation (the Breeze
instruction decoder was merged into the looping and address generation)

Hardware Looping
(5 loops)

Address Generation
(per stream)

Time
(ns)

Area
(µm2)

Power
(mW)

Time
(ns)

Area
(µm2)

Power
(mW)

G12-p (0.18µ) 1.00 ns 72830µm2 88.57 mW 1.74 ns 57398µm2 85.16 mW

G11-p (0.25µ) 1.49 ns 273249µm2 249.30 mW 2.60 ns 165099µm2 193.20 mW

Area of commercial SIMD and GPP units for comparison [25][26]

VIS – 4 mm2 in a 0.29-micron process
MMX – 15 mm2 in a 0.29-micron process
AltiVec – 15 mm2 in a 0.25-micron process
Pentium III processor – 106 mm2 in a 0.18-micron process
MMX + SSE in a Pentium III processor – 3.6 mm2 in a 0.18-micron process

Power � The power consumed by the looping, address generation (all four streams), and the Breeze

instruction interpreter is approximately 430 mW in the 0.18-micron library. General-purpose processors

with speeds over 1 GHz typically consume a power ranging from 50 W to 150 W and MediaBreeze

hardware increases power by less than 1%. We believe that the overall energy consumption of the

MediaBreeze architecture would be less than that of a superscalar processor with SIMD extensions

because the Breeze instruction reduces the total dynamic instruction count (0.2 to 40% in our media

applications not including kernels). The instruction fetch and issue logic are expected to consume greater

than 50% of the total execution power (not including the clock power) in future speculative processors

[27]. Once a Breeze instruction is interpreted, the instruction fetch, decode, and issue logic in the

superscalar processor can be shutdown to save power.

30

Timing � Pipelining the hardware looping logic into two stages (in a 0.18-micron technology) would

allow for incorporating it into current high-speed superscalar out-of-order processors with over 1 GHz

clock frequency. Similarly the address generation stage needs to be divided into three pipe stages to

achieve frequencies greater than 1 GHz. The timing results show that incorporating the MediaBreeze

hardware into a high-speed processor does not elongate the critical path of the processor (after appropriate

pipelining). The Breeze instruction decoder multiplexers that control the hardware units introduce an

extra gate delay in the pipeline. However, using a cell-based methodology gives a conservative estimate

while custom design (typically used in commercial GPPs) would allow for greater clock frequencies for

the added MediaBreeze hardware. In spite of adding five pipeline stages, the overall pipeline depth of a

processor is not affected because the looping and address generation stages bypass the conventional fetch,

decode and issue pipeline stages.

7 Related Work

The proposed solution combines the advantages of SIMD, vector, DAE, and DSP processors. The

DAE concept present in the IBM System 360/370, CDC 6600 [30], CDC7600, CRAY-1, CSPI MAP-200,

SDP [31], PIPE [32], SMA [19], WM [33], DS [34], etc demonstrated the potential of decoupling

memory accesses and computations [14][15]. There also has been research in specialized access

processors and address generation coprocessors [13][35]. The concept of embedding loops in hardware

was implemented commercially in the TI ASC [24] (do-loop in this case). The SMA architecture [19]

provided similar flexibility in accessing matrices. This concept was seen to be successful in all these

machines as well as many DSP processors [18]. Typically all these techniques were successful only for a

limited class of applications. This work extends beyond past work to create an integrated environment in

which both media and general-purpose workloads can excel.

Previous media characterizations have concentrated on measuring the performance benefits of

media extensions [5][6][7][8]. There are a few research efforts in identifying the bottlenecks in exploiting

sub-word parallelism using SIMD extensions. Fridman discusses approaches to data alignment for sub-

word parallelism in the TigerSharc processor using four sub-word MAC units in [28]. Thakkar and Huff

discuss the need for data alignment for SSE extensions in [29]. We perform a comprehensive detection of

bottlenecks in SIMD-style extensions.

The proposed Breeze instruction captures all the overhead/supporting operations in addition to

capturing the DLP in the true/core computation and has some similarities to the vector parameter file in

the TI ASC machine. Compiling for SIMD extensions is still in its infancy [50][51][52][53][54][55]; a

MediaBreeze compiler is a challenge. Given the ability of the TI ASC vectorizing compiler to handle the

31

vector parameter file leads us to believe that programming with Breeze instructions is going to be an

achievable hurdle in exploiting the MediaBreeze architecture.

Corbal et al. [36] proposed to exploit DLP in two dimensions instead of one dimension as in

current SIMD extensions. A 20% performance improvement was achieved using their Matrix-oriented

architecture named MOM. However, the overhead factor is not significantly reduced. Vassiliadis et al.

[37][38] have concurrently proposed the Complex Streamed Instruction set (CSI) that can exploit two

levels of looping. Though they are able to eliminate some overhead because each of their complex

instructions can eliminate two loops, our solution is more comprehensive. Lee and Stoodley [39]

proposed simple vector microprocessors for media applications, but they used in-order simple processors

for scalar processing and vectors for media processing. While we commend the approach, such an

architecture cannot achieve good performance over several application domains because the scalar

processor is in-order. Ranganathan et al. [5] observe that out-of-order execution is beneficial to media

applications. There are several components in many multimedia applications that cannot exploit DLP, but

require good branch prediction and speculation to exploit ILP, and hence we also favor the use of the out-

of-order processor. It is important to have a general-purpose processor achieve sustained performance on

different domains of workloads.

Rixner et al. [40] developed the Imagine architecture for bandwidth-efficient media processing.

This architecture is based on clusters of ALUs processing large data streams and is built as a co-processor

for a high-end multimedia system. The methodology adopted is to put additional computation units, while

our approach is to improve the utilization of the existing computation units by reducing the overhead.

Another related effort is the PipeRench coprocessor that is reconfigurable [41]. The Burroughs Scientific

Processor (BSP) [42] was a pure-SIMD array processor that had special-purpose hardware (called

Alignment networks) for packing and unpacking data. In addition, they have powerful SIMD instructions

of which many are being used in current SIMD extensions. Vermuelen et al. [20] described how DCT,

Reed-Solomon code and other similar media oriented operations could be enhanced with a hardware

accelerator that works in conjunction with a GPP. However, the accelerator has to be designed for each

algorithm. Retargeting the accelerator to another algorithm incurs significant effort, while, in our case,

only Breeze instruction encoding needs to be performed.

8 Conclusion

This paper analyzes multimedia workloads and proposes architectural enhancements for

improving their performance on general-purpose processors. Based on an investigation of loop structures

and access patterns in multimedia algorithms, we find that significant amount of parallelism lies outside

32

the innermost loops (between loop levels 3 and 6 as indicated in Table 3), and it is difficult for SIMD

units to exploit the parallelism. The characteristics preventing SIMD computation units from computing

at their peak rate are analyzed. The major findings of the bottleneck analysis are:

• Approximately 75-85% of instructions in the dynamic instruction stream of media workloads are not

performing true/core computations. They are performing address generation, data rearrangement, loop

branches, and loads/stores.

• The efficiency of the SIMD computation units is very low because of the overhead/supporting

instructions. Our measurements on a Pentium III processor with a variety of media kernels and

applications illustrate SIMD efficiency ranging only from 1% to 12%.

• Increasing the number of SIMD execution units does not impact performance positively leading us to

conclude that resources for overhead/supporting instructions need to be scaled. We observe that a

significant increase in scalar resources is required to increase the SIMD efficiency using conventional

ILP techniques. An 8-way or 16-way integer processor is necessary to process the overhead

instructions for the SIMD width in current processors.

The paper then addresses the issue of executing the overhead instructions efficiently. Many

recent enhancements such as increasing the SIMD width have targeted exploiting additional parallelism in

the true/core computation while the MediaBreeze architecture proposed in the paper focuses on the

overhead instructions and the ability of the hardware to eliminate, alleviate, and overlap the overhead.

MediaBreeze exploits the nature of the overhead instructions to devise simple hardware by combining the

advantages of SIMD, vector, DAE, and DSP processors. The major findings are:

• Eliminating and reducing the overhead using specialized hardware that works in conjunction with

state-of-the-art superscalar processor and SIMD extensions can dramatically improve the

performance of media workloads without deteriorating the performance of general-purpose

workloads. On multimedia kernels, we find that a 2-way processor with SIMD extensions augmented

with hardware support significantly outperforms a 16-way processor with SIMD extensions.

• On multimedia applications, a 2-way processor with SIMD extensions with the supporting

MediaBreeze hardware outperforms a 4-way superscalar processor with SIMD extensions. Similarly a

4-way processor with SIMD extensions added with MediaBreeze hardware is superior to an 8-way

superscalar with SIMD extensions.

• The cost of adding the MediaBreeze hardware to a SIMD GPP is negligible compared to the

performance improvements. Using ASIC synthesis tools and libraries, we find that the MediaBreeze

33

hardware units occupy less than 0.3% of the overall processor area, consumes less than 1% of the

total processor power, and on appropriate pipelining does not elongate the critical path of a GPP.

Our analysis shows that increasing the number of SIMD execution units to get more parallelism is

not the right approach. But if any media processor designer decides to exploit more parallelism just by

scaling the current architectures, they should scale the non-SIMD part much more aggressively than the

SIMD part.

Acknowledgments: We thank members of the Laboratory for Computer Architecture for their

comments and suggestions that improved several drafts of this paper.

References

[1] R. B. Lee, “Multimedia extensions for general-purpose processors,”Proc. IEEE Workshop on Signal
Processing Systems, pp. 9-23, Nov. 1997.

[2] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scales, “AltiVec extension to PowerPC
accelerates media processing,”IEEE Micro, vol. 20, no. 2, pp. 85-95, Mar/Apr 2000.

[3] TMS320C64x DSP Technical Brief. Available:
http://www.ti.com/sc/docs/products/dsp/c6000/c64xmptb.pdf.

[4] J. Fridman and Z. Greenfield, “The TigerSHARC DSP architecture,”IEEE Micro, vol. 20, no. 1, pp.
66-76, Jan/Feb. 2000.

[5] P. Ranganathan, S. Adve, and N. Jouppi, “Performance of image and video processing with general-
purpose processors and media ISA extensions,”Proc. IEEE/ACM Int. Sym. on Computer
Architecture, pp. 124-135, May 1999.

[6] E. Salami, J. Corbal, M. Valero, and R. Espasa, “An Evaluation of different DLP alternatives for the
embedded domain,”Proc. Workshop on Media Processors and DSPs in conjunction with Micro-32,
Nov. 1999.

[7] R. Bhargava, L. K. John, B. L. Evans, and R. Radhakrishnan, “Evaluating MMX technology using
DSP and multimedia applications,”Proc. IEEE/ACM Int. Sym. on Microarchitecture, pp. 37-46,
Dec. 1998.

[8] H. V. Nguyen, and L. K. John, “Exploiting SIMD parallelism in DSP and multimedia algorithms
using the AltiVec technology,”Proc. ACM Int. Conf. on Supercomputing, pp. 11-20, Jun. 1999.

[9] Sample source code for the Benchmarks. Available:
http://www.ece.utexas.edu/projects/ece/lca/mediabenchmarks/

[10] C. Lee, M. Potkonjak and W.H. Smith, “MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems”,Proc IEEE/ACM Int. Sym. on Microarchitecture,pp.
330-335, Dec 1997.

[11] D. Burger, and T. M. Austin, “The SimpleScalar tool set,” Version 2.0.Technical Report 1342,
Univ. of Wisconsin-Madison, Comp. Sci. Dept, 1997.

[12] J. Fritts, and W. Wolf, “Dynamic parallel media processing using speculative broadcast loop (SBL),”
Proc.Workshop on Parallel and Distributed Computing in Image Processing, Video Processing, and
Multimedia (held in conjunction with IPDPS'01), Apr. 2001.

[13] P. T. Hulina, L. D. Coraor, L. Kurian, and E. John, “Design and VLSI implementation of an address
generation coprocessor,”IEE Proc. on Computers and Digital Techniques, vol. 142, No. 2, pp. 145-
151, Mar. 1995.

34

[14] J. E. Smith, “Decoupled access/execute computer architectures,”ACM Trans. on Computer Systems,
vol. 2, No. 4, pp. 289-308, Nov. 1984.

[15] J. E. Smith, S. Weiss, and N. Y. Pang, “A simulation study of decoupled architecture computers,”
IEEE Trans. on Computers, vol. C-35, No. 8, pp. 692-701, Aug. 1986.

[16] J. Corbal, R. Espasa, and M. Valero, "On the efficiency of reductions in micro-SIMD media
extensions,”Proc. Int. Conf. on Parallel Architectures and Compilation Techniques, Sep. 2001.

[17] Intel Architecture Optimization Reference Manual. Available:
http://developer.intel.com/design/pentiumii/ manuals/245127.htm.

[18] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee.DSP Processor Fundamentals: Architectures and
Features, Chapter 8, IEEE Press series on Signal Processing, ISBN 0-7803-3405-1, 1997.

[19] A. R. Pleszkun, and E. S. Davidson, “Structured memory access architecture,”Proc. IEEE Int. Conf.
on Parallel Processing, pp. 461-471, 1983.

[20] F. Vermeulen, L. Nachtergaele, F. Catthoor, D. Verkest, and H. De Man, “Flexible hardware
acceleration for multimedia oriented microprocessors,”Proc. IEEE/ACM Int. Sym. on
Microarchitecture, pp. 171-177, Dec. 2000.

[21] Synopsis Sold Documentation, version 2000-0.5-1. Distributed with Synopsys CAD tools.
[22] LSI Logic ASIC technologies. Available: http://www.lsilogic/products/asic/technologies/index.html.
[23] LSI Logic ASKK Documentation System. Distributed with LSI Logic CAD tools.
[24] H. G. Cragon, and W. J. Watson, “The TI advanced scientific computer.”IEEE Computer Magazine,

pp. 55-64, Jan. 1989.
[25] L. Gwennap, “AltiVec vectorizes PowerPC,”Microprocessor Report, vol. 12, no. 6, May 11, 1998.
[26] Pentium III implementation (IA-32). Available: http://www.sandpile.org/impl/p3.htm.
[27] K. Wilcox and S. Manne, “Alpha processors: A history of power issues and a look at the future,”

Cool Chips Tutorial in conjunction with IEEE/ACM Int. Sym. on Microarchitecture, Nov. 1999.
[28] J. Fridman, “Sub-word parallelism in digital signal processing,”IEEE Signal Processing Magazine,

pp. 27-35, vol. 17, no. 2, Mar. 2000.
[29] S. Thakkar and T. Huff, “Internet streaming SIMD extensions,” IEEE Computer Magazine, pp. 26-

34, vol. 32, no. 12, Dec. 1999.
[30] J. E. Thornton, “Parallel operation in the Control Data 6600,”Fall Joint Computers Conference, vol.

26, pp. 33-40, 1961.
[31] R. R. Shively, “Architecture of a programmable digital signal processor,”IEEE Trans. Computers,

vol. C-31, pp. 16-22, Jan. 1978.
[32] J. R. Goodman, T. J, Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter, and H. C. Young, “PIPE: A

VLSI decoupled architecture,”Proc. IEEE Int. Sym. on Computer Architecture, pp. 20-27, Jun.
1985.

[33] Wm. A. wolf, “Evaluation of the WM architecture,”Proc. IEEE/ACM Int. Sym. on Computer
Architecture, pp. 382-390, May 1992.

[34] Y. Zhang, and G. B. Adams, “Performance modeling and code partitioning for the DS architecture,”
Proc. IEEE/ACM Int. Sym. on Computer Architecture, pp. 293-304, Jun. 1998.

[35] A. S. Berrached, P. T. Hulina, and L. D. Coraor, “Specification of a coprocessor for efficient access
of data structures,”Proc. Ann. Hawaii Int. Conf. on System Sciences, pp. 496-505, Jan. 1992.

[36] J. Corbal, M. Valero, and R. Espasa, “Exploiting a new level of DLP in multimedia applications,”
Proc. IEEE/ACM Int. Sym. on Microarchitecture, pp. 72-79, Nov. 1999.

[37] S. Vassiliadis, B. Juurlink, and E. A. Hakkennes, “Complex streamed instructions: introduction and
initial evaluation,”Proc. IEEE Euromicro Conf., vol. 1, pp. 400-408, Sep. 2000.

[38] B. Juurlink, D. Tcheressiz, S. Vassiliadis, and H. Wijshoff, "Implementation and evaluation of the
complex streamed instruction set,”Proc. Int. Conf. on Parallel Architectures and Compilation
Techniques, Sep. 2001.

[39] C. G. Lee, and M. G. Stoodley, “Simple vector microprocessors for multimedia applications,”Proc.
IEEE/ACM Int. Sym. on Microarchitecture, pp. 25-36, Dec. 1998.

35

[40] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-Lagunas, P. R. Mattson, and J. D.
Owens, “A bandwidth-efficient architecture for media processing,”Proc. IEEE/ACM Int. Sym. on
Microarchitecture, pp. 3-13, Dec, 1998.

[41] S. C. Goldstein, H. Schmit, M. Moe, M. Nudiu, S. Cadambi, R. R. Taylor, and R. Laufer,
“PipeRench: A coprocessor for streaming multimedia acceleration,”Proc. IEEE/ACM Int. Sym. on
Computer Architecture, pp. 28-39, May 1999.

[42] D. J. Kuck, and R. A. Stokes, “The Burroughs scientific processor (BSP),”IEEE Trans. on
Computers, vol. 31, no. 5, pp. 363-376, 1982.

[43] T. M. Conte, P. K. Dubey, M. D. Jennings, R. B. Lee, A. Peleg, S. Rathnam, M. Schlansker, P. Song,
and A. Wolfe, “Challenges to combining general-purpose and multimedia processors,”IEEE
Computer Magazine, pp. 33-37, Dec. 1997.

[44] P. Ranganathan, S. Adve, and N. Jouppi, “Reconfigurable caches and their application to media
processing,”Proc. IEEE/ACM Int. Sym. on Computer Architecture, pp. 214-224, Jun. 2000.

[45] S. A. Mckee, “Maximizing memory bandwidth for streamed computations,”Ph.D. Thesis, School of
Engineering and Applied Science, University of Virginia, May 1995.

[46] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHIMAERA: A high-performance architecture
with a tightly-coupled reconfigurable functional unit,”Proc. IEEE/ACM Int. Sym. on Computer
Architecture, pp. 225-235, Jun. 2000.

[47] H. Lieske, J. Wittenburg, W. Hinrichs, H. Kloos, M. Ohmacht, P. Pirsch, "Enhancements for a
Second Generation Parallel Multimedia-DSP,"Proc. Workshop on Media Processors andDSPs in
conjunction with Micro-32, Nov. 1999.

[48] D. Talla and L. K. John, “Cost-effective hardware acceleration of multimedia applications,”Proc.
IEEE Int. Conference on Computer Design, pp. 415-424, Sep. 2001.

[49] D. Talla, “Architectural techniques to accelerate multimedia applications on general-purpose
processors,” Ph.D. thesis, Dept. of Electrical and Computer Engineering, The University of Texas,
Austin, Aug. 2001. Available:
http://www.ece.utexas.edu/projects/ece/lca/ps/deepu_talla_dissertation.pdf.

[50] N. Sreraman and R. Govindarajan, “A vectorizing compiler for multimedia extensions,”
International Journal of Parallel Programming, vol. 28, no. 4, pp. 363-400, Aug. 2000.

[51] G. Pokam, J. Simonnet, and F. Bodin, “A retargetable preprocessor for multimedia instructions,”
Proc. Workshop on Compilers for Parallel Computers, Jun. 2001.

[52] A. Bik, M. Girkar, P. Grey, and X. Tian, “Experiments with automatic vectorization for the Pentium
4 processor,”Proc. Workshop on Compilers for Parallel Computers, Jun. 2001.

[53] G. Cheong and M. S. Lam, “An optimizer for multimedia instruction sets,”Proc. SUIF Compiler
Workshop, Stanford University, Aug. 1997.

[54] S. P. Amarasinghe, “Parallelizing compiler techniques based on linear inequalities,” Ph.D. thesis,
Computer Systems Laboratory, Stanford University, Jan. 1997.

[55] M. Wolfe. High performance compilers for parallel computing, Addison-Wesley Publishing
Company, Reading, MA, 1996.

[56] D. Rice, “High-Performance Image Processing Using Special-Purpose CPU Instructions: The
UltraSPARC Visual Instruction Set,” Master's thesis, Stanford University, 1996.

[57] D. Talla and L. K. John, “MediaBreeze: A decoupled architecture for accelerating multimedia
applications,"ACM Computer Architecture News, ACM Press, ISSN 0163-5964, vol. 29, no. 5, Dec.
2001.

[58] D. Talla, L. K. John, and D. Burger, “Hardware support to reduce overhead in fine-grain media
codes,”Technical Report, Laboratory for Computer Architecture, Dept. of Electrical and Computer
Engineering, The University of Texas, Austin, Nov. 2001.

36

Figures
=======

Fig. 1. (a) IPC with both the SIMD and non-SIMD resources scaled, (b) IPC with non-SIMD resources
scaled, but SIMD resources are constant (same as 2-way processor configuration), and (c) performance
improvement of (a) over (b)

Fig. 2. A 2-D data structure in which sub-blocks of data are processed. The data elements surrounded by
the dotted ellipse form one sub-block. Each sub-block requires two strides (one each along the rows and
columns of the sub-block, namely stride-4 and stride-3). Additional two strides (stride-2 and stride-1) are
required for accessing different sub-blocks in the horizontal and vertical direction

Fig. 3. C-code for 2D-DCT implementation

Fig. 4. Typical access patterns in multimedia and DSP kernels [13]

Fig. 5. Optimized assembly code for the 1D-DCT routine shown in Fig. 3 (excluding matrix transpose)

Fig. 6. Breakdown of dynamic instructions into various classes

Fig. 7. The MediaBreeze Architecture

Fig. 8. Structure of the Breeze Instruction

Fig. 9. Multicast technique versus traditional SIMD matrix multiply

Fig. 10. Pseudo-code representing a MediaBreeze compute instruction

Fig. 11. Breeze instruction mapping of 1D-DCT

Fig. 12. Performance of MediaBreeze (MB) versus SIMD

Fig. 13. Reduction in dynamic instructions by using the MediaBreeze architecture. Power savings
proportional to the instruction count savings can be expected for fetch, decode and renaming energy

Fig. 14. Block diagram of address generation hardware (per data stream)

Fig. 15. Block diagram of the five hardware loops

Tables
=====

Table. 1. Description of the multimedia benchmarks

Table. 2. Processor and memory configurations

Table. 3. Summary of key media algorithms and the required nested loops along with their primitive
addressing sequences

37

Table. 4. Execution statistics and efficiency of media programs

Table. 5. Performance (IPC) with unit cycle memory accesses and perfect branch prediction

Table. 6. Performance of the MediaBreeze architecture with prefetching

Table. 7. Cell-based Libraries (LSI Logic) used in synthesis

Table .8. Timing, Area, and Power estimates for hardware looping and address generation (the Breeze
instruction decoder was merged into the looping and address generation)

38

Biographies of the authors (Pictures provided as postscript files)

Deepu Talla received his Ph.D. in Computer Engineering from The University of Texas at Austin in
August 2001. He is currently a System Architect in the Worldwide Imaging and Audio Group at Texas
Instruments, Inc. in Dallas. His research interests are in computer architecture, workload characterization,
performance evaluation and benchmarking, multimedia processing, and ASIC/FPGA design. He is a
member of the IEEE, IEEE Computer Society, ACM, and ACM SIGARCH.

Lizy Kurian John is an associate professor in the Department of Electrical and Computer Engineering at
the University of Texas at Austin. She received her PhD degree in computer engineering from the
Pennsylvania State University. Her research interests include high performance microprocessor
architecture, memory systems, computer performance evaluation and benchmarking, workload
characterization, and optimization of architectures for emerging workloads. She has published papers in
the IEEE Transactions on Computers, IEEE Transactions on VLSI, ACM/IEEE International Symposium
on Computer Architecture (ISCA), ACM International Conference on Supercomputing (ICS), IEEE
Micro Symposium (MICRO), IEEE High Performance Computer Architecture Symposium (HPCA), etc.,
and has a patent for a Field Programmable Memory Cell Array chip. Her research is supported by the US
National Science Foundation (NSF), the State of Texas Advanced Technology program, DELL Computer
Corporation, Tivoli, IBM, AMD, Motorola, Intel, and Microsoft Corporations. She is the recipient of an
NSF CAREER award and a Junior Faculty Enhancement Award from Oak Ridge Associated Universities.
She is a senior member of the IEEE and a member of the IEEE Computer Society and ACM and ACM
SIGARCH. She is also a member of Eta Kappa Nu, Tau Beta Pi, and Phi Kappa Phi.

Doug Burger has been an Assistant Professor of Computer Sciences and Electrical & Computer
Engineering at the University of Texas at Austin since 1999. He received his Ph.D. in Computer Sciences
from the University of Wisconsin-Madison, and his B.S. from Yale University in 1991. His main
research area is computer architecture, and his interests span compilers, operating systems, emerging
technologies, and distance running. He is co-leader of the TRIPS project at UT-Austin, a 2000 NSF
Career Award recipient, an IBM Center for Advanced Studies Fellow, and a Sloan Foundation Research
Fellow.

