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Abstract

Designing a new microprocessor is extremely time-
consuming. One of the contributing reasonsis that com-
puter designers rely heavilyon detailedarchitectural sim-
ulations, which are very time-consuming. Recentwork
has focusedon statistical simulation to address this is-
sue. The basic idea of statistical simulation is to mea-
sure characteristicsduring program execution,generate a
synthetictrace with thosecharacteristicsand then simu-
latethesynthetictrace. Thestatisticallygeneratedsynthetic
traceis orders of magnitudesmallerthantheoriginal pro-
gram sequenceand henceresults in signi�cantly faster
simulation.

Thispapermakesthefollowing contributionsto thesta-
tistical simulationmethodology. First, we proposethe use
of a statistical�ow graphto characterizethecontrol �ow of
a programexecution.Second,wemodeldelayedupdateof
branch predictors while pro�ling program executionchar-
acteristics.Experimentalresultsshowthat statisticalsim-
ulation using this improved control �ow modelingattains
signi�cantly betteraccuracy than the previouslyproposed
HLS system.We evaluateboth the absoluteand the rela-
tiveaccuracyof our approach for power/performancemod-
eling of superscalar microarchitectures.The resultsshow
thatour statisticalsimulationframeworkcanbeusedto ef-
�ciently exploreprocessordesignspaces.

1. Intr oduction

Designinga new microprocessoris both complex and
time-consuming(taking up to 7 years[19]). Computerde-
signersrely heavily on detailedarchitecturalsimulatorsto
identify the optimal designin a large designspaceunder
a numberof constraintssuchas chip area,power budget,
etc.Thesearchitecturalsimulationtools areat leasta fac-
tor of a thousandslower than native hardware execution.
Another issuethat contributesto the long simulationtime

is theuseof real-world applicationsasbenchmarksandthe
ever-increasingnumberof dynamicinstructionsthatneedto
besimulated.Theincreasingperformanceof currentmicro-
processorsystemscoupledwith the increasingcomplexity
of currentcomputerapplicationsmeansthatthedynamicin-
structioncountmustbeincreasedproportionallyto simulate
arespectabletimesliceof arealsystem.For example,some
benchmarksin the SPECCPU2000benchmarksuitehave
a dynamicinstructioncountthat is greaterthan500billion
instructions[12]. Sinceseveralbenchmarksmayneedto be
simulatedandvariousdesignpointsevaluated,the conse-
quencesarean impractically long simulationtime andan
undesirablylong time-to-market.

Researchershaveproposedseveraltechniquesto shorten
the total simulationtime suchassampling[6, 25, 29], re-
ducedinput sets[18] andanalyticalmodeling[7, 20, 27].
Overthelastfew years,interesthasgrown in yetanotherap-
proach,namelystatisticalsimulation[5, 8, 9, 10, 21, 22, 23,
24]. Thebasicideaof statisticalsimulationis simple:mea-
sureawell-chosensetof programcharacteristicsduringex-
ecution,generatea synthetictracewith thosecharacteris-
tics andsimulatethe synthetictrace.If the setof charac-
teristicsre�ects thekey propertiesof theprogram'sbehav-
ior, accurateperformance/power predictionscanbe made.
The statisticallygeneratedsynthetictraceis several orders
of magnitudesmallerthanthe original programexecution,
andhencesimulation�nishes veryquickly. Thegoalof sta-
tisticalsimulationis notto replacedetailedsimulationbut to
bea usefulcomplement.Statisticalsimulationcanbeused
to identify a region of interestin a large designspacethat
can, in turn, be further analyzedthroughslower but more
detailedarchitecturalsimulations.

In this paper, we presentan improvedstatisticalsimula-
tion framework that extendsprevious work with two ma-
jor contributions. First, we proposethe use of a statisti-
cal �o w graph to characterizethe control �o w of a pro-
gram's execution.Control �o w behavior is characterized
by modeling sequencesof basic blocks along with their
mutual transition probabilitiesand executioncharacteris-
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Figure 1. Statistical sim ulation: general frame work.

tics. This statistical�o w graphcombinesthe graphrepre-
sentationproposedin theSMART techniqueby Iyengaret
al. [14, 15] with previously proposedstatisticalsimulation
frameworks[5, 8, 9, 10, 22, 23, 24]. Thiscombinesthema-
jor bene�t of SMART, workloadmodelingaccuracy, with
the major bene�ts of statisticalsimulation,simplicity and
rapidconvergence.Second,we show that it is importantto
considerdelayedupdatewhencharacterizingthebranchbe-
havior. This improved statisticalsimulation framework is
extensivelyevaluatedbyconsideringbothabsoluteandrela-
tiveaccuracy in modelingtheperformanceandenergy con-
sumptionof superscalarmicroarchitectures.We report an
averageerror of 6.6% and4% for predictingperformance
and energy, respectively, on an 8-way superscalarout-of-
orderprocessorusingSPECint2000benchmarks.We also
show thatour framework is signi�cantly moreaccuratethan
the previously proposedHLS framework. In addition,we
demonstratethat theerror whenpredictingrelative perfor-
mance/power trendsis generallylessthan3%. As a conse-
quence,we concludethat statisticalsimulationis a useful
tool for accuratelyandef�ciently exploring processorde-
signspaces.

Thispaperisorganizedasfollows.Section2presentsour
statisticalsimulationframework: the useof the statistical
�o w graphis discussedandour branchpro�ling approach
usingdelayedupdateis proposed.Section3 discussesour
experimentalsetupwhich is usedin Section4 during the
evaluation.Relatedwork andhow it differsfrom this work
is discussedin Section5. Finally, weconcludein Section6.

2. Statistical simulation

Statisticalsimulationconsistsof threestepsasshown in
Figure1. In the �rst step,a collection of programexecu-
tion characteristicsis measured.Subsequently, this statisti-
cal pro�le is usedto generatea synthetictrace. In the �-
nal step,this synthetictraceis simulatedon a trace-driven
simulator. In thefollowing subsections,wediscussall three
steps.

2.1. Statistical profiling

In our statistical pro�les, we make a distinction be-
tween microarchitecture-independent characteristicsand
microarchitecture-dependent characteristics.This will be
discussedin thefollowing two subsections.In the�nal sub-
section,we discusshow to improve themicroarchitecture-
dependentbranchcharacteristics.

2.1.1. Microarchitecture-independent characteris-
tics. During statisticalpro�ling we build a statistical �ow
graph (SFG). To clarify how this is done,we refer to Fig-
ure2 in which�rst- (k = 1) andsecond-order(k = 2) SFGs
areshown for anexamplebasicblocksequencèAABAAB-
CABC'. Eachnodein the graphrepresentsthe history of
theprecedingbasicblock(s)asits state.This is shown with
the labels`A', `B' and `C' in the �rst-order SFG and la-
bels`AA', `AB', `BA', `BC' and`CA' in the second-order
SFG. The numericals in each node show the occur-
rencesor the numberof times the history of preceding
basicblock(s) appearsin the basicblock stream.The la-
bels and the percentagesnext to the edgesrepresentthe
current basic block and the transition probabilities be-
tweenthenodesProb[Bn jBn � 1, . . . , Bn � k ], with k being
the order of the SFG. Note that during statistical pro-
�ling only one SFG is built for one speci�c value of k.
In the evaluation section of this paper, we will evalu-
ate the importanceof the chosenvalue of k. For com-
parison,we will also considerk = 0 or no edgesin the
graph.

For eachbasicblock in the SFGwe recordthe instruc-
tion typesof eachinstruction.We classify the instruction
types into 12 classesaccordingto their semantics:load,
store,integerconditionalbranch,�oating-point conditional
branch,indirectbranch,integeralu,integermultiply, integer
divide, �oating-point alu, �oating-point multiply, �oating-
pointdivideand�oating-point squareroot.For eachinstruc-
tion, we recordthe numberof sourceoperands.Note that
someinstructiontypes,althoughclassi�edwithin thesame
instructionclass,may have a different numberof source
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Figure 2. Example �r st-or der (k=1) and
second-or der (k=2) SFGs corresponding to
the basic bloc k sequence `AABAABCABC'.

operands.For eachoperandwe alsorecordthedependency
distancewhich is the numberof dynamicallyexecutedin-
structionsbetweenthe productionof a registervalue(reg-
ister write) and the consumptionof it (register read).We
only considerread-after-write (RAW) dependenciessince
our focus is on out-of-orderarchitecturesin which write-
after-write (WAW) andwrite-after-read(WAR) dependen-
ciesaredynamicallyremovedthroughregisterrenamingas
long as enoughphysicalregistersare available.Although
not donein this paper, this approachcould be extendedto
alsoincludeWAW andWAR dependenciesto accountfor
a limited numberof physical registersor in-order execu-
tion. Note that recordingthedependency distancerequires
storing a distribution sincemultiple dynamicversionsof
the samestatic instructioncould result in multiple depen-
dency distances.In theory, this distribution could be very
largedueto largedependency distances;in practice,wecan
limit this distribution. This however limits the numberof
in-�ight instructionsthat canbe modeledduring synthetic
tracesimulation.In our study, we limit thedependency dis-
tribution to 512 which still allows the modelingof a wide
rangeof currentandnear-futuremicroprocessors.Morefor-
mally, thedistribution of thedependency distanceof thep-
th operandof the o-th instructionin basicblock Bn given
its basicblockhistoryBn � 1, . . . , Bn � k canbeexpressedas
follows:Prob[Dn;o;p jBn , Bn � 1, . . . , Bn � k ].

Note that these characteristicsare independentof
any microarchitecture-speci�c organization. In other
words, these characteristicsdo not rely on assump-
tions related to issuewidth, window size, etc. They are
thereforecalledmicroarchitecture-independent characteris-
tics.

2.1.2. Microarchitecture-dependent characteristics. In
addition to the above characteristicswe also measurea
numberof characteristicsthatarerelatedto locality events,
speci�cally thebranchbehavior andthecachebehavior. The
branch characteristicsconsistof threeprobabilities:

� the probability of a taken branch,which will be used
to limit thenumberof takenbranchesthatarefetched
perclockcycle;

� the probability of a fetch redirection,which corre-
spondsto a target misprediction(BTB miss) in con-
junction with a correcttaken/not-taken predictionfor
conditionalbranches;and

� the probability of a branchmisprediction,which ac-
counts for BTB misses for indirect branchesand
taken/not-taken mispredictions for conditional
branches.

The cache characteristicsconsistof the following six
probabilities:(i) theL1 I-cachemissrate,(ii) theL2 cache
missratedueto instructionsonly1, (iii) theL1 D-cachemiss
rate,(iv) theL2 cachemissratedueto dataaccessesonly,
(v) theI-TLB missrateand(vi) theD-TLB missrate.

It is importantto note that thesecharacteristicsarean-
notatedto the correspondingedgesin the SFG.Therefore
branchcharacteristicsarerecordedfor a particularbranch
with its historyof precedingbasicblocks.Thesamebranch
with a differenthistory is storedseparately. The sameap-
pliesfor thecachecharacteristics.

Note that characteristicsrelatedto locality events,such
as branchand cachecharacteristics,are hard to model in
a microarchitecture-independent way. Thereforewe take
a pragmaticapproachand usecharacteristicsfor speci�c
branchpredictorsandspeci�c cachecon�gurations.In our
framework, we use functional simulation extendedwith
branchpredictorsand cachestructuresto computethese
locality events.Our tools are extendedversionsof Sim-
pleScalar's sim-bpred andsim-cache [1]. Note that
althoughthis approachrequiresthesimulationof thecom-
pleteprogramexecutionfor speci�c branchpredictorsand
speci�c cachestructures,thisdoesnotlimit its applicability.
Indeed,a numberof toolsexist that measurea wide range
of thesestructuresin parallel,e.g.,the cheetah simula-
tor [28] which is asingle-passmultiple-con�gurationcache
simulator.

Statisticalpro�ling canbecarriedoutusingtrace-driven
toolsoperatingonanexecutiontracethatis storedonadisk.
However, in caseswherestoringalargetraceis impractical,
anexecution-driventool canbeusedto measurethecharac-
teristicsduringfunctionalsimulation.Wetake thelatterop-
tion in this paper.

2.1.3. Improving the branch characteristics. The tools
that areusedto measurethe statisticalpro�les operateon
aninstruction-per-instructionbasis.In particular, duringthe
computationof the branchcharacteristics,the outcomeof

1 We assumea uni®edL2 cache.However, we make a distinctionbe-
tweenL2 cachemissesdueto instructionsanddueto data.
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Figure 3. Number of branc h mispredictions
per 1,000 instructions under three scenarios:
(i) execution-driven sim ulation, (ii) branc h
pro�ling with immediate update , and (iii)
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the previous branchis updatedbefore the branchpredic-
tor is accessedfor the currentbranch(immediateupdate).
In pipelinedarchitectures,however, thissituationrarelyoc-
curs.Instead,multiple lookupsto the branchpredictorof-
ten occur betweenthe lookup and the updateof one par-
ticular branch.This is well known in the literatureasde-
layed update. In a conservative microarchitecturethe up-
date occursat commit time (at the end of the pipeline)
whereasthe lookupoccursat thebeginningof thepipeline
by the fetchengine.Delayedupdatecanhave a signi�cant
impacton overall performance.Thereforecomputerarchi-
tectshave proposedspeculative updateof branchpredic-
tors [11, 16, 26] with the predictedbranchoutcomein-
steadof theresolvedoutcome.Speculativeupdatecanyield
signi�cant performanceimprovementsbecausethe branch
predictoris updatedearlier in the pipeline,for exampleat
writebacktimeor atdispatchtime.Notethatspeculativeup-
daterequiresa repairmechanismto recover from corrupted
statedue to mispredictions.In this paper, we assumethe
mostaggressivespeculativeupdatemechanismavailablein
SimpleScalar2, namelyat dispatchtime, i.e., wheninstruc-
tions from the instructionfetch queueareinsertedinto the
registerupdateunit. It is interestingto notethatspeculative
updatemechanismshave beenimplementedin commercial
microprocessors,for examplein theAlpha21264[17].

Delayedupdate,even whenusinga speculative update
mechanism,canhaveasigni�cant impactonoverallperfor-
mancewhenmodelingmicroprocessorperformance.There-
fore we proposea branchpro�ling approachthattakesinto
accountdelayedupdate.This is doneusinga FIFO buffer
in which lookupandupdateoccurat theheadandat thetail

2 Thesimulationenvironmentthatis usedin thispaperis SimpleScalar,
seesection3.

of the FIFO, respectively. The branchprediction lookups
that aremadewhen instructionsenterthe FIFO arebased
on `stale' statethat lacksupdatedinformationfrom branch
instructionsstill residingin the FIFO. At eachstepof the
algorithm,an instructionis insertedinto the FIFO andre-
moved from the FIFO. A branchpredictorlookup occurs
whenabranchinstructionenterstheFIFO;anupdateoccurs
whena branchinstructionleaves the FIFO. If a branchis
mispredicted—thisis detecteduponremoval—theinstruc-
tions residingin the FIFO are squashedand new instruc-
tions are inserteduntil the FIFO is completely�lled. As
mentionedabove,weassumespeculativeupdateatdispatch
time.Thereforea naturalchoicefor thesizeof theFIFO is
thesizeof theinstructionfetchqueue.If otherupdatemech-
anismsareused,suchasspeculative updateat write-back
time or non-speculative updateat commit time, appropri-
atesizesshouldbechosenfor theFIFObuffer.

To evaluate the bene�ts of this branch pro�ling ap-
proach,we refer to Figure 3 which shows the numberof
branchmispredictionsper 1,000 instructionsunder vari-
ous scenarios:(i) execution-driven simulationusing Sim-
pleScalar'ssim-outorder simulatorwhile assumingde-
layedupdateatdispatchtime3, (ii) branchpro�ling with im-
mediateupdateafter lookup, and(iii) the newly proposed
branchpro�ling approachwith delayedupdate.This graph
shows that thenew approachcloselyresemblesthebehav-
ior that is observedduring execution-drivensimulation.In
theevaluationsectionof this paper, we will show that this
signi�cantly improvestheaccuracy of statisticalsimulation.

2.2. Synthetic trace generation

Onceastatisticalpro�le is computed,wegenerateasyn-
thetic tracethat is a factorR smallerthantheoriginal pro-
gramexecution.R is de�ned asthe synthetictracereduc-
tion factor; typicalvaluesrangefrom 1,000to 100,000.Be-
fore applyingour synthetictracegenerationalgorithm,we
�rst generatea reducedstatistical�ow graph. This reduced
SFGdiffersfrom theoriginalSFGin thattheoccurrencesof
eachnodearedividedby thesynthetictracereductionfac-
tor R. In otherwords,theoccurrencesin thereducedSFG
Ni area fraction R of the original occurrencesMi for all
nodesi: Ni = bM i

R c. Subsequently,weremoveall nodesfor
whichNi equalszero.Along with this removal,we alsore-
moveall incomingandoutgoingedges.In doingso,weob-
tain a reducedstatistical�o w graphthat is no longerfully
interconnected.However, the interconnectionis still strong
enoughto allow for accurateperformancepredictions.Once
thereducedstatistical�o w graphis computed,thesynthetic
traceis generatedusingthefollowing algorithm.

3 Seesection3 for detailsontheexperimentalsetupconcerningthepro-
cessorcon®gurationaswell asthebenchmarks.



1. If theoccurrencesof eachof thenodesin thereduced
statistical�o w grapharezero,terminatethealgorithm.
Otherwise,generatea randomnumberin the interval
[0,1] andusethis valueto point to a particularnodein
the reducedstatistical�o w graph.Pointingto a node
is not donein a uniform way but usinga cumulative
distributionfunctionbuilt upby theoccurrenceof each
node.In otherwords,a nodewith a higheroccurrence
will be morelikely to be selectedthana nodewith a
smalleroccurrence.

2. Decrementtheoccurrenceof theselectednodere�ect-
ing the fact that this node has been accessed.De-
terminethe currentbasicblock correspondingto the
node.

3. Assigntheinstructiontypesandthenumberof source
operandsof eachof theinstructionsin thebasicblock.

4. For eachsourceoperand,determineits dependency
distance.This is doneusing randomnumbergenera-
tion on the cumulative dependency distancedistribu-
tion.Thereforeaninstructionx is madedependentona
precedinginstructionx � δ with δ thedependency dis-
tance.Notethatwe do not generatedependenciesthat
areproducedby branchesor storessincethosetypes
of instructionsdonothavea destinationoperand.This
is achievedby trying a numberof timesuntil a depen-
dency is generatedthatis notsupposedlygeneratedby
a branchor a store.If after a maximum numberof
times (in our case1,000times) still no valid depen-
dency is created,thedependency is simplysquashed.

5. For eachloadin thesynthetictrace,determinewhether
this loadwill causea D-TLB hit/miss,anL1 D-cache
hit/missand in caseof an L1 D-cachemiss whether
this loadwill causeanL2 cachehit/miss.

6. For thebranchterminatingthebasicblock, determine
whetherthis is a takenbranchandwhetherthisbranch
is correctlypredicted,resultsin a fetch redirectionor
is abranchmisprediction.

7. For eachinstruction,determinewhetherthis instruc-
tion will causean I-TLB hit/miss, an L1 I-cache
hit/miss, and, in caseof an L1 cachemiss, whether
this instructionwill resultin anL2 cachemiss.

8. Output the syntheticallygeneratedinstructionsalong
with their characteristics.

9. If thecurrentnodein thereducedstatistical�o w graph
doesnot have outgoingedges,go to step1, otherwise
proceed.Generatea randomnumberin the interval
[0,1] and use this value to point a particularoutgo-
ing edge.This is doneusinga cumulative distribution
built up by the transitionprobabilitiesof theoutgoing
edges.Usethis outgoingedgeto point to a particular
node.Go to step2.

2.3. Synthetic trace simulation

Thetrace-drivensimulationof thesynthetictraceis very
similarto thetrace-drivensimulationof realprogramtraces.
In particular, for thispaper, thesynthetictracesimulatoris a
modi�ed versionof SimpleScalar's sim-outorder sim-
ulator in which a synthetictraceis fed into the simulator.
Thesynthetictracesimulatordoesnotneedto modelbranch
predictorsnor caches.However, specialactionsareneeded
duringsynthetictracesimulationfor thefollowing cases.

� When a branch is mispredicted in an execution-
driven simulator, instructionsfrom an incorrectpath
are fetched and executed.When the branch is ex-
ecuted, it is determinedwhether the branch was
mispredicted.In case of a misprediction, the in-
structionsdown the pipeline need to be squashed.
A similar scenario is implemented in the syn-
thetic trace simulator: when a mispredictedbranch
is fetched, the pipeline is �lled with instructions
from the synthetictraceas if they were from the in-
correct path; this is to model resourcecontention.
Whenthebranchgetsexecuted,thesyntheticinstruc-
tions down the pipeline are squashedand synthetic
instructionsare fetchedasif they were from the cor-
rectpath.

� For a load miss, the latency will be determinedby
whetherthis loadis anL1 D-cachehit, anL1 D-cache
miss,an L2 cachemiss,or a D-TLB miss.For exam-
ple, in caseof anL2 miss,theaccesslatency to main
memoryis assigned.

� In caseof anI-cachemiss,thefetchenginestopsfetch-
ing for a numberof cycles.The numberof cycles is
determinedby whethertheinstructioncausesanL1 I-
cachemiss,anL2 cachemissor a D-TLB miss.

The most important difference between the synthetic
trace simulator and the referenceexecution-driven sim-
ulator, other than the fact that the former operateson
synthetic traces, is that the synthetic trace simulator
does not take into accountinstructionsalong misspecu-
latedpathswhenaccessingthecaches.This canpotentially
have an impact on the performanceprediction accu-
racy [2].

3. Experimental setup

The SPEC CINT2000 benchmarks4 that are used in
the evaluation of this paper are listed in Table 1. We
have usedthe Alpha binariesfrom the SimpleScalarweb-
site.5 The secondcolumnshows the inputsthat wereused

4 http://www.spec.org
5 http://www.simplescalar.com



instructioncache 8KB, 2-way set-associative, 32-byteblock,1 cycle accesslatency
datacache 16KB, 4-way set-associative, 32-byteblock,2 cyclesaccesslatency
uni®edL2 cache 1MB, 4-way set-associative, 64-byteblock,20cyclesaccesslatency
I-TLB andD-TLB 32-entry8-way set-associative with 4KB pages
memory 150cycle roundtrip access
branchpredictor 8K-entryhybridpredictorselectingbetweenan8K-entrybimodalpredictoranda two-level (8K x 8K) local branch

predictorxor-ing thelocal historywith thebranch's PC,512-entry4-way set-associative BTB and64-entryRAS
speculative update at dispatchtime
branchmispredictionpenalty 14 cycles
IFQ 32-entryinstructionfetchqueue
RUU andLSQ 128entriesand32entries,respectively
processorwidth 8 issuewidth, 8 decodewidth (fetchspeed= 2), 8 commitwidth
functionalunits 8 integerALUs, 4 load/storeunits,2 fp adders,2 integerand2 fp mult/div units

Table 2. Baseline con�guration.

benchmark input simpoints(weight) IPC
bzip2 program 5 (20%),6 (32%),8 (48%) 1.83
crafty ref 8 (100%) 0.51
eon rushmeier 2 (100%) 0.81
gcc integrate 9 (18%),12 (4%),17 (22%),33

(9%),53 (5%),62 (18%),88
(14%),107(6%)

1.37

gzip graphic 4 (100%) 1.94
parser ref 5 (55%),13 (45%) 1.03
perlbmk makerand 2 (100%) 0.97
twolf ref 10 (100%) 0.64
vortex lendian2 58 (100%) 1.11
vpr route 72 (100%) 0.69

Table 1. The SPEC CINT2000 benc hmarks
used in this paper, their inputs, their sim ula-
tion points with their corresponding weights,
and the IPC for the baseline con�guration.

for each benchmark.All these inputs are referencein-
puts. The third column shows the simulationpoints pro-
vided by SimPoint [25] along with their weights.6 These
simulationpoints are representative samplesof 100M in-
structions.The main reasonwhy we usedthesesimula-
tion pointsinsteadof thecompletebenchmarkrunis to limit
thetotalsimulationtime.As will becomeclearin theevalu-
ationsection,a largenumberof simulationswererunusing
detailedexecution-driven simulationto validatethe accu-
racy of the proposedstatisticalsimulationapproach.Run-
ning larger samplesor completebenchmarkswould have
beentootime-consuming.Notethatthis is exactly theprob-
lem we are addressingthrough statistical simulation.
However, in section4.4 we will evaluatewhetherstatisti-
cal simulationis alsoaccuratefor larger samplesizes(1B
and10B instructionsamples).

The baselineprocessorcon�guration is detailedin Ta-
ble 2. We have used SimpleScalar/Alphav3.0 [1]. The
fourth columnin Table1 shows the baselineIPC over the

6 http://www.cs.ucsd.edu/∼calder/simpoint now pro-
videsnew simulationpoints.

SimPoint simulation points. For estimating the on-chip
power consumption per cycle, we have used Wattch
v1.02 [4] assuminga 0.18 µm-technologyand a 1.2GHz
clock frequency. We assumea baseactivity factor of 0.5
or randomswitching activity for single-endedarray bit-
lines. Further, the most aggressive clock gating mecha-
nism (cc3 ) is considered:a unit that is unusedconsumes
10%of its maxpowerandaunit thatis only usedfor a frac-
tion x only consumesa fractionx of its maxpower.

4. Evaluation

In the evaluationof this statisticalsimulationapproach
we considerthefollowing factors:(i) thesimulationspeed,
(ii) theorderk of thestatistical�o w graph,(iii) theuseful-
nessof delayedupdateduringbranchpro�ling, (iv) theab-
soluteaccuracy for modelingperformanceandpower con-
sumption,(v) a comparisonwith HLS [23], (vi) modeling
programphasesanda comparisonwith SimPoint[25], (vii)
the relative accuracy asa function of variousarchitectural
parameters,and(viii) theapplicabilityfor ef�ciently explor-
ing hugedesignspaces.

4.1. Simulation speed

Due to the statisticalnatureof this technique,perfor-
mancemetricsconvergeto `steady-state'values.To quan-
tify the simulationspeedof the statisticalsimulationap-
proachwe calculatethe coef�cient of variation (CoV) of
the IPC as a function of the numberof syntheticinstruc-
tions.TheCoV is de�ned asthestandarddeviation divided
by the meanof the IPC over a given numberof synthetic
traces,in our case20.Thevariationthat is observedis due
to the different randomseedsthat wereusedfor the vari-
oussynthetictraces.We clearly observe that the CoV de-
creasesfor longersynthetictracesandthatsmallCoVsare
obtainedfor small synthetictraces,e.g.,4% for 100K, 2%
for 200K,1.5%for 500K and1% for 1M syntheticinstruc-
tions.Fromthesedatawe canconcludethatstatisticalsim-
ulation is signi�cantly fasterthanexecution-drivensimula-
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tion. In our setup(with 100M-instructionreferencesam-
ples),we achieve a speedupof 100X to 1,000X. If larger
instructionstreamsareconsidered(in section4.4 we con-
sider10B instructions),evenhigherspeedupsareobtained:
10,000Xto 100,000X.

4.2. Absolute accuracy

This sectionevaluatesthe absoluteaccuracy of the sta-
tistical simulationapproachproposedin this paper. Theab-
solutepredictionerrorfor ametricM is de�ned as

AEM =
jMSS � ME D S j

ME D S

with MSS andME D S computedthroughstatisticalsimu-
lation (SS)andexecution-drivensimulation(EDS),respec-
tively. The metricscanbe IPC (instructionsretiredpercy-
cle) or EPC(energy consumptionper cycle). We will use
theabsoluteaccuracy to evaluatetheimportanceof usinga
statistical�o w graphin ourstatisticalpro�le. Subsequently,
we will evaluatetheimportanceof consideringdelayedup-
datesduring branchpro�ling. In the �nal subsection,we
will evaluatethe absoluteaccuracy of our methodin esti-
matingoverallpower/performancemetrics.

4.2.1. Evaluating the statistical flow graph. Recallfrom
section2 that the orderk of the SFGis yet to be de�ned.
Figure4 presentsIPC predictionerrorsfor variousvalues
of k underthe assumptionof perfectcaches(eachaccess
is a hit) andperfectbranchprediction(eachbranchis cor-
rectly predicted).Thesedatashow thatk = 0 canresultin
largeIPC predictionerrors(up to 35%); if k � 1, the IPC
predictionsaresigni�cantly moreaccurate(lessthan2%on
average).Sincek = 1 leadsto predictionsthatareasaccu-
rateask = 2 andk = 3, we will usek = 1 for theremain-
derof thispaper. Table3 presentsthetotalnumberof nodes
in theSFGasa functionof its orderk.

k = 0 k = 1 k = 2 k = 3

bzip2 675 945 1,314 1,799
crafty 1,534 2,579 3,983 5,732
eon 466 645 836 1,028
gcc 30,834 43,157 57,031 71,879
gzip 291 434 632 863
parser 2,483 3,711 5,266 7,140
perlbmk 473 549 623 693
twolf 414 594 809 1,082
vortex 4,221 5,209 6,193 7,161
vpr 149 184 220 261

Table 3. The number of nodes in the SFG.
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Figure 5. Evaluating the impor tance of mod-
eling delayed update during branc h pro�ling;
perf ect caches are assumed.

4.2.2. Evaluating branch profiling with delayed update.
In section2.1.3,we proposeda delayedupdatebranchpro-
�ling technique.Figure5 shows thatmodelingdelayedup-
dateduring branchpro�ling improves the IPC prediction
accuracy. The benchmarksthat bene�t most are eon and
perlbmk. Not surprisingly, thesebenchmarksshowed the
largestdiscrepanciesin the numberof branchmispredic-
tionsbetweenexecution-drivensimulationandbranchpro-
�ling with immediateupdate,asshown in Figure3. Branch
pro�ling with delayedupdatewill be usedfor the remain-
derof this paper.

4.2.3. Overall power/performance prediction er-
ror. The left graphof Figure6 presentsIPC numbersob-
tainedusingour enhancedstatisticalsimulationapproach.
For the baselinecon�guration, the averageIPC predic-
tion error is 6.6%; the maximum error is observed for
parser (14.2%).

Whenthe synthetictracesimulatoris extendedwith an
architecturalpowerestimationtool,powerconsumptioncan
be estimatedusingstatisticalsimulation[9, 24]. The right
graphof Figure6 showsthatstatisticalsimulationestimates
energy consumptionper cycle (EPC) accurately. The av-
erageerror is 4%; the largesterror is observed for bzip2
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Figure 6. Execution-driven sim ulation versus statistical sim ulation for estimating IPC (on the left)
and EPC (on the right).
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Figure 7. Comparing HLS to SMART-HLS, the
statistical sim ulation frame work presented in
this paper.

(9.5%).
We have also consideredthe energy-delay product

(EDP), which is an energy-ef�ciency metric that com-
binesenergy consumptionwith performance.EDP is de-
�ned asfollows[3]: EDP = EPC �CPI2 = EPC � 1

I P C 2 .
The averageEDP predictionerror usingstatisticalsimula-
tion is 11%; the largesterror is observed for parser and
twolf: 21% and18%, respectively. Not surprisingly, these
are the benchmarkswith the highest IPC prediction er-
rors,asshown in Figure6 on theleft.

4.3. Comparison with HLS

We now compareour statisticalsimulation framework
to HLS as proposedby Oskin et al. [23]. The HLS syn-
thetic tracesimulatormodelsan out-of-orderarchitecture
thatis a simpli�cation of SimpleScalar'smodel.HLS mod-
els theworkloadasa front-endgraphstructure,but the in-
structionsin thegrapharegeneratedrandomlyfrom anin-
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Figure 8. Evaluating the impact of modeling
program phases and comparison with Sim-
Point.

structionmix distribution without regardto the instruction
sequencesfound in particularbasicblocks.This is in con-
trastto the SFGproposedin the presentwork. The gener-
alizedHLS modelwascalibratedto matchSimpleScalar's
out-of-ordersimulatorfor oneparticularprocessorcon�gu-
ration, i.e., SimpleScalar's baselinecon�guration,asgiven
in [23]. To allow for a fair comparisonbetweenHLS and
the framework presentedin this paperwe have usedSim-
pleScalar's baselinecon�guration insteadof thecon�gura-
tion from Table2. Figure7 clearly shows that our frame-
work, calledSMART-HLS, is moreaccuratethanHLS with
anaverageerrorof 1.8%versus10.1%.

4.4. Modeling program phases

It is well known thata computerprogramgoesthrough
variousphasesof execution[25]. In this section,we evalu-
atewhethermeasuringseparatestatisticalpro�les andgen-



eratingseparatesynthetictracesfor eachof theseprogram
phasesyields moreaccurateperformancepredictions.For
theseexperiments,we consider10B instructionsfor each
benchmarkasour referencestreamsafterskippingthe�rst
1B instructions.7 We considerthefollowing scenarios:

� We applystatisticalsimulationover thecompleteref-
erencestream,i.e., we generateonestatisticalpro�le
andonesynthetictraceto characterizethe10Binstruc-
tions.

� Weapplystatisticalsimulationovereachsampleof 1B
instructions.So,in totalwehavetenstatisticalpro�les
andtensynthetictraces.Thesetensynthetictracesare
simulatedandtheperformancemetricsareaveraged.

� We run statisticalsimulationon one hundred100M-
instructionsamples.

� We usetheSimPointsoftware[25] to computerepre-
sentative10M-instructionintervalsfrom these10B in-
structionstreams.These10M-instructionsamplesare
thensimulatedthroughexecution-drivensimulation.

We draw a numberof interestingconclusionsfrom the
resultspresentedin Figure8. First,applyingstatisticalsim-
ulationto smallersamplesonly slightly improvesaccuracy,
e.g.,comparestatisticalsimulationoveronehundred100M-
instructionsamplesvs.statisticalsimulationoverone10B-
instructionsample.Second,SimPointis moreaccuratethan
statisticalsimulation.The averageerrorsfor SimPointand
statisticalsimulationare2% and7.2%,respectively. How-
ever, the numberof simulatedinstructionsfor SimPoint
is signi�cantly larger than for statisticalsimulation.Sim-
Pointsimulates20million (crafty) to 300million (gcc) in-
structionswhereasstatisticalsimulationonly requires1 mil-
lion instructionsat themost. In addition,SimPointemploys
execution-drivensimulationwhich is slower thansynthetic
tracesimulationsincethe latterdoesnot modelcachesnor
branchpredictors.In contrastto SimPointhowever, statis-
tical simulationneedsto computea new statisticalpro�le
whenthecacheor branchpredictoris changedduringa de-
sign spaceexploration.Nevertheless,statisticalsimulation
will bemuchfasterthanSimPoint.

4.5. Relative accuracy

In prior sections we only considered absolute
power/performance prediction accuracy, i.e., the er-
ror in one single designpoint. For a computerarchitect,
relative accuracy or the ability to accuratelypredicta per-
formance trend, is often more important. Indeed, the
sensitivity of power and performanceto a particular ar-
chitectural parametercan help the designeridentify the

7 perlbmk wasexcludedfrom theseexperimentsbecausewehadprob-
lemssimulatingit for sucha largeinstructioncount.

(near)optimal designpoint, e.g.,on the `knee' of the per-
formancecurve, or whereperformancebegins to saturate
as a function of a given architecturalparameter. To eval-
uate statistical simulation in this perspective we have
measuredthe relative accuracy asa function of � ve archi-
tecturalparameters:window size,processorwidth, instruc-
tion fetchqueuesize,branchpredictorsizeandcachesize.
The relative predictionerror for a metric M when mov-
ing from design point A to design point B is de�ned
as

REM =
jMB ;S S/MA;S S � MB ;E D S/MA;E D S j

MB ;E D S/MA;E D S
.

Table4 shows the relative predictionerrorsaveragedover
the variousbenchmarks.This tablenot only presentssen-
sitivity of IPC andEPCto a givenarchitecturalparameter,
but alsosensitivity of othermetrics,suchas the RUU oc-
cupancy, theLSQ occupancy, theIFQ occupancy, thefetch
unit's energy consumption,thedispatchunit's energy con-
sumption,etc.An accurateestimateof thosetrendsis par-
ticularly relevant for a designerwho wantsto ensurethat
thevariousparametersaretunedproperlyto optimizeper-
formance.Theresultsin Table4 show that theaveragerel-
ativepredictionerrorsaregenerallysmallerthan3%.

4.6. Design space exploration

Statisticalsimulationcanbe usedto ef�ciently explore
large design spaces.In spite of the absoluteerrors ob-
tainedwhenestimatingEDP(seesection4.2.3),a regionof
energy-ef�cient designscanbeidenti�ed throughstatistical
simulation.To demonstratethis we have setup thefollow-
ing experiment.We computedtheenergy-delayproductfor
a largedesignspaceusingstatisticalsimulationby varying
thesizeof theRUU (8,16,32,48,64,96,128), thesizeof the
LSQ8 (4,8,16,24,32,48,64), thedecodewidth (2,4,6,8),the
issuewidth (2,4,6,8)and the commit width (2,4,6,8).The
total numberof designpoints in this experimentis 1,792.
These1,792designpointsareall evaluatedthroughstatis-
tical simulationandthe designpoint with optimal EDP is
identi�ed. To verify thatstatisticalsimulationindeediden-
ti�es a region of optimaldesignpoints,we have computed
theEDPfor thedesignpointsthatwerein a3%rangeof the
optimaldesignpoint. For 7 out of the10 benchmarks,sta-
tistical simulationindeedidenti�ed theoptimaldesign.For
theremainingthreebenchmarks,statisticalsimulationiden-
ti�ed adesignthatis in averyshortrangeto theoptimalde-
sign:gzip (0.03%),eon (1.03%)andvpr (1.24%).

8 Welimit theLSQsizenot to belargerthantheRUU size.



Sensitivity to window size(theRUU sizeis variedfrom 8 to 128;theLSQsizeis half theRUU size)
8 → 16 16→ 32 32→ 48 48→ 64 64→ 96 96→ 128

IPC 1.0% 1.7% 1.2% 0.7% 0.6% 1.3%
RUU occupancy 0.4% 1.8% 2.3% 1.9% 3.6% 3.2%
LSQoccupancy 0.6% 1.9% 2.3% 2.0% 3.7% 2.9%
EPC 0.6% 1.0% 0.6% 0.6% 1.0% 0.7%
RUU power consumption 0.7% 1.3% 0.8% 0.8% 0.8% 0.9%
LSQpower consumption 0.4% 0.7% 0.4% 0.3% 0.6% 0.5%

Sensitivity to processorwidth
(decodewidth = issuewidth = commitwidth)

2 → 4 4 → 6 6→ 8
IPC 1.7% 1.2% 0.8%
executionbandwidth 1.5% 2.1% 1.6%
EPC 1.6% 1.1% 0.4%
fetchunit power consumption 0.8% 0.7% 0.4%
dispatchunit power consumption 1.1% 1.6% 1.1%
issueunit power consumption 1.6% 1.3% 0.5%

Sensitivity to theinstructionfetchqueue(IFQ) size
4 → 8 8 → 16 16→ 32

IPC 1.3% 0.8% 0.9%
EPC 0.9% 1.1% 0.5%
IFQ occupancy 3.2% 5.0% 6.4%

Sensitivity to thebranchpredictorsize
base÷ 4 → base÷ 2 base÷ 2 → base base→ base· 2 base· 2 → base· 4

IPC 0.5% 0.5% 0.7% 0.4%
EPC 0.5% 0.5% 0.5% 0.6%
RUU occupancy 0.8% 0.7% 0.7% 0.6%
RUU power consumption 0.4% 0.4% 0.6% 0.3%
LSQoccupancy 0.8% 0.5% 0.7% 0.4%
LSQpower consumption 0.2% 0.2% 0.3% 0.2%
IFQ occupancy 0.6% 0.6% 0.8% 0.6%
fetchunit powerconsumption 0.4% 0.3% 0.5% 0.5%
branchpredictorpower consumption 0.3% 1.4% 1.2% 0.2%

Sensitivity to thecachecon®gurationsize
base÷ 4 → base÷ 2 base÷ 2 → base base→ base· 2 base· 2 → base· 4

IPC 2.2% 1.4% 3.3% 2.6%
EPC 1.3% 1.3% 1.7% 4.0%
RUU occupancy 4.6% 1.6% 3.6% 2.0%
RUU power consumption 1.3% 1.0% 1.5% 1.1%
LSQoccupancy 3.9% 2.0% 3.2% 3.9%
LSQpower consumption 0.7% 0.6% 1.0% 0.7%
IFQ occupancy 5.6% 7.3% 8.9% 8.5%
fetchunit power consumption 1.0% 0.7% 0.9% 1.2%
I-cachepower consumption 1.5% 1.2% 2.1% 2.4%
D-cachepower consumption 6.8% 7.2% 9.3% 6.0%
L2 cachepower consumption 0.4% 0.2% 0.4% 0.3%

Table 4. Relative error of statistical sim ulation as a function of windo w size, processor width, instruc-
tion fetch queue size, branc h predictor size and cache size.

5. Relatedwork

Noonburg andShen[21] presenta framework thatmod-
els the executionof a programon a particulararchitecture
asa Markov chain,in which the statespaceis determined
by themicroarchitectureandin which thetransitionproba-
bilities aredeterminedby the programexecution.This ap-
proachwasevaluatedfor in-orderarchitectures.Extending
it for wide-resourceout-of-orderarchitectureswould result
in a far toocomplex Markov chain.

HsiehandPedram[13] presenta techniqueto estimate
performanceand power consumptionof a microarchitec-
tureby measuringacharacteristicpro�le of a programexe-
cution,synthesizinga fully functionalprogramfrom it, and
simulatingthis syntheticprogramon an execution-driven
simulator. The main disadvantageof their approachis the

fact thatno distinctionis madebetweenmicroarchitecture-
dependentand microarchitecture-independent characteris-
tics. All characteristicsare microarchitecture-dependent,
which makesthis techniqueunusablefor designspaceex-
plorations.

Iyengaret al. [15] presentSMART to generaterepre-
sentative synthetictracesbasedon the conceptof a fully
quali�ed basicblock. A fully quali�ed basicblock is a ba-
sic block togetherwith its context. The context of a ba-
sic block is determinedby its n precedingquali�ed basic
blocks—aquali�ed basicblock is a basicblock together
with the branchinghistory (of length k) of its preceding
branch.This work was later extendedin [14] to account
for cachebehavior. In this extendedwork the focus was
shifted from fully quali�ed basicblocks to fully quali�ed



instructions.The context of a fully quali�ed instructionis
thendeterminedby n singlyquali�ed instructions.A singly
quali�ed instructionis an instructionannotatedwith its in-
structiontype, its I-cachebehavior, and, if applicable,its
D-cachebehavior andits branchbehavior. Thereforea dis-
tinction is madebetweentwo fully quali�ed instructions
having thesameprecedinginstructions,exceptthat, in one
case,a precedinginstructionmissedin the cache,whereas
in the othercaseit did not. Obviously, collectingall these
fully quali�ed instructionsduringpro�ling resultsin ahuge
amountof datato be storedin memory. For somebench-
marks,theauthorsreportthattheamountof memorythatis
neededcanexceedthe availablememoryin a machine,so
thatsomeinformationneedsto bediscardedfrom thegraph.
Thestatisticalsimulationframework presentedin thispaper
sharestheconceptof usinga context by qualifying a basic
blockwith its precedingbasicblocks.However, thestatisti-
cal �o w graphthat is built for this purposeis bothsimpler
and smallerthan the fully quali�ed one usedin SMART.
In addition,we have found thatqualifying with onesingle
basicblock is suf�cient. Anotherinterestingdifferencebe-
tweenSMART andtheframeworkpresentedhereis thefact
thatSMART generatesmemoryaddressesduringsynthetic
tracegeneration.We simplyassignhits andmisses.

In recentyears,a numberof papers[5, 8, 9, 10, 22, 23,
24] have beenpublishedthatarebuilt around(slightly dif-
ferentformsof) thegeneralstatisticalsimulationframework
presentedin Figure1. We identify onemajordifferencebe-
tweentheseapproachesandthepresentwork relatedto the
degreeof correlationin thestatisticalpro�le. Thesimplest
wayto build astatisticalpro�le is to assumethatall charac-
teristicsareindependentfrom eachother[5, 8,9, 10], which
resultsin thesmalleststatisticalpro�le andthefastestcon-
vergencetime but potentially the largestpredictionerrors.
In HLS, Oskin et al. [23, 24] generateonehundredbasic
blocksof a sizedeterminedby a normaldistribution over
theaveragesizefound in the original workload.The basic
blockbranchpredictabilitiesarestatisticallygeneratedfrom
theoverall branchpredictabilityobtainedfrom theoriginal
workload.Instructionsareassignedto thebasicblocksran-
domly basedon theoverall instructionmix distribution, in
contrastto thebasicblock modelinggranularityof theSFG.
As in the presentwork, the HLS synthetictracegenerator
thenwalksthroughthegraphof instructions.Nussbaumand
Smith[22] proposeto correlatevariouscharacteristicssuch
astheinstructiontypes,thedependencies,thecachebehav-
ior andthe branchbehavior to the sizeof the basicblock.
Usingthesizeof thebasicblockto correlatestatisticsraises
thepossibilityof basicblock sizealiasing, in whichstatisti-
caldistributionsfrom basicblockswith verydifferentchar-
acteristicsarecombinedandreducesimulationaccuracy. In
a SFG,all characteristicsarecorrelatedto the basicblock
itself, not just its size.Moreover, we correlatebasicblocks

on previously executedbasicblocksby usinghigherorder
(k � 1) SFGs,i.e., basicblockswith a differenthistoryof
executedbasicblocksarecharacterizedseparately.

Intuitively, the framework presentedin this papercom-
binesSMART with previously proposedstatisticalsimula-
tion approachesto combinethe bene�ts and to eliminate
thedrawbacksof bothtechniques.Themajorbene�t gained
from SMART is the accuratemodelingof instructionse-
quencesandtheir dependencies;this is achievedby consid-
eringbasicblocksalongwith their context, i.e.,we statisti-
cally modelat thegranularityof thebasicblock.Thedraw-
back that is eliminatedfrom SMART is the explosion of
state(andthusmemory)that is neededto keeptrackof all
the quali�ed instructions.The major bene�t that is gained
from statisticalsimulationis its simplicity. Themajordraw-
backthat is eliminatedfrom previously proposedstatistical
simulationapproachesis their inability to accuratelymodel
instructionsequencesandtheir dependencies.

6. Conclusion

Architecturalsimulationsareextremelytime-consuming
and often impact the time-to-market of newly designed
microprocessors.One possibleapproachto this problem
is to use statistical simulation as an accurateand ef�-
cient complementto detailed simulation. The statistical
simulationapproachpresentedin this paperhas two ma-
jor contributions.First, theuseof thestatistical�o w graph
(SFG) for statisticalsimulation combinesthe bene�ts of
thepreviouslyproposedgraphrepresentationin SMART—
accuracy—with featuresfrom previously proposedstatis-
tical simulationframeworks—simplicityandrapidconver-
gence.Second,wehaveshown thatit is importantto model
delayedupdateof branchpredictorsduring statisticalpro-
�ling. This improvedstatisticalsimulationframework was
extensively evaluated.First,weshow thatstatisticalsimula-
tion is indeeda fastsimulationtechnique,i.e., thesynthetic
tracescan be very short (100K to 1M instructions).Sec-
ond,our measurementsshow that theperformanceanden-
ergy consumptionof an8-issueout-of-ordersuperscalarar-
chitecturefor SPECint2000benchmarkscan be predicted
with an averageerror of only 6.6% and4%, respectively.
Third, we show thatour approachis signi�cantly moreac-
curatethan the previously proposedHLS statisticalsimu-
lation framework. A comparisonwith the SimPointsam-
pling techniqueshows thatSimPointis moreaccurate,but
that statisticalsimulationis faster. We alsoshow that rela-
tive accuracy, theability to predictperformancetrends,us-
ing statisticalsimulationis very high; the relative error is
generallybelow 3%. And �nally , we show that statistical
simulationcanbeusedto identify energy-ef�cient microar-
chitecturesin a largedesignspace.
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