Control Flow Modeling in Statistical Simulation
for Accurate and Efficient Processor Design Studies

Robert H. Bell Jr.t

TELIS Department
Ghent University, Belgium
{leeckhou,bastiaan,kdb }@elis.ugent.be

Lieven Eeckhout®

Abstract

Designing a new microprocessoris extremely time-
consuming One of the contributing reasonsis that com-
puter designes rely heavily on detailedarchitectural sim-
ulations, which are very time-consuming Recentwork
has focusedon statistical simulation to addressthis is-
sue The basic idea of statistical simulation is to mea-
sure characteristicsduring program execution,geneiate a
synthetictrace with those characteristicsand then simu-
late the synthetidrace Thestatisticallygeneratedsynthetic
traceis orders of magnitudesmallerthanthe original pro-
gram sequenceand henceresultsin signi cantly faster
simulation.

This papermalesthefollowing contributionsto the sta-
tistical simulationmethodolgy. First, we proposethe use
of a statistical ow graphto characterizethecontrol ow of
a program execution.Secondwe modeldelayedupdateof
brand predictois while pro ling program executionchar-
acteristics.Experimentalresultsshowthat statistical sim-
ulation using this improved contol ow modelingattains
signi cantly betteraccuracy than the previously proposed
HLS systemWe evaluate both the absoluteand the rela-
tive accuracyof our approach for power/performancenod-
eling of supescalar microarchitectures. The resultsshow
that our statisticalsimulationframevork canbeusedto ef-
ciently explore processoidesignspaces.

1. Intr oduction

Designinga new microprocessois both comple« and
time-consumingdtakingup to 7 years[19]). Computerde-
signersrely heavily on detailedarchitecturalsimulatorsto
identify the optimal designin a large designspaceunder
a numberof constraintssuchas chip area,power budget,
etc. Thesearchitecturalsimulationtools are at leasta fac-
tor of a thousandslower than native hardware execution.
Anotherissuethat contributesto the long simulationtime

Bastiaan Stougief

Koen De Bosschere! Lizy K. Johnt

'ECE Department
The University of Texas at Austin
{robbell,ljohn }@ece.utexas.edu

is the useof real-world applicationsasbenchmarksndthe
everincreasingiumberof dynamicinstructionghatneedo
besimulatedTheincreasingperformancef currentmicro-
processosystemscoupledwith the increasingcomplexity
of currentcomputerpplicationgsneanghatthedynamicin-
structioncountmustbeincreasegbroportionallyto simulate
arespectabléime sliceof arealsystemFor example,some
benchmarksn the SPECCPU2000benchmarksuite have
a dynamicinstructioncountthatis greaterthan500 billion
instructiong12]. Sinceseveralbenchmarksnayneedto be
simulatedand variousdesignpoints evaluated,the conse-
guencesare an impractically long simulationtime and an
undesirablyjlong time-to-marlet.

Researchersave proposedsereraltechniqueso shorten
the total simulationtime suchassampling[6, 25, 29|, re-
ducedinput sets[18] and analyticalmodeling[7, 20, 27].
Overthelastfew yearsjnteresthasgrown in yetanothesmap-
proachnamelystatisticalsimulation[5, 8, 9, 10, 21, 22, 23,
24]. Thebasicideaof statisticalsimulationis simple:mea-
sureawell-chosersetof programcharacteristicgluringex-
ecution,generatea synthetictracewith thosecharacteris-
tics and simulatethe synthetictrace.If the setof charac-
teristicsre ects the key propertiesof the programs behav-
ior, accurateperformance/paer predictionscan be made.
The statisticallygeneratedynthetictraceis several orders
of magnitudesmallerthanthe original programexecution,
andhencesimulation nishes very quickly. Thegoal of sta-
tistical simulationis notto replacedetailedsimulationbut to
be a usefulcomplementStatisticalsimulationcanbe used
to identify a region of interestin a large designspacethat
can,in turn, be further analyzedthroughslower but more
detailedarchitecturakimulations.

In this paperwe present@animprovedstatisticalsimula-
tion framework that extendsprevious work with two ma-
jor contributions. First, we proposethe use of a statisti-
cal ow graphto characterizehe control ow of a pro-
gram's execution.Control ow behaior is characterized
by modeling sequence®f basic blocks along with their
mutual transition probabilitiesand execution characteris-

microarchitecture-

synthetic trace generation @

independent
profiling tool

statistical profile containing:

=< - statistical flow graph
g - instruction types
5 @ - number of operands per instruction
5 - dependency distance per operand
Lo L - branch characteristics

specialized

simulation

| !

synthetic trace

©

synthetic trace simulation

of locality events

- cache characteristics \L

power/performance metrics

Figure 1. Statistical simulation: general framework.

tics. This statistical o w graphcombinesthe graphrepre-
sentationproposedn the SMART techniqueby lyengaret
al. [14, 15] with previously proposedstatisticalsimulation
framaworks(5, 8,9, 10, 22, 23, 24]. Thiscombineghema-
jor bene t of SMART, workload modelingaccurag, with
the major bene ts of statisticalsimulation,simplicity and
rapid convergence Secondwe shaw thatit is importantto
considerdelayedupdatevhencharacterizinghebranchbe-
havior. This improved statisticalsimulation framework is
extensvely evaluatedby consideringpothabsoluteandrela-
tive accurag in modelingthe performanceandenegy con-
sumptionof superscalamicroarchitecturesWe reportan
averageerror of 6.6% and 4% for predictingperformance
and enengy, respectiely, on an 8-way superscalaput-of-
order processousing SPECint200(benchmarksWe also
shaw thatour framawork s signi cantly moreaccuratehan
the previously proposedHLS framawork. In addition, we
demonstrateéhat the error whenpredictingrelative perfor
mance/pwver trendsis generallylessthan3%. As a conse-
guencewe concludethat statisticalsimulationis a useful
tool for accuratelyand ef ciently exploring processode-
signspaces.

Thispaperis organizedasfollows. Section2 presentsur
statisticalsimulationframework: the use of the statistical
o w graphis discussedndour branchpro ling approach
usingdelayedupdateis proposedSection3 discusse®ur
experimentalsetupwhich is usedin Section4 during the
evaluation.Relatedwork andhow it differsfrom this work
is discussedh Sectionb. Finally, we concludein Section6.

2. Statistical simulation

Statisticalsimulationconsistsof threestepsasshavn in
Figure1. In the rst step,a collection of programexecu-
tion characteristicés measuredSubsequentlythis statisti-
cal pro le is usedto generatea synthetictrace In the -
nal step,this synthetictraceis simulatedon a trace-drven
simulator In thefollowing subsectionsye discussall three
steps.

2.1. Statistical profiling

In our statistical pro les, we make a distinction be-
tween microarchitecture-independertharacteristicsand
microarchitecture-dependecharacteristics This will be
discussedh thefollowing two subsectiondn the nal sub-
section,we discusshow to improve the microarchitecture-
dependenbranchcharacteristics.

2.1.1. Microarchitecture-independent characteris-
tics. During statisticalpro ling we build a statistical ow
graph (SFG) To clarify how this is done,we referto Fig-
ure2in which rst- (k = 1) andsecond-ordefk = 2) SFGs
areshawvn for anexamplebasicblock sequencéAAB AAB-
CABC'. Eachnodein the graphrepresentshe history of
theprecedingbasicblock(s)asits state.This is shovn with
the labels’A’', 'B' and 'C' in the rst-order SFG and la-
bels'AA', "AB', 'BA', 'BC' and CA in the second-order
SFG. The numericalsin each node shav the occur
rencesor the numberof times the history of preceding
basicblock(s) appearsn the basicblock stream.The la-
bels and the percentagesiext to the edgesrepresenthe
current basic block and the transition probabilities be-
tweenthe nodesProb[BnjBn 1,...,Bn «|, with k being
the order of the SFG. Note that during statistical pro-
ling only one SFGis built for one speci ¢ value of k.
In the evaluation section of this paper we will evalu-
ate the importanceof the chosenvalue of k. For com-
parison,we will alsoconsiderk = 0 or no edgesin the
graph.

For eachbasicblock in the SFGwe recordthe instruc-
tion typesof eachinstruction.We classify the instruction
typesinto 12 classesaccordingto their semanticsload,
store,integer conditionalbranch, oating-point conditional
branchjndirectbranchjntegeralu,integermultiply, integer
divide, oating-point alu, oating-point multiply, oating-
pointdivideand oating-point squareoot.For eachinstruc-
tion, we recordthe numberof sourceoperandsNote that
someinstructiontypes,althoughclassi ed within the same
instruction class,may have a different numberof source

statistical flow statistical flow

graph (k= 1) graph (k = 2)

B (100%)

A (100%)

Figure 2. Example r st-order (k=1) and
second-or der (k=2) SFGs corresponding to
the basic block sequence "AABAABCABC..

C (66%)

C (66%)

operandskor eachoperandve alsorecordthe dependeng
distancewhich is the numberof dynamicallyexecutedin-
structionsbetweenthe productionof a registervalue (reg-
ister write) and the consumptionof it (registerread).We
only considerread-afteiwrite (RAW) dependenciesince
our focusis on out-of-orderarchitecturesn which write-
afterwrite (WAW) and write-afterread(WAR) dependen-
ciesaredynamicallyremovedthroughregisterrenamingas
long as enoughphysicalregistersare available. Although
not donein this paper this approachcould be extendedto
alsoinclude WAW and WAR dependencieto accountfor
a limited numberof physicalregistersor in-order execu-
tion. Note thatrecordingthe dependeng distancerequires
storing a distribution since multiple dynamic versionsof
the samestaticinstructioncould resultin multiple depen-
deng distanceslin theory this distribution could be very
largedueto largedependengdistancesin practice we can
limit this distribution. This however limits the numberof
in- ight instructionsthat can be modeledduring synthetic
tracesimulation.In our study we limit thedependengdis-
tribution to 512 which still allows the modelingof a wide
rangeof currentandnearfuturemicroprocessordviore for-
mally, the distribution of the dependeng distanceof the p-
th operandof the o-th instructionin basicblock B, given
its basicblockhistoryB,, 1,..., Bn k canbeexpresse@s
follows: Prob[Dno;p jBn, Bn 1,...,Bn .

Note that these characteristicsare independentof
ary microarchitecture-speci ¢ organization. In other
words, these characteristicsdo not rely on assump-
tions relatedto issuewidth, window size, etc. They are
thereforecalledmicroarchitecture-independecharacteris-
tics.

2.1.2. Microarchitecture-dependent characteristics. In

addition to the above characteristicave also measurea
numberof characteristicshatarerelatedto locality events,
speci cally thebranchbehaior andthecachebehaior. The
brand characteristicsconsistof threeprobabilities:

the probability of a taken branch,which will be used
to limit the numberof takenbrancheghatarefetched
perclockcycle;

the probability of a fetch redirection, which corre-
spondsto a target misprediction(BTB miss)in con-
junction with a correcttaken/not-talen predictionfor
conditionalbranchesand

the probability of a branchmisprediction,which ac-
counts for BTB missesfor indirect branchesand
taken/not-talen mispredictions for conditional
branches.

The cache characteristicsconsistof the following six
probabilities:(i) theL1 I-cachemissrate,(ii) the L2 cache
missratedueto instructionsonly?, (i) theL1 D-cachemiss
rate, (iv) the L2 cachemissratedueto dataaccessesnly,
(v) thel-TLB missrateand(vi) theD-TLB missrate.

It is importantto note that thesecharacteristicare an-
notatedto the correspondingedgesin the SFG. Therefore
branchcharacteristicare recordedfor a particularbranch
with its history of precedingbasicblocks.The samebranch
with a differenthistory is storedseparatelyThe sameap-
pliesfor thecachecharacteristics.

Note that characteristicselatedto locality events,such
as branchand cachecharacteristicsare hard to modelin
a microarchitecture-independemway. Thereforewe take
a pragmaticapproachand use characteristicfor specic
branchpredictorsandspeci ¢ cachecon gurations.In our
framavork, we use functional simulation extendedwith
branch predictorsand cachestructuresto computethese
locality events. Our tools are extendedversionsof Sim-
pleScalars sim-bpred andsim-cache [1]. Note that
althoughthis approachrequiresthe simulationof the com-
plete programexecutionfor speci ¢ branchpredictorsand
speci ¢ cachestructuresthisdoesnotlimit its applicability.
Indeed,a numberof tools exist that measurea wide range
of thesestructuresn parallel,e.g.,the cheetah simula-
tor [28] whichis asingle-passnultiple-con gurationcache
simulator

Statisticalpro ling canbecarriedout usingtrace-drven
toolsoperatingon anexecutiontracethatis storedonadisk.
However, in casesvherestoringalargetraceis impractical,
anexecution-drventool canbeusedio measurehecharac-
teristicsduringfunctionalsimulation.We take thelatterop-
tion in this paper

2.1.3. Improving the branch characteristics. The tools
that are usedto measurehe statisticalpro les operateon
aninstruction-pefinstructionbasis.In particular duringthe
computationof the branchcharacteristicsthe outcomeof

1 We assumea uni®edL2 cache.However, we make a distinction be-
tweenlL2 cachemissesdueto instructionsanddueto data.

@ execution-driven simulation

w
o

[1 ® branch profiling with immediate update

O branch profiling with delayed update

N
a

= = N
S o =}
. . .

per 1000 instructions

(3}
L

number of branch mispredictions

2
bzip2
crafty

eon

gce
9zip
parser
perlbmk
twolf
vortex
vpr

Figure 3. Number of branch mispredictions
per 1,000 instructions under three scenarios:
(i) execution-driven simulation, (i) branch
proling with immediate update, and (iii)
branch proling with delayed update .

the previous branchis updatedbefore the branchpredic-
tor is accessedor the currentbranch(immediateupdate).
In pipelinedarchitectureshowever, this situationrarelyoc-
curs.Instead,multiple lookupsto the branchpredictorof-
ten occur betweenthe lookup and the updateof one par
ticular branch.This is well known in the literatureas de-
layed update In a conserative microarchitecturehe up-
date occursat commit time (at the end of the pipeline)
whereaghe lookup occursat the beginning of the pipeline
by the fetch engine.Delayedupdatecanhave a signi cant
impacton overall performanceThereforecomputerarchi-
tectshave proposedspeculatie updateof branchpredic-
tors [11, 16, 26] with the predictedbranch outcomein-
steadof theresohedoutcome Speculatie updatecanyield
signi cant performancamprovementsbecausehe branch
predictoris updatedearlierin the pipeline,for exampleat
writebacktime or atdispatchime. Notethatspeculatre up-
daterequiresarepairmechanisnto recoverfrom corrupted
statedue to mispredictionsIn this paper we assumethe
mostaggressie speculatre updatemechanisnavailablein
SimpleScala, namelyat dispatchtime, i.e., wheninstruc-
tions from the instructionfetch queueareinsertedinto the
registerupdateunit. It is interestingto notethatspeculatie
updatemechanism&ave beenimplementedn commercial
microprocessorgpr examplein the Alpha21264[17].
Delayedupdate,even whenusing a speculatre update
mechanism¢anhave a signi cant impacton overall perfor
mancevhenmodelingmicroprocessoperformanceThere-
fore we proposea branchpro ling approachhattakesinto
accountdelayedupdate.This is doneusinga FIFO buffer
in whichlookupandupdateoccuratthe headandat thetail

2 Thesimulationervironmentthatis usedin this paperis SimpleScalar
seesection3.

of the FIFO, respectiely. The branchpredictionlookups
that are madewheninstructionsenterthe FIFO are based
on “stale' statethatlacksupdatednformationfrom branch
instructionsstill residingin the FIFO. At eachstepof the

algorithm, an instructionis insertedinto the FIFO andre-

moved from the FIFO. A branchpredictorlookup occurs
whenabranchinstructionentersheFIFO;anupdateoccurs
whena branchinstructionleavesthe FIFO. If a branchis

mispredicted—thiss detecteduponremoval—theinstruc-
tions residingin the FIFO are squashednd new instruc-
tions are inserteduntil the FIFO is completely lled. As

mentionedabove, we assumespeculatie updateat dispatch
time. Thereforea naturalchoicefor the sizeof the FIFO is

thesizeof theinstructionfetchqueuelf otherupdatemech-
anismsare used,suchas speculatie updateat write-back
time or non-speculatie updateat commit time, appropri-
atesizesshouldbechoserfor the FIFO buffer.

To evaluate the bene ts of this branchproling ap-
proach,we refer to Figure 3 which showvs the numberof
branch mispredictionsper 1,000 instructionsunder vari-
ous scenarios(i) execution-driven simulationusing Sim-
pleScalarssim-outorder ~ simulatorwhile assumingle-
layedupdateatdispatchtime?, (i) branchpro ling with im-
mediateupdateafter lookup, and (iii) the newly proposed
branchpro ling approachwith delayedupdate This graph
shaws thatthe new approaclcloselyresembleshe beha-
ior thatis obsened during execution-drven simulation.In
the evaluationsectionof this paper we will show that this
signi cantly improvestheaccurag of statisticalsimulation.

2.2. Synthetic trace generation

Onceastatisticalpro le is computedwe generata syn-
thetictracethatis afactor R smallerthanthe original pro-
gramexecution.R is de ned asthe synthetictrace reduc-
tion factor, typical valuesrangefrom 1,000to 100,000 Be-
fore applyingour synthetictracegeneratioralgorithm,we

rst generatareducedstatistical ow graph Thisreduced
SFGdiffersfrom theoriginal SFGin thattheoccurrencesf
eachnodearedivided by the synthetictracereductionfac-
tor R. In otherwords,the occurrenced the reducedSFG
N; areafraction R of the original occurrences\/; for all
nodesi: N; = b"’F'g c. Subsequentlyve removeall nodesfor
which N; equalszero.Along with thisremoval, we alsore-
move all incomingandoutgoingedgesin doingso,we ob-
tain a reducedstatistical o w graphthatis no longerfully
interconnected-However, the interconnectiornis still strong
enougho allow for accuratgerformanceredictionsOnce
thereducedstatistical o w graphis computedthesynthetic
traceis generatedisingthefollowing algorithm.

3 Seesection3 for detailsontheexperimentaketupconcerninghe pro-
cessorcon®guratioraswell asthebenchmarks.

1. If theoccurrence®f eachof the nodesin thereduced

statistical o w grapharezero,terminatethealgorithm.
Otherwise generatea randomnumberin the interval
[0,1] andusethis valueto pointto a particularnodein
the reducedstatistical o w graph.Pointingto a node
is not donein a uniform way but usinga cumulatve
distributionfunctionbuilt up by theoccurrencef each
node.ln otherwords,a nodewith a higheroccurrence
will be morelikely to be selectedhana nodewith a
smalleroccurrence.

. Decrementheoccurrencef theselectechodere ect-
ing the fact that this node has beenaccessedDe-
terminethe currentbasicblock correspondingo the
node.

. Assigntheinstructiontypesandthe numberof source
operand®f eachof theinstructionsn thebasicblock.

. For eachsourceoperand,determineits dependeng
distance.This is doneusing randomnumbergenera-
tion on the cumulative dependeng distancedistribu-
tion. Thereforeaninstructionz is madedependentna
precedingnstructionz ¢ with § thedependengdis-
tance.Note thatwe do not generatelependenciethat
are producedby branchesr storessincethosetypes
of instructionsdo not have a destinatioroperandThis
is achiezed by trying a numberof timesuntil adepen-
deng is generatedhatis notsupposedigeneratedy
a branchor a store.If after a maximum numberof
times (in our casel,000times) still no valid depen-
deng is createdthedependengis simply squashed.

. Foreachloadin thesynthetidrace , determinevhether
thisloadwill causea D-TLB hit/miss,anL1 D-cache
hit/missandin caseof an L1 D-cachemisswhether
thisloadwill causeanL2 cachehit/miss.

. For the branchterminatingthe basicblock, determine
whetherthis is atakenbranchandwhetherthis branch
is correctly predicted resultsin a fetch redirectionor
is abranchmisprediction.

. For eachinstruction,determinewhetherthis instruc-
tion will causean I-TLB hit/miss, an L1 I-cache
hit/miss, and, in caseof an L1 cachemiss, whether
thisinstructionwill resultin anL2 cachemiss.

. Output the syntheticallygeneratednstructionsalong
with their characteristics.

. If thecurrentnodein thereducedstatistical o w graph
doesnot have outgoingedgesgo to stepl, otherwise
proceed.Generatea randomnumberin the interval
[0,1] and usethis value to point a particular outgo-
ing edge.This is doneusinga cumulative distribution
built up by the transitionprobabilitiesof the outgoing
edgesUsethis outgoingedgeto point to a particular
node.Goto step2.

2.3. Synthetic trace simulation

Thetrace-drvensimulationof the synthetictraceis very
similarto thetrace-drvensimulationof realprograntraces.
In particular for this paperthesynthetidracesimulatoris a
modi ed versionof SimpleScalas sim-outorder sim-
ulatorin which a synthetictraceis fed into the simulator
Thesynthetidracesimulatordoesnotneedto modelbranch
predictorsnor cachesHowever, specialactionsareneeded
duringsynthetictracesimulationfor thefollowing cases.

When a branch is mispredictedin an execution-
driven simulator instructionsfrom an incorrectpath

are fetched and executed. When the branchis ex-

ecuted, it is determinedwhether the branch was

mispredicted.In case of a misprediction, the in-

structionsdown the pipeline needto be squashed.
A similar scenario is implemented in the syn-

thetic trace simulator: when a mispredictedbranch
is fetched, the pipeline is lled with instructions
from the synthetictraceasif they werefrom the in-

correct path; this is to model resourcecontention.
Whenthe branchgetsexecuted the syntheticinstruc-

tions down the pipeline are squashedand synthetic
instructionsare fetchedasif they werefrom the cor-

rectpath.

For a load miss, the lateng will be determinedby
whetherthisloadis anL1 D-cachehit, anL1 D-cache
miss,anL2 cachemiss,or a D-TLB miss.For exam-
ple,in caseof anL2 miss,the accesdateng to main
memoryis assigned.

In caseof anl-cachemiss,thefetchenginestopsfetch-
ing for a numberof cycles. The numberof cyclesis
determinedby whethertheinstructioncausesanlL1 I-
cachemiss,anL2 cachemissor aD-TLB miss.

The most important difference between the synthetic
trace simulator and the referenceexecution-driven sim-
ulator, other than the fact that the former operateson
synthetic traces, is that the synthetic trace simulator
doesnot take into accountinstructionsalong misspecu-
latedpathswhenaccessinghe cachesThis canpotentially
have an impact on the performance prediction accu-

rag [2].
3. Experimental setup

The SPEC CINT2000 benchmarks that are used in
the evaluation of this paper are listed in Table 1. We
have usedthe Alpha binariesfrom the SimpleScalamweb-
site® The secondcolumnshaws the inputsthat were used

4 http://ww. spec.org
5 http://ww. sinpl escal ar.com

instructioncache 8KB, 2-way set-associate, 32-byteblock, 1 cycle accesdateny
datacache 16KB, 4-way set-associate, 32-byteblock, 2 cyclesaccessateny
uni®edL?2 cache 1MB, 4-way set-associate, 64-byteblock, 20 cyclesaccessateny
I-TLB andD-TLB 32-entry8-way set-associate with 4KB pages

memory 150cycle roundtrip access

branchpredictor

speculatie update atdispatchtime
branchmispredictionpenalty | 14 cycles

8K-entry hybrid predictorselectingbetweeran 8K-entry bimodalpredictoranda two-level (8K x 8K) localbranch
predictorxor-ing thelocal historywith thebranchs PC,512-entry4-way set-associate BTB and64-entryRAS

IFQ 32-entryinstructionfetchqueue

RUU andLSQ 128entriesand32 entriesrespectiely
processowidth
functionalunits

8 issuewidth, 8 decodewidth (fetchspeed-= 2), 8 commitwidth
8 integer ALUs, 4 load/storaunits, 2 fp adders? integerand?2 fp mult/div units

Table 2. Baseline con guration.

benchmark| input simpoints(weight) IPC
bzip2 program 5(20%),6 (32%),8 (48%) 1.83
crafty ref 8 (100%) 0.51
eon rushmeier| 2(100%) 0.81
gce integrate | 9(18%),12(4%),17 (22%),33 1.37

(9%),53 (5%),62 (18%),88

(14%),107 (6%)
gzip graphic 4 (100%) 1.94
parser ref 5 (55%),13 (45%) 1.03
perlbmk makerand | 2(100%) 0.97
twolf ref 10(100%) 0.64
vortex lendian2 | 58(100%) 1.11
vpr route 72(100%) 0.69

Table 1. The SPEC CINT2000 benchmarks
used in this paper, their inputs, their simula-
tion points with their corresponding weights,
and the IPC for the baseline con guration.

for each benchmark.All theseinputs are referencein-
puts. The third column shaws the simulation points pro-
vided by SimPoint[25] along with their weights® These
simulation points are representatie samplesof 100M in-
structions.The main reasonwhy we usedthesesimula-
tion pointsinsteadf thecompletebenchmarkunis to limit
thetotal simulationtime. As will becomeclearin theevalu-
ationsection alargenumberof simulationswererun using
detailedexecution-driven simulationto validatethe accu-
ragy of the proposedstatisticalsimulationapproachRun-
ning larger samplesor completebenchmarksvould have
beentootime-consumingNotethatthisis exactlytheprob-
lem we are addressingthrough statistical simulation.
However, in section4.4 we will evaluatewhetherstatisti-
cal simulationis alsoaccuratefor larger samplesizes(1B
and10B instructionsamples).

The baselineprocessoicon guration is detailedin Ta-
ble 2. We have used SimpleScalar/Alphav3.0 [1]. The
fourth columnin Table 1 shaws the baselinelPC over the

6 http://ww.cs. ucsd. edu/ ~cal der/ si npoi nt now pro-
videsnew simulationpoints.

SimPoint simulation points. For estimatingthe on-chip
power consumption per cycle, we have used Wattch
v1.02[4] assuminga 0.18 um-technologyand a 1.2GHz
clock frequeng. We assumea baseactvity factorof 0.5
or randomswitching actiity for single-endedarray bit-
lines. Further the most aggressie clock gating mecha-
nism (cc3) is considereda unit thatis unusedconsumes
10%of its maxpoweranda unit thatis only usedfor afrac-
tion 2 only consumes fractionz of its maxpower.

4. Evaluation

In the evaluationof this statisticalsimulationapproach
we considerthefollowing factors:(i) the simulationspeed,
(i) the orderk of the statistical o w graph,(iii) the useful-
nessof delayedupdateduring branchpro ling, (iv) theab-
soluteaccurag for modelingperformanceand power con-
sumption,(v) a comparisorwith HLS [23], (vi) modeling
programphasesnda comparisorwith SimPoint[25], (vii)
the relative accurag asa function of variousarchitectural
parametersand(viii) theapplicabilityfor ef ciently explor-
ing hugedesignspaces.

4.1. Simulation speed

Due to the statisticalnature of this technique,perfor
mancemetricscorvergeto “steady-statevalues.To quan-
tify the simulation speedof the statisticalsimulationap-
proachwe calculatethe coefcient of variation (CoV) of
the IPC as a function of the numberof syntheticinstruc-
tions. The CoV is de ned asthe standardieviation divided
by the meanof the IPC over a given numberof synthetic
tracesjn our case?0. Thevariationthatis obsenedis due
to the differentrandomseedshat were usedfor the vari-
ous synthetictraces.We clearly obsene that the CoV de-
creasedor longersynthetictracesandthatsmall CoVsare
obtainedfor small synthetictracese.g.,4% for 100K, 2%
for 200K, 1.5%for 500K and1% for 1M syntheticinstruc-
tions. Fromthesedatawe canconcludethat statisticalsim-
ulationis signi cantly fasterthanexecution-drvensimula-

35%

12% Bk=0
Bk=1

10% A

8% 1

6% 1

IPC prediction error

4% A

2% A

0% -

parser E

perlbmk
twolf
vortex
vpr

avg

bzip2
crafty
eon
gce
9zip

Figure 4. Evaluating the order k of the SFG;
perfect caches and perfect branc h prediction
are assumed.

tion. In our setup(with 100M-instructionreferencesam-
ples),we achieve a speedupof 100X to 1,000X. If larger
instructionstreamsare consideredin section4.4 we con-
sider10B instructions)evenhigherspeedupareobtained:
10,000Xto 100,000X.

4.2. Absolute accuracy

This sectionevaluatesthe absoluteaccurag of the sta-
tistical simulationapproachproposedn this paper Theab-
solutepredictionerrorfor ametric M is de ned as

Mepsj
Meps

with Mss and Mg ps computedthroughstatisticalsimu-
lation (SS)andexecution-drvensimulation(EDS), respec-
tively. The metricscanbe IPC (instructionsretired per cy-
cle) or EPC (enegy consumptionper cycle). We will use
theabsoluteaccurag to evaluatethe importanceof usinga
statistical o w graphin our statisticalpro le. Subsequently
we will evaluatetheimportanceof consideringdelayedup-
datesduring branchpro ling. In the nal subsectionwe
will evaluatethe absoluteaccurag of our methodin esti-
matingoverall power/performancenetrics.

4.2.1. Evaluating the statistical flow graph. Recallfrom
section2 thatthe order k of the SFGis yet to be de ned.
Figure 4 presentdPC predictionerrorsfor variousvalues
of k underthe assumptiorof perfectcacheseachaccess
is a hit) andperfectbranchprediction(eachbranchis cor-
rectly predicted).Thesedatashowv thatk = 0 canresultin
large IPC predictionerrors(up to 35%);if &k 1, thelPC
predictionsaresigni cantly moreaccuratglessthan2%on
average)Sincek = 1 leadsto predictionsthatareasaccu-
rateask = 2 andk = 3, wewill usek = 1 for theremain-
derof this paper Table3 presentshetotal numberof nodes
in the SFGasa functionof its orderk.

k=0 k=1] k=2] k=3
bzip2 675 945 1,314 1,799
crafty 1534 | 2,579 | 3,983 | 5,732
eon 466 645 836 1,028
gcc 30,834 | 43,157 | 57,031 | 71,879
gzip 291 434 632 863
parser 2,483 3,711 5,266 7,140
perlbmk 473 549 623 693
twolf 414 594 809 1,082
vortex 4,221 5,209 6,193 7,161
vpr 149 184 220 261

Table 3. The number of nodes in the SFG.

60%

@ branch profiling with immediate update

50% M W branch profiling with delayed update

40%

30%

IPC prediction error

20%
10% i
0% - T

Figure 5. Evaluating the impor tance of mod-
eling delayed update during branc h pro ling;
perfect caches are assumed.

gce F‘
gzip P

bzip2
crafty
eon
parser
perlbmk
twolf
vortex
vpr

avg

4.2.2. Evaluating branch profiling with delayed update.
In section2.1.3,we proposed delayedupdatebranchpro-
ling techniqueFigure5 showvs thatmodelingdelayedup-
date during branchpro ling improvesthe IPC prediction
accurag. The benchmarkghat bene t mostare eon and
perlbmk. Not surprisingly thesebenchmarkshaved the
largestdiscrepanciesn the numberof branchmispredic-
tions betweerexecution-drivensimulationandbranchpro-
ling with immediateupdate asshavn in Figure3. Branch
pro ling with delayedupdatewill be usedfor the remain-
derof this paper

4.2.3. Overall power/performance prediction er-
ror. Theleft graphof Figure6 presentdPC numbersob-
tainedusing our enhancedstatisticalsimulationapproach.
For the baselinecon guration, the average IPC predic-
tion error is 6.6%; the maximum error is obsened for
parser (14.2%).

Whenthe synthetictrace simulatoris extendedwith an
architecturapowerestimatiortool, powerconsumptiorcan
be estimatedusing statisticalsimulation[9, 24]. The right
graphof Figure6 shavsthatstatisticalsimulationestimates
enegy consumptionper cycle (EPC) accurately The av-
erageerror is 4%; the largesterror is obsenred for bzip2

@ execution-driven simulation

1.5%

W statistical simulation

14.6%

twolf
vpr

o > < Q a 5
o & S o N

N © 5] o S 2
a G s

perlbmk
vortex

Figure 6. Execution-driven
and EPC (on the right).

EPC (Watt/cycle)

simulation versus statistical

25

@ execution-driven simulation

W statistical simulation

4.4%

20

9.5%

2.7% 4.9% 1.6%

2.5% 7.4%

vpr

N > c Q o 5
Q &= <} o N

5 0§ &8 & ¥ @
kS 3] g

simulation for estimating

perlbmk
twolf
vortex

IPC (on the left)

20% T mHLS

B SMART-HLS

16% 1

12%

8%

IPC prediction error

4% A

0% -

bzip2
crafty
eon
gce
gzip
parser
perlbmk
twolf
vortex
vpr
avg

Figure 7. Comparing HLS to SMART-HLS, the
statistical simulation framework presented in
this paper.

(9.5%).

We have also consideredthe enegy-delay product
(EDP), which is an enepgy-efciency metric that com-
binesenegy consumptionwith performanceEDP is de-
ned asfollows[3]: EDP = EPC CPI? = EPC 5.
The averageEDP predictionerror using statisticalsimula-
tion is 11%; the largesterror is obsened for parser and
twolf: 21% and 18%, respectiely. Not surprisingly these
are the benchmarkswith the highestIPC prediction er
rors,asshavn in Figure6 ontheleft.

4.3. Comparison with HLS

We now compareour statisticalsimulation framework
to HLS as proposedby Oskin et al. [23]. The HLS syn-
thetic trace simulatormodelsan out-of-orderarchitecture
thatis a simpli cation of SimpleScalas model.HLS mod-
elsthe workloadasa front-endgraphstructure but the in-
structionsin the grapharegeneratedandomlyfrom anin-

I statistical simulation using 1 10B-instruction profile
I statistical simulation using 10 1B-instruction profiles
O statistical simulation using 100 100M-instruction profiles

18% -
8% O SimPoint using 10M-instruction samples

16% 1
14% A
12% 1
10% 1
8% 1
6% 1
4% A

IPC prediction error

2% A

0%

> c o = = x s (=2
S 5 8 8 3 ez §
Figure 8. Evaluating the impact of modeling

program phases and comparison with Sim-
Point.

structionmix distribution without regardto the instruction
sequencefoundin particularbasicblocks. Thisis in con-
trastto the SFG proposedn the presentwork. The gener
alizedHLS modelwascalibratedto matchSimpleScalas
out-of-ordersimulatorfor oneparticularprocessocon gu-
ration, i.e., SimpleScalas baselinecon guration, asgiven
in [23]. To allow for a fair comparisorbetweenHLS and
the framework presentedn this paperwe have usedSim-
pleScalars baselinecon gurationinsteadof the con gura-
tion from Table 2. Figure 7 clearly shows that our frame-
work, calledSMART-HLS, is moreaccuratehanHLS with
anaverageerrorof 1.8%versusl0.1%.

4.4. Modeling program phases

It is well known that a computerprogramgoesthrough
variousphasef execution[25]. In this section,we evalu-
atewhethermeasuringseparatestatisticalpro les andgen-

eratingseparatesynthetictracesfor eachof theseprogram
phasegyields more accurateperformancepredictions.For
theseexperimentswe consider10B instructionsfor each
benchmarlasour referencestreamsafter skippingthe rst
1B instructions’ We considerthefollowing scenarios:

We apply statisticalsimulationover the completeref-
erencestream,i.e., we generateone statisticalpro le
andonesynthetidraceto characteriz¢he 10Binstruc-
tions.

We applystatisticalsimulationovereachsampleof 1B
instructions So,in total we have tenstatisticalpro les
andtensynthetictraces Thesetensynthetictracesare
simulatedandthe performancemetricsareaveraged.

We run statisticalsimulationon one hundred100M-
instructionsamples.

We usethe SimPointsoftware[25] to computerepre-
sentatve 10M-instructionintervalsfrom theselOB in-
structionstreamsTheselOM-instructionsamplesare
thensimulatedthroughexecution-drvensimulation.

We draw a numberof interestingconclusionsrom the
resultspresentedn Figure8. First, applyingstatisticalsim-
ulationto smallersamplesnly slightly improvesaccurag,
e.g.,comparsestatisticakimulationoveronehundredlO0OM-
instructionsamplesys. statisticalsimulationover one 10B-
instructionsample Second SimPointis moreaccuratéhan
statisticalsimulation.The averageerrorsfor SimPointand
statisticalsimulationare 2% and 7.2%, respectrely. How-
ever, the numberof simulatedinstructionsfor SimPoint
is signi cantly larger thanfor statisticalsimulation. Sim-
Pointsimulate20 million (crafty) to 300million (gcc) in-
structionsvhereastatisticakimulationonly requiresl mil-
lion instructionsat themost In addition,SimPointemploys
execution-drvensimulationwhich is slower thansynthetic
tracesimulationsincethe latter doesnot modelcachesor
branchpredictors.In contrastto SimPointhowever, statis-
tical simulationneedsto computea new statisticalpro le
whenthe cacheor branchpredictoris changediuringa de-
sign spaceexploration. Neverthelessstatisticalsimulation
will bemuchfasterthanSimPoint.

4.5. Relative accuracy

In prior sections we only considered absolute
power/performance prediction accurayg, i.e., the er
ror in one single designpoint. For a computerarchitect,
relative accurag or the ability to accuratelypredicta per
formance trend, is often more important. Indeed, the
sensitvity of power and performanceto a particular ar-
chitectural parametercan help the designeridentify the

7 perlbmk wasexcludedfrom theseexperimentsbecauseve hadprob-
lemssimulatingit for suchalargeinstructioncount.

(near)optimal designpoint, e.g.,on the "knee' of the per
formancecurve, or where performancebegins to saturate
as a function of a given architecturalparameterTo eval-
uate statistical simulation in this perspectie we have
measuredhe relative accurag asa functionof ve archi-
tecturalparameterswvindow size,processowidth, instruc-
tion fetch queuesize,branchpredictorsizeandcachesize.
The relative predictionerror for a metric M when mov-
ing from design point A to design point B is de ned
as

_ iMg.ss/Mass MpEeps/Mag psj

RE;
M Mg eps/MaeDs

Table 4 shaws the relative predictionerrorsaveragedover
the variousbenchmarksThis table not only presentsen-
sitivity of IPC andEPCto a givenarchitecturaparameter
but alsosensitvity of other metrics,suchasthe RUU oc-

cupang, the LSQ occupany, the IFQ occupany, the fetch
unit's enegy consumptionthe dispatchunit's enegy con-
sumption,etc. An accurateestimateof thosetrendsis par

ticularly relevant for a designerwho wantsto ensurethat
the variousparametergretunedproperlyto optimize per

formance Theresultsin Table4 shav thatthe averagerel-

ative predictionerrorsaregenerallysmallerthan3%.

4.6. Design space exploration

Statisticalsimulationcan be usedto ef ciently explore
large designspaces.In spite of the absoluteerrors ob-
tainedwhenestimatingeDP (seesection4.2.3),aregion of
enegy-efcient designsanbeidenti ed throughstatistical
simulation.To demonstratehis we have setup the follow-
ing experimentWe computedhe enegy-delayproductfor
a large designspaceusingstatisticalsimulationby varying
the sizeof the RUU (8,16,32,48,64,9828), the sizeof the
LSQ® (4,8,16,24,32,4®4), the decodewidth (2,4,6,8) the
issuewidth (2,4,6,8)andthe commit width (2,4,6,8).The
total numberof designpointsin this experimentis 1,792.
Thesel,792designpointsareall evaluatedthroughstatis-
tical simulationandthe designpoint with optimal EDP is
identi ed. To verify that statisticalsimulationindeediden-
ti es aregion of optimal designpoints,we have computed
the EDPfor thedesignpointsthatwerein a 3%rangeof the
optimal designpoint. For 7 out of the 10 benchmarkssta-
tistical simulationindeedidenti ed the optimal design.For
theremainingthreebenchmarksstatisticalimulationiden-
ti ed adesignthatis in averyshortrangeto theoptimalde-
sign:gzip (0.03%),eon (1.03%)andvpr (1.24%).

8 Welimit theLSQ sizenotto belargerthanthe RUU size.

[Sensitity to window size(the RUU sizeis variedfrom 8 to 128;theLSQ sizeis halftheRUU size) |

8—-16 16—32 32—48 48—64 64—96 96— 128

IPC 1.0% 1.7% 1.2% 0.7% 0.6% 1.3%

RUU occupang 0.4% 1.8% 2.3% 1.9% 3.6% 3.2%

LSQ occupang 0.6% 1.9% 2.3% 2.0% 3.7% 2.9%

EPC 0.6% 1.0% 0.6% 0.6% 1.0% 0.7%

RUU power consumption| 0.7% 1.3% 0.8% 0.8% 0.8% 0.9%

LSQ power consumption | 0.4% 0.7% 0.4% 0.3% 0.6% 0.5%

Sensitvity to processowidth
(decodewidth = issuewidth = commitwidth)
2 .4 46 6 8 | Sensitity totheinstructionfetchqueug(IFQ)size |

IPC 1.7% 1.2% 0.8% 4—-8 8—16 16 — 32
executionbandwidth 15% 21% 1.6% IPC 1.3% 0.8% 0.9%
EPC 1.6% 1.1% 0.4% EPC 0.9% 1.1% 0.5%
fetchunit pover consumption 08% 0.7% 0.4% IFQ occupang | 3.2% 5.0% 6.4%
dispatchunit powver consumption| 1.1% 1.6% 1.1%
issueunit powver consumption 16% 1.3% 0.5%

| Sensitvity to thebranchpredictorsize |

base- 4 — base-2 base-2— base base— base 2 base 2 — base 4
IPC 0.5% 0.5% 0.7% 0.4%
EPC 0.5% 0.5% 0.5% 0.6%
RUU occupang 0.8% 0.7% 0.7% 0.6%
RUU power consumption 0.4% 0.4% 0.6% 0.3%
LSQ occupang 0.8% 0.5% 0.7% 0.4%
LSQ power consumption 0.2% 0.2% 0.3% 0.2%
IFQ occupang 0.6% 0.6% 0.8% 0.6%
fetchunit pover consumption 0.4% 0.3% 0.5% 0.5%
branchpredictorpower consumption 0.3% 1.4% 1.2% 0.2%

| Sensitvity to the cachecon®guratiorsize |

base- 4 — base-2 base-2— base base— base 2 base 2 — base 4
IPC 2.2% 1.4% 3.3% 2.6%
EPC 1.3% 1.3% 1.7% 4.0%
RUU occupang 4.6% 1.6% 3.6% 2.0%
RUU power consumption 1.3% 1.0% 1.5% 1.1%
LSQ occupang 3.9% 2.0% 3.2% 3.9%
LSQ power consumption 0.7% 0.6% 1.0% 0.7%
IFQ occupang 5.6% 7.3% 8.9% 8.5%
fetchunit power consumption 1.0% 0.7% 0.9% 1.2%
I-cachepower consumption 1.5% 1.2% 2.1% 2.4%
D-cachepower consumption 6.8% 7.2% 9.3% 6.0%
L2 cachepower consumption 0.4% 0.2% 0.4% 0.3%

Table 4. Relative error of statistical

simulation as a function

of windo w size, processor width, instruc-

tion fetch queue size, branc h predictor size and cache size.

5. Relatedwork

Noonlurg andShen[21] present frameavork thatmod-
elsthe executionof a programon a particulararchitecture
asa Markov chain,in which the statespaceis determined
by the microarchitecturendin which thetransitionproba-
bilities are determinedby the programexecution.This ap-
proachwasevaluatedfor in-orderarchitecturesExtending
it for wide-resourceut-of-orderarchitecturesvould result
in afartoo complex Markov chain.

Hsiehand Pedram[13] presenta techniqueto estimate
performanceand power consumptionof a microarchitec-
tureby measuringa characteristipro le of a programexe-
cution,synthesizinga fully functionalprogramfromit, and
simulatingthis syntheticprogramon an execution-driven
simulator The main disadwantageof their approachs the

factthatno distinctionis madebetweermicroarchitecture-
dependentand microarchitecture-independenharacteris-
tics. All characteristicsare microarchitecture-dependent,
which makesthis techniqueunusablefor designspaceex-
plorations.

lyengaret al. [15] presentSMART to generaterepre-
sentatve synthetictracesbasedon the conceptof a fully
quali ed basicblock. A fully quali ed basicblockis a ba-
sic block togetherwith its context. The context of a ba-
sic block is determinedby its n precedingquali ed basic
blocks—aquali ed basicblock is a basicblock together
with the branchinghistory (of length k) of its preceding
branch.This work was later extendedin [14] to account
for cachebehaior. In this extendedwork the focus was
shifted from fully quali ed basicblocksto fully quali ed

instructions.The contet of a fully quali ed instructionis
thendeterminedy n singly quali ed instructions A singly
quali ed instructionis aninstructionannotatedwith its in-
structiontype, its I-cachebehaior, and, if applicable,its
D-cachebehavior andits branchbehaior. Thereforea dis-
tinction is madebetweentwo fully quali ed instructions
having the sameprecedingnstructions gxceptthat,in one
case a precedingnstructionmissedin the cache whereas
in the othercaseit did not. Obviously, collectingall these
fully quali ed instructiongduringpro ling resultsin ahuge
amountof datato be storedin memory For somebench-
marks theauthorsreportthattheamountof memorythatis
neededcan exceedthe available memoryin a machine so
thatsomeinformationneedgo bediscardedrom thegraph.
Thestatisticalsimulationframework presentedh this paper
shareghe conceptof usinga contet by qualifying a basic
block with its precedingbasicblocks.However, the statisti-
cal o w graphthatis built for this purposeis both simpler
and smallerthanthe fully quali ed oneusedin SMART.
In addition,we have found that qualifying with onesingle
basicblock is sufcient. Anotherinterestingdifferencebe-
tweenSMART andtheframawvork presentedhereis thefact
that SMART generatesnemoryaddresseduring synthetic
tracegenerationWe simply assigrhits andmisses.

In recentyears,a numberof paperg5, 8, 9, 10, 22, 23,
24] have beenpublishedthatarebuilt around(slightly dif-
ferentformsof) thegeneraktatisticakimulationframewvork
presentedn Figurel. We identify onemajordifferencebe-
tweentheseapproacheandthe presentwork relatedto the
degreeof correlationin the statisticalpro le. The simplest
wayto build a statisticalpro le is to assumehatall charac-
teristicsareindependenfrom eachother|5, 8, 9, 10], which
resultsin the smalleststatisticalpro le andthefasteston-
vergencetime but potentiallythe largestpredictionerrors.
In HLS, Oskin et al. [23, 24] generateone hundredbasic
blocks of a size determinedby a normaldistribution over
the averagesizefoundin the original workload. The basic
blockbranchpredictabilitiesarestatisticallygeneratedrom
the overall branchpredictabilityobtainedfrom the original
workload.Instructionsareassignedo the basicblocksran-
domly basedon the overall instructionmix distribution, in
contrasto thebasicblock modelinggranularity of the SFG.
As in the presentwork, the HLS synthetictracegenerator
thenwalksthroughthegraphof instructionsNussbaunand
Smith[22] proposeo correlatevariouscharacteristicsuch
astheinstructiontypes,thedependencieshe cachebeha-
ior andthe branchbehaior to the size of the basicblock.
Usingthesizeof thebasicblockto correlatestatisticgaises
thepossibility of basicblodk sizealiasing, in which statisti-
cal distributionsfrom basicblockswith very differentchar
acteristicaarecombinedandreducesimulationaccurag. In
a SFG,all characteristicare correlatedto the basicblock
itself, not just its size.Moreover, we correlatebasicblocks

on previously executedbasicblocks by usinghigherorder
(k 1) SFGs,i.e., basicblockswith a differenthistory of
executedbasicblocksarecharacterizedeparately

Intuitively, the framavork presentedn this papercom-
binesSMART with previously proposedstatisticalsimula-
tion approacheso combinethe bene ts andto eliminate
thedrawbacksof bothtechniquesThemajorbene t gained
from SMART is the accuratemodelingof instruction se-
guences&ndtheirdependencieshisis achieved by consid-
eringbasicblocksalongwith their context, i.e., we statisti-
cally modelatthe granularityof the basicblock. The draw-
backthat is eliminatedfrom SMART is the explosion of
state(andthusmemory)thatis neededo keeptrack of all
the quali ed instructions.The major bene t thatis gained
from statisticalsimulationis its simplicity. Themajordraw-
backthatis eliminatedfrom previously proposedstatistical
simulationapproachess their inability to accuratelymodel
instructionsequenceandtheir dependencies.

6. Conclusion

Architecturalsimulationsareextremelytime-consuming
and often impact the time-to-marlet of nenly designed
microprocessorsOne possibleapproachto this problem
is to use statistical simulation as an accurateand ef -
cient complementto detailed simulation. The statistical
simulation approachpresentedn this paperhastwo ma-
jor contributions.First, the useof the statistical o w graph
(SFG) for statistical simulation combinesthe bene ts of
the previously proposedyraphrepresentatiom SMART—
accurag—with featuresfrom previously proposedstatis-
tical simulationframenorks—simplicityandrapid corver-
gence Secondwe have shavn thatit is importantto model
delayedupdateof branchpredictorsduring statisticalpro-
ling. Thisimproved statisticalsimulationframewnork was
extensvely evaluatedFirst, we shav thatstatisticalsimula-
tion is indeeda fastsimulationtechniquej.e., the synthetic
tracescan be very short (100K to 1M instructions).Sec-
ond, our measurementshov thatthe performanceanden-
ergy consumptiorof an8-issueout-of-ordersuperscalaar
chitecturefor SPECint200(benchmarkscan be predicted
with an averageerror of only 6.6% and 4%, respectiely.
Third, we shaw that our approachs signi cantly moreac-
curatethanthe previously proposedHLS statisticalsimu-
lation frameawork. A comparisonwith the SimPointsam-
pling techniqueshaws that SimPointis more accurateput
that statisticalsimulationis faster We alsoshaw thatrela-
tive accurag, the ability to predictperformancerends,us-
ing statisticalsimulationis very high; the relative erroris
generallybelov 3%. And nally, we shav that statistical
simulationcanbeusedto identify enegy-ef cient microar
chitecturesn alargedesignspace.

Acknowledgements

Theauthorswould like to thankBrad Calder Jim Smith
andthe anorymousreviewersfor their detailedfeedback.
Lieven Eeckhoutis PostdoctoralFellow of the Fund for
Scienti ¢ Research—Flander@elgium) (FW.O. Vlaan-
deren).This researchs alsopartially supportedoy the In-
stitute for the Promotion of Innovation by Scienceand
Technologyin Flanders(IWT), by GhentUniversity, by
the United StatesNational Science~oundationundergrant
number0113105,and by IBM, Intel, and AMD Corpora-
tions.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

T. Austin, E. Larson,and D. Ernst. SimpleScalarAn in-

frastructurdor computeisystemmodeling.|IEEE Computer
35(2):59-67Feh 2002.

C. Bechem,J. Combs,N. UtamaphetaiB. Black, R. D. S.

Blanton,and J. P. Shen. An integratedfunctional perfor

mancesimulator IEEE Micro, 19(3):26—35May/Junel999.
D. Brooks,P. Bose,S. E. SchusterH. JacobsonP. N. Kudva,

A. BuyuktosunogluJ.-D. Wellman, V. Zyuban,M. Gupta,
and P. W. Cook. Poweraware microarchitectureDesign
and modeling challengedor next-generationmicroproces-
sors.|[EEE Micro, 20(6):26—44November/Decembez000.

D. Brooks, V. Tiwari, andM. Martonosi. Wattch: A frame-
work for architectural-leel power analysisand optimiza-
tions. In ISCA-27 pages33-94,June2000.

R. CarlandJ. E. Smith. Modelingsuperscalaprocessorsia

statisticalsimulation.In PAID-98,in conjunctionwith ISCA-
25, Junel998.

T. M. Conte,M. A. Hirsch,andK. N. Menezes.Reducing
statelossfor effective tracesamplingof superscalaproces-
sors.In ICCD-96 pagesA68—-4770ct.1996.

P. K. Dubgy, G. B. Adamslil, andM. J. Flynn. Instruction
window sizetrade-ofs andcharacterizatioof programpar

allelism. IEEE Transactionson Computes, 43(4):431-442,
Apr. 1994,

L. Eeckhoutand K. De Bosschere. Early designphase
power/performancenodelingthroughstatisticalsimulation.
In ISFASS-2001pagesl0-17,Nov. 2001.

L. Eeckhoutand K. De Bosschere. Hybrid analytical-
statisticalmodelingfor ef®ciently exploring architectureand
workloaddesignspaces.n PACT-2001, pages25-34,Sept.
2001.

L. Eeckhout,S. Nussbaum,J. E. Smith, and K. De Boss-
chere. Statisticalsimulation:Adding ef®cieng to the com-
puterdesignestoolbox.IEEEMicro, 23(5):26—-38Sept/Oct
2003.

E. Hao, P-Y. Chang,andY. N. Patt. The effect of specu-
latively updatingbranchhistory on branchpredictionaccu-
ragy, revisited. In MICRO-27, pages228—-232Nov. 1994.

J. L. Henning. SPECCPU2000:MeasuringCPU perfor

mancein the nev millennium. IEEE Computey 33(7):28—
35, July 2000.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

C. Hsiehand M. Pedram. Micro-processoipower estima-
tion using pro®le-driven programsynthesis. IEEE TCAD,
17(11):1080-1089\ov. 1998.

V. S.lyengarandL. H. Trevillyan. Evaluationandgenera-
tion of reducedracesfor benchmarksTechnicalReportRC
20610,IBM Researcibivision, T. J. WatsonResearclCen-
ter, Oct. 1996.

V. S.lyengar L. H. Trevillyan, andP. Bose. Representate
tracesfor processomodelswith in®nite cache.ln HPCA-2
pagess2—73,Feh 1996.

S. Jourdan,]. Stark, T.-H. Hsing,andY. N. Patt. Recaery
requirementof branchpredictionstoragestructuresin the
presencef mispredicted-pathxecution.InternationalJour-
nal of Parallel Programming 25(5):363—383(Qct. 1997.

R. E. KesslerE. J. McLellan,andD. A. Webh The Alpha
21264microprocessoarchitecture.ln ICCD-98 pages90—
95, Oct. 1998.

A. J. KleinOsawski and D. J. Lilla. MinneSPEC: A
nev SPECbenchmarkworkloadfor simulation-basedom-
puterarchitectureesearch.ComputerArchitectue Letters,
1(2):10-13June2002.

S. S. Mukherjee,S. V. Adve, T. Austin, J. Emer andP. S.
Magnusson. Performancesimulationtools: Guesteditors'
introduction.IEEE ComputerSpeciallssueon High Perfor-
manceSimulatos, 35(2):38—39Feh 2002.

D. B. Noonhurg andJ. P. Shen. Theoreticaimodelingof su-
perscalaprocessoperformance.ln MICRO-27, pagess2—
62,Nov. 1994,

D. B. Noonhurg andJ. P. Shen. A framework for statistical
modelingof superscalaprocessoperformanceln HPCA-3
pages298-309Feh 1997.

S.NussbaunmandJ. E. Smith. Modelingsuperscalaproces-
sorsvia statisticalsimulation. In PACT-2001 pagesl5-24,
Sept.2001.

M. Oskin, F. T. Chong,andM. Farrens. HLS: Combining
statisticaland symbolic simulationto guide microprocessor
design.In ISCA-27 pages’1-82,June2000.

R.Rao,M. H. Oskin,andF. T. Chong.HLSPOWNER: Hybrid
StatisticalModeling of the SuperscalaPowver-Performance
DesignSpace.In HiPC-9, pages620-629Dec.2002.

T. Sherwod, E. PerelmanG. Hamerly andB. Calder Au-
tomatically characterizindarge scaleprogrambehaior. In
ASPLOS-XpagesA5-57,0ct. 2002.

K. SkadronM. Martonosi,andD. W. Clark. Speculatie up-
datesof localandglobalbranchhistory: A quantitatie anal-
ysis. Journal of Instruction-Lerel Parallelism, 2, Jan.2000.
http://www.jilp.org/vol2 .

D. J.Sorin,V. S. Pai, S. V. Adve, M. K. Vernon,andD. A.
Wood. Analytic evaluationof shared-memorgystemswith
ILP processorsin ISCA-25 pages380-391,Junel998.

R. A. SugumarandS. G. Abraham. Ef®cient simulationof
cacheaunderoptimal replacementvith applicationsto miss
characterizationln SIGMETRICS'93pages24-35,1993.
R. E. Wunderlich,T. F. Wenish,B. Falsa®,andJ. C. Hoe.
SMARTS: Accelerating microarchitecturesimulation via
rigorousstatisticalsampling.In ISCA-3Q June2003.

