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Abstract

The Java Virtual Machine (JVM) is the corner stone
of Java technology, and its efficiency in erecuting the
portable Java bytecodes is crucial for the success of this
technology. Interpretation, Just-In-Time (JIT) compi-
lation, and hardware realization are well known solu-
tions for a JVM, and previous research has proposed
optimizations for each of these techniques. However,
each technigue has its pros and cons and may not be
uniformly attractive for all hardware platforms. In-
stead, an understanding of the architectural implica-
tions of JVM implementations with real applications,
can be crucial to the development of enabling technolo-
gtes for efficient Java runtime system development on
a wide range of platforms (from resource-rich servers
to resource-constrained hand-held/embedded systems).
Towards this goal, this paper examines architectural is-
sues, from both the hardware and JVM implementation
perspectives. It specifically explores the potential of a
smart JIT compiler strategy that can dynamically inter-
pret or compile based on associated costs, investigates
the CPU and cache architectural support that would ben-
efit JVM implementations, and examines the synchro-
nization support for enhancing performance, using ap-
plications from the SpecJVM98 benchmarks.

1 Introduction

The Java Virtual Machine (JVM) [1] is the corner
stone of Java technology epitomizing the “write-once
run-anywhere” promise. It is expected that this en-
abling technology will make it a lot easier to develop
portable software and standardized interfaces that span
a spectrum of hardware platforms. The envisioned
underlying platforms for this technology include pow-
erful (resource-rich) servers, network-based and per-
sonal computers, together with resource-constrained
environments such as hand-held devices, specialized
hardware/embedded systems, and even household ap-
pliances. If this technology is to succeed, it is important
that the JVM provides an efficient execution/runtime
environment across these diverse hardware platforms.
This paper examines different architectural issues, from
both the hardware and JVM implementation perspec-
tives, towards this goal.

Java programs are translated into a machine-
independent JVM format (called bytecodes), to insu-
late them from the underlying machine architecture on
which they would eventually execute. It has been sug-
gested [2] that these bytecodes be compiled (offline) be-
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fore they are executed, similar to traditional C/C++
programs. While there are interesting research issues
with this approach, this paper focuses on three other
techniques, since offline compilation may not always be
possible for Java programs because of dynamic class
loading. The architectural impact of (offline) compiled
Java applications was studied, and compared to inter-
preted and C/C++ versions of the same applications
in an earlier study[3]. The first, and perhaps the most
commonly used, of these techniques is to interpret the
bytecodes [4]. The second technique is to dynamically
translate/compile the bytecodes into native code at run-
time, following which the native code can be executed
directly [5, 6, 7]. Such a translator is commonly re-
ferred to as a Just-In-Time (JIT) compiler {5]. Finally,
and more recently, there has been growing interest to
develop hardware runtime support, such as Java pro-
cessors [8, 9], to execute the bytecodes.

There are pros and cons to each of the above tech-
niques. Specialized hardware support, such as Java
processors, though efficient, may not be sufficiently
general-purpose. It would be difficult to justify the
presence of such support on general-purpose servers.
JIT compilers have the potential of significantly low-
ering the execution times compared to interpreters.
However, they may require significantly more resources
than interpreters, making them unsuitable for resource-
constrained environments such as hand-held devices
and embedded systems. They may require several kilo-
bytes of ROM and many more megabytes of RAM (8]
than interpreters.

Many previous studies [5, 7, 10, 11, 12] have fo-
cussed on enhancing each of the bytecode execution
techniques. While the results from these studies are
suggestive and useful, it is our belief that no one tech-
nique will be universally preferred/accepted over all
platforms in the immediate future. On the other hand,
a three-pronged attack at optimizing the runtime sys-
tem of all techniques would be even more valuable.
Many of the proposals for improvements with one tech-
nique may be applicable to the others as well. For in-
stance, an improvement in the synchronization mecha-
nism could be useful for an interpreted or JIT mode of
execution. Proposals to improve the locality behavior
of Java execution could be useful in the design of Java
processors as well as in the run-time environment on
general purpose processors. Finally, this three-pronged
strategy can also help us design environments that effi-



ciently and seamlessly combine the different techniques
wherever possible.

A first step towards this three-pronged approach is to
gain an understanding of the execution characteristics
of different Java run-time systems for real applications.
Such a study can help us evaluate the pros and cons
of the different run-time systems (helping us selectively
use what works best in a given environment), isolate
architectural and run-time bottlenecks in the execution
to identify the scope for potential improvement, and
derive design enhancements that can improve perfor-
mance in a given setting. This study embarks on this
ambitious goal, specifically trying to answer the follow-
ing questions:

e Where does the time go in a JIT-based execution
(i.e. in translation to native code, or in executing the
translated code)? How much better does dynamic com-
pilation (JIT) fare compared to interpreting the byte-
codes? Can we use a hybrid JIT-interpreter technique
that can do even better? If so, what is the best we can
hope to save from such a hybrid technique?

e What are the mixes of the native instructions that
are executed on a general-purpose CPU (such as the
SPARC) when executing Java programs (using an inter-
preter or JIT compiler)? Are these different from those
for traditional C/C++ programs? Based on these,
can we suggest instructions that should be optimized
and functional units that should be provided for imple-
menting an efficient Java runtime system on a general-
purpose CPU?

¢ How do Java executions in JIT and interpreter
modes fare with different branch predictors? What
is the instruction-level parallelism exhibited by these
modes? Based on these, can we suggest architectural
support in the CPU (either general-purpose or a special-
ized Java processor) that can enhance Java executions?

e How does the locality behavior for the JIT and in-
terpreter modes of Java executions compare, and how
do they differ from that for traditional C/C++ pro-
grams? What cache parameters are suitable for these
executions? Does the working set of the translation
part of the JIT mode interfere with that for the actual
execution?

e How important is synchronization in the Java run-
time system? How do we use the synchronization be-
havior of Java programs to optimize the implementation
of the synchronization mechanism?

Complete answers to all the above questions is overly
ambitious, and beyond the scope of this paper. How-
ever, any advance in this direction would be enlight-
ening. To our knowledge, there has been no prior ef-
fort that has extensively studied all these issues in a
unified framework for Java programs. This paper sets
out to answer some of the above questions using appli-
cations drawn from the SpecJVM98 [13] benchmarks,
available JVM implementations such as JDK 1.1.6 [4]
and Kaffe VM 0.9.2 [14] (that have both interpretation
and JIT capabilities), and simulation/profiling tools on
the Shade [15] environment. All the experiments have
been conducted on Sun UltraSPARC machines running
SunOS 5.6.
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The rest of this paper is organized as follows. The
next section gives details on the experimental platform.
Section 3 examines the relative performance of JIT and
interpreter modes, and explores the benefits of a hybrid
strategy. Section 4 investigates some of the questions
raised earlier with respect to the CPU and cache archi-
tectures, and the synchronization support is presented
in Section 5. Section 6 collates the implications and
inferences that can be drawn from this study. Finally,
section 7 summarizes the contributions of this work and
outlines directions for future research.

2 Experimental platform

We use the SpecJVM98 benchmark suite to study the
architectural implications of a Java runtime environ-
ment. The SpecJVM98 benchmark suite consists of 7
Java programs (compress, jess, db, javac, mpegaudio,
mtrt and jack), which represent different classes of Java
applications. The benchmark programs can be run us-
ing three different inputs, which are named as s100, s10
and s1. These problem sizes do not scale linearly, as the
naming suggests. We use the sl input set for this study
since it became evident during the course of the study
that when using s100 input set to run the SpecJVM98,
the programs run for so long that almost any amount
of compilation effort will be amortized. We have also
investigated the effect of larger datasets, s10 and s100.
The increased method reuse resulted in expected results
such as increased code locality, reduced time spent in
compilation vs execution, etc, but all major conclusions
from the experiments stay valid. The benchmarks were
run at the command line prompt, and does not include
graphics, AWT or networking. All benchmarks except
mtrt are single-threaded.

Two popular JVM implementations were used in this
study: the Sun JDK 1.1.6 [4] and Kaffe VM 0.9.2 {14].
Both these JVM implementations support the JIT and
interpreted mode. Since the source code for the Kaffe
VM compiler was available, we could instrument it to
obtain the behavior of the translation routines in de-
tail. The results using KaffeVM are presented for the
translate routines. The results using Sun’s JDK are
presented for the other sections and only differences,
if any, from the KaffeVM environment are mentioned.
The use of two runtime implementations also gives us
more confidence in our results, filtering out any noise
due to the implementation details.

To capture architectural interactions, we have ob-
tained traces using the Shade binary instrumentation
tool [15] while running the benchmarks under differ-
ent execution modes. Our cache simulations use the
cachesim5 simulators available in the Shade suite, while
branch predictors have been developed in-house. The
instruction level parallelism studies are performed uti-
lizing a cycle-accurate superscalar processor simulator.
This simulator, can be configured to a variety of out-
of-order multiple issue configurations with desired cache
and branch predictors.

3 When or whether to translate

Dynamic compilation has been popularly used [5, 16]
to speed up Java executions. This approach avoids the



costly interpretation of JVM bytecodes, while sidestep-
ping the issue of having to pre-compile all the routines
that could ever be referenced (from both the feasibility
and performance angles). Dynamic compilation tech-
niques, however, pay the penalty of having the compi-
lation/translation to native code falling in the critical
path of program execution. Since this cost is expected
to be high, it needs to be amortized over multiple execu-
tions of the translated code. Or else, performance can
become worse than when the code is just interpreted.
Knowing when to dynamically compile a method (JIT),
or whether to compile at all, is extremely important
for good performance. To our knowledge, there has
not been any previous study that has examined this is-
sue in depth in the context of Java programs, though
there have been previous studies [10, 17, 7, 6] exam-
ining efficiency of the translation procedure and the
translated code. Most of the currently available ex-
ecution environments, such as JDK 1.2 [4] and Kaffe
[14] employ limited heuristics to decide on when (or
whether) to JIT. They typically translate a method on
its first invocation, regardless of how long it takes to
interpret/translate/execute the method and how many
times the method is invoked. It is not clear if one could
do better (with a smarter heuristic) than what many of
these environments provide. We investigate these issues
in this section using five SpecJVM98 [13] benchmarks
(together with a simple HelloWorld program!) on the
Kaffe environment.

Normalized Execution Time.

ab lavaa lame tack aempeaas

Figure 1: Dynamic Compilation: How well can we do?
The first bar for each benchmark is execution time with default JIT
mode in Kaffe; second bar is execution time with a smart JIT that
uses perfect heuristics

Figure 1 shows the results for the different bench-
marks. All execution times are normalized with respect
to the execution time taken by the JIT mode on Kaffe.
~ The first bar, which corresponds to execution time us-
ing the default JIT, is further broken down into two
components, the total time taken to translate/compile
the invoked methods and the time taken to execute
these translated (native code) methods. The consid-
ered workloads span the spectrum, from those in which
the translation times dominate such as hello and db (be-
cause most of the methods are neither time consuming

!While we do not make any major conclusions based on this sim-
ple program, it serves to observe the behavior of the JVM imple-
mentation while loading and resolving system classes during system
initialization.
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nor invoked numerous times), to those in which the na-
tive code execution dominates such as compress and
Jjack (where the cost of translation is amortized over
numerous invocations). On top of the JIT execution
bar is given the ratio of the time taken by this mode to
the time taken for interpreting the program using Kaffe
VM. As expected, we find that translating (JIT-ing) the
invoked methods significantly outperforms interpreting
the JVM bytecodes.

The JIT mode in Kaffe compiles a method to native
code on its first invocation. We next investigate how
well the smartest heuristic can do, so that we compile
only those methods that are time consuming (the trans-
lation/compilation cost is outweighed by the execution
time) and interpret the remaining methods. This can
tell us whether we should strive to develop a more intel-
ligent heuristic at all, and if so, what is the performance
benefit that we can expect. Let us say that a method ¢
takes I; time to interpret, T; time to translate, and E;
time to execute the translated code. Then, there exists
a crossover point N; = T;/(I; — E;), where it would be
better to translate the method if the number of times a
method is invoked n; > N;, and interpret it otherwise.
We assume that an oracle supplies n; (the number of
times a method is invoked) and N; (the ideal cut-off
threshold for a method). If n; < N;, we interpret all in-
vocations of the method, and otherwise translate it on
the very first invocation. The second bar for each appli-
cation shows the performance with this oracle in Figure
1, which we shall call opt. It can be observed that there
is very little difference between the naive heuristic used
by Kaffe and opt for compress and jack since most of the
time is spent in the execution of the actual code any-
way (very little time in translation or interpretation).
As the translation component gets larger (applications
like db, javac or hello), the opt model suggests that
some of the less time-consuming (or less frequently in-
voked) methods be interpreted to lower the execution
time. This results in a 10-15% savings in execution time
for these applications. It is to be noted that the exact
savings would definitely depend on the efficiency of the
translation routines, the translated code execution and
interpretation.

The opt results give useful insights. Figure 1 shows
that by improving the heuristic that is employed to de-
cide on when/whether to JIT, one can at best hope to
trim 10-15% in the execution time. On the other hand,
we find that a substantial amount of the execution time
is spent in translation and/or executing the translated
code, and there could be better rewards from optimiz-
ing these components. This serves as a motivation for
the rest of this paper which examines how these com-
ponents exercise the hardware features (the CPU and
cache in particular) of the underlying machine, towards
proposing architectural support for enhancing their per-
formance.

While it is evident from the above discussion that
most methods benefit from JIT compilation, resource
constraints may force us to choose an interpreted JVM.
Large memory space required by JIT compilers has
been considered to be one of the issues limiting their
usage in resource-constrained environments. For the



db_| compress | mpeg | mtrt [ jack )

[ benchmark | jess |
103 | 163 | 302 | 26.6 |

| T increase | 335 | 25.7 |

Table 1: Increase in memory usage of JIT compiler com-
pared to interpreter

SpecJVMI8 benchmarks, we observe from Table 1 that
the memory size required by the JIT compiler is 10-
33% higher than that required for the interpreter. It is
to be noted that there is a more pronounced increase
for applications with smaller dynamic memory usage
[18], such as db. The memory overhead of JIT can thus
be more significant in smaller (embedded) applications.
Due to the different constraints imposed on JVM imple-
mentations, it is rather difficult to preclude one imple-
mentation style over the other. As a result, we include
both interpreters and JIT compilers in our architectural
studies, in the rest of this paper.

4

Understanding the underlying characteristics of Java
applications in their various modes of execution, and
in comparison to code in other languages/paradigms is
extremely important to develop an efficient run-time
environment for Java. In order to answer some of the
questions raised earlier in Section 1 we have conducted
detailed studies on the instruction mix of SpecJVM98
programs in interpreter and JIT-compiled modes of ex-
ecution. We also study the cache performance, branch
predictor performance, and the instruction level paral-
lelism of these programs.

Architectural issues

4.1 Instruction mix

Instruction Mix Bintr

o it

% of total instructions

Branches

Jumpe Cann |

Figure 2: Instruction Mix

Figure 2 shows a summary of the results on the in-
struction mix, computed cumulatively over all the
SpecJVM98 programs. The individual application
mixes exhibit a similar trend, and the results are in-
cluded in [19]. Execution in the Java paradigm, either
using the interpreter or JIT compiler, results in 15%
to 20% control transfer instructions and 25% to 40%
memory access instructions, a behavior not significantly
different from traditional C and C++ programs [20].
Although memory accesses are observed to be frequent
in the instruction stream in both modes, it is 5% more
frequent in the interpreted mode in comparison to the
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JIT compiler. In interpreted mode, a large percentage
of operations involve accessing the stack, which trans-
late to loads and stores in the native code. Contrary to
this, in the JIT compiler mode, many of these stack op-
erations are optimized to register operations, resulting
in a reduction in the frequency of memory operations
in the instruction mix. While this is to be expected,
our experiments quantify the percentage reduction.

Past studies have shown that Java applications (and
object oriented programs in general) contain indirect
branches with a higher frequency than SPECint pro-
grams {21, 22]. We provide information on indirect
branch frequency in interpreted and JIT execution
modes. Comparing the two execution modes, the in-
terpreter mode has higher percentage of indirect jumps
(primarily due to register indirect jumps used to imple-
ment the switch statement in the interpreter, and due
to high frequency of virtual function calls), while the
code in the JIT compiler case has higher percentage of
branches and calls. JIT compilers optimize virtual func-
tion calls by inlining those calls, thereby lowering the
number of indirect jump instructions. A combination
of a lower number of switch statements that are exe-
cuted and inlining of the method calls, results in more
predictable behavior of branches in the JIT mode, as
illustrated in the next section.

4.2 Branch prediction

Benchmark 2-BIT BHT Gshare GAp
comp(intr) | 60.23 | 34.69 34.90 | 35.41
(it) | 28.31 9.26 8.97 | 8.93
jess(intr) 46.39 | 19.13 19.37 | 18.66
Git) | 38.16 | 13.05 12.74 | 12.88
db(intr) 43.97 17.12 16.82 16.69
(Git) | 39.64 | 12.82 12.70 | 12.81
Javac(intr) 44.74 18.04 17.90 | 17.39
(jit) 39.06 12.92 12.18 12.47
mpeg(intr) 52.54 | 31.61 33.29 [ 31.59
(jit) 37.47 12.24 11.88 12.16
mtrt(intr) | 48.78 | 14.54 1317 | 13.42
(jit) 41.43 11.62 9.20 10.44
jack(intr 56.26 28.31 28.78 27.92
(113 35.68 12.78 12.26 12.65

Table 2: Branch misprediction rates for four predictors

The predictability of branches in Java applications
along with the suitability of traditional branch predic-
tors, is examined in this section. Indirect jumps and
virtual function calls that are abundant in Java appli-
cations, especially in the interpreted mode of execu-
tion, can complicate the task of predicting the outcome
of these control instructions. Table 2 illustrates the
branch misprediction rates for four different branch pre-
diction schemes including a simple 2-bit predictor [23], 1
level Branch History table (BHT) [23], Gshare [24] and
a two-level predictor indexed by PC (described as GAp
by Yeh and Patt {25]. The first level predictor has 2K
entries and the second level predictor (where applica-
ble) has 256 entries. The Branch Target Buffer (BTB)
contains 1K entries. The Gshare predictor uses 5 bits of
global history. The branch predictors get sophisticated
as we go from left to right in Table 2. The simple 2-bit



predictor has been included only for validation and con-
sistency checking. As expected from trends in previous
research, among the predictors studied, Gshare or GAp
has the best performance for the different programs.
The major trend observed from our experiments is that
the branch prediction accuracy in interpreter mode is
significantly worse than that for the JIT compiler mode.
This is a direct implication of the control transfer in-
struction mix in the interpreter and JIT compile modes.
The interpreter mode results in a high frequency of in-
direct control transfers due to indirect jumps used to
implement virtual method calls and the switch state-
ment for case by case interpretation. The accuracy of
prediction for the Gshare scheme is only 65 to 87% in
interpreter mode and 88 to 92% in the JIT compiler
mode. Thus, it may be concluded that branch pre-
dictor performance for Java applications is significantly
deteriorated by the indirect branches abundant in the
interpreter mode, whereas execution with the JIT com-
piler results in performance comparable to that of tra-
ditional programs. To summarize, if Java applications
are run using the JIT compiler, the default branch pre-
dictor would deliver reasonable performance, whereas if
the interpreter mode is used, a predictor well-tailored
for indirect branches (such as [22], [26]) should be used.

4.3 Locality and cache performance

In addition to examining the locality/cache behavior
of Java executions in the following discussion, we also
examine how the coexistence of the JVM and the ap-
plication being executed affects the locality behavior of
the entire execution. We perform a detailed study of
the cache behavior, looking at the entire execution in
totality, as well as the translation and execution parts
(of the JIT mode) in isolation.

Table 3 illustrates the number of references and
misses for the L1 instruction and data cache in the in-
terpreter and JIT compiled modes. Both instruction
and data caches are of 64K bytes size and have a block
size of 32 bytes. The instruction cache is 2-way set as-
sociative and the data cache is 4-way set associative.
(These parameters were chosen to keep the caches sim-
ilar to those on state-of-the-art microprocessors.) In-
struction cache performance in interpreted mode is ex-
tremely good with hit-rates higher than 99.9% in all
benchmarks. The interpreter is a switch statement with
approximately 220 cases for decoding each bytecode.
The excellent instruction locality in interpreted mode
stems from the fact that the entire switch statement or
at least the most frequently used parts of it nicely fit
into state-of-the-art cache sizes. Locality studies of Java,
bytecodes [27] illustrates that less than 20% of distinct
bytecodes account for 90% of the dynamic bytecode
stream in all the programs. In fact, the aforementioned
study showed that 15 unique bytecodes accounted for
60% to 85% of the dynamic bytecode stream of the
SpecJVMI8 programs, and 22 to 48 distinct bytecodes
constituted 90% of the bytecode stream. These factors
result in a small working set for the interpreter.

The instruction cache performance in JIT compiler
mode is inferior to instruction cache performance in in-
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I-Cache D-Cache

L Benchmark efs 155€S els isses

compress(intr) 10425M 84398 5365M 21M

Git) || 1385M | 218101 751M 43M

Jess(intr) 259M | 179545 3IM 7.3M

(jit) 188M | 616962 45M 3.7M

db(intr) 86M | 82873 24M | 751502

(jit) 75M | 232046 17M 1.2M
Javac(intr) 199M | 140239 59M 1.8M

(jit) 167M | 469143 40M 3.3M

mpeg(intr) 1314M | 92439 544M 1.5M

(it 264M | 355896 101M 3.2M

mtrt{intr) 1531M 252370 521M 8.6M

(jit) 942M | 522692 || 230M 16M
“jack{(intr) 2668M | 124563 || 1033M 1IM
(jit) 986M | 1.0M || 298M 15M |

Table 3: Cache Performance for the SpecJVM98

This table shows the number of references and misses for the instruc-
tion and data cache. Cache size= 64K bytes, block size= 32 bytes,
I-cache is 2-way and D-cache is 4-way set-associative. M - indicates
million.

terpreter mode. Dynamically compiled code for consec-
utively called methods may not be located in contiguous
locations. Rather than bytecode locality, it is method
locality, method footprint, and working set properties
of the JIT compiler code that determine the instruction
cache performance for the execution of code generated
in the JIT mode. Compilers typically result in poor
cache performance (as exemplified by gec in the SPEC
suite [20]) and compilation process is a major compo-
nent of the JIT mode. For applications like db, jess and
javac which spend a significant amount of time in the
translation part (Figure 1), the I-cache misses are more
dominant.

The data cache performance of Java applications is
worse than its instruction cache performance, as is the
case for normal C/C++ programs. However, data lo-
cality in the interpreted mode is better than the local-
ity in the case of the JIT compiler. In the interpreter
mode, each time a method is executed, the bytecodes
are accessed from the data cache and decoded by the in-
terpreter. The intended code is thus treated as data by
the interpreter, in addition to the actual data accessed
by the application, resulting in a lower miss rate overall
(code usually has better locality than data). The bench-
mark data and benchmark bytecodes will be allocated
and accessed from the data cache. Two benchmarks,
compress and mpeg, exhibit significant method reuse
and yield excellent data cache hit ratios in the inter-
preter mode, because the footprint can be entirely cap-
tured in the cache. In contrast, the JIT compiler trans-
lates the bytecodes fetched from the data cache into
native code before the first execution of the method.
Therefore the subsequent invocations of the method do
not access the data cache (they access the I-cache) for
bytecodes. This results in a drastic reduction of to-
tal data cache references from interpreter mode to JIT
mode as illustrated in Table 3. The number of data ref-
erences in the JIT compiler case is only 20% to 80% of
the reference count in the interpreter case. Of the total
data cache misses in the JIT mode, 50 to 90% of misses



at 64K cache size are write misses (see Figure 3).

Write Missea
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% data misses which are writes
& 3 8 8

Figure 3: Percentage of Data Misses that are Writes.
Cache used is direct mapped with line size of 32 bytes

Figure 4 illustrates the average cache miss rates of
SpecJVM9I8 workloads in comparison to the SPECint
programs and several C++ programs. For both instruc-
tion and data caches, the interpreter mode exhibits bet-
ter hit rates than C, C++ and the JIT mode of exe-
cution. The behavior during execution with the JIT
compiler is closer to that of traditional C and C++
programs for the instruction cache. In the case of data
cache, the miss rates for the JIT mode of execution
are highest among the different workloads. It may be
inferred that the behavior of Java applications are pre-
dominantly dependent on the execution mode rather
than the object-oriented nature of the language i.e. the
results depend more on whether they are run in inter-
preter or JIT mode rather than on the fact that they
are object-oriented.

One noticeable fact in Table 3 is that the absolute
number of misses (instruction and data) in the JIT com-
piler mode is higher than the number of misses in the
interpreter mode, despite the reduction in total instruc-
tion count and data cache reference count. There are
two factors that can be attributed to this - code gen-
eration and installation of translated code performed
by the JIT compiler. Both these operations can result
in a significant number of misses, which we show by
studying the behavior of these references in isolation.

We have further isolated the cache behavior during
the translation part and the rest of the JIT execution.
The cache behavior of the translate portion is illus-
trated in Figure 5. The translation related instruction
cache misses contribute to around 30% (except jack and
mitrt) of all the instruction cache misses. Also, it was
found that the instruction cache locality is better within
the translate routines (miss rate of 1.1% for db) than
the rest of the JIT (miss rate of 1.5% for db). This is
due to the high code reuse exhibited by the code gen-
eration routines within translate. The same methods
are invoked for translating specific bytecodes that oc-
cur many times. On the other hand, the data cache
misses of the translate routines do not exhibit any gen-
eral trends, and are dependent on the application. For
mpeg, compress and db benchmarks, the data cache ex-
hibits a better locality in the code outside the translate
routine. While compress benefits from high spatial lo-
cality operating on sequential elements of large files,
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db benefits from reuse of a small database to perform
repeated data base operations. For javac, it was found
that the code within and outside translate exhibit a sim-
ilar cache behavior (miss rates of 5.5 and 5.3% inside
and outside translate). This can be ascribed to javac
being a complier and the executed code performing the
same type of operations as the translate routine.

The data cache misses in the translate portion of
the code contribute to 40-80% of all data misses for
many of the benchmarks. Among these, the data write
misses dominate within the translate portion and con-
tribute to 60% of misses during translate (see the third
bar for each benchmark in Figure 5). Most of these
write misses were observed to occur during the genera-
tion and installation of the code. Since, the generated
code for the method is written to memory for the first
time, it results in compulsory misses in the D-Cache.
One may expect similar compulsory misses when the
bytecodes are read during translation. However, they
are relatively less frequent than the write misses since
25 native (SPARC) instructions are generated per byte-
code on an average [27]. An optimization to lower the
penalty of write misses during code generation and in-
stallation is discussed later in Section 6.

We also studied the variation in the cache locality
behavior during the course of execution for different
benchmarks in the interpreter and JIT compiler modes.
The results for db can be observed in Figure 6. The miss
rates in the interpreter mode show initial spikes due to
the class loading at the start of the actual execution.
However, there is a fairly consistent locality for the rest
of the code. In contrast, there are a significantly larger
number of spikes in the number of misses during ex-
ecution in the JIT mode. This can be attributed to
the compilation part of the JIT compiler which results
in significant number of write misses. A clustering of
these spikes can be observed in the JIT mode in Fig-
ure 6. This is due to a group of methods that get trans-
lated in rapid succession. Also, we observed that for the
mpeg benchmark the clustered spikes in the JIT mode
are restricted to the initial phase of algorithm as there
is significant reuse of the same methods.

4 g
1 2 3 . s 3
compress ES javac mek it mpeg

Normakzed Nmber of Misses.
e o o
o o

Figure 5: Cache Misses within Translate Portion. Cache
configuration used : 4-way set associative, 64K DCache with a line
size of 32 bytes and 2-way set associative, 64K ICache with a line size
of 32 bytes.
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Figure 6: Miss rate variation in D-Cache for db during code execution in (i) Interpreter Mode and (ii) JIT Compiler
Mode. Cache configuration used : 4-way set associative, 64K Cache with a line size of 32 bytes.

4.3.1 Other observations from cache studies

The cache performance of SpecJVM98 applications
were studied over a wide range of cache sizes, block sizes
and associativity. Figure 7 illustrates that increasing
associativity produces the expected effect of reducing
misses, and the most pronounced reduction is when as-
sociativity is increased from 1 to 2. Increasing the line
size also produces the usual effect of reducing cache
misses in instruction caches, however, data caches dis-
play a different behavior (illustrated in Figure 8). For
interpreted code, in 6 out of the 7 benchmarks, a small
data cache block size of 16 bytes is seen to have the
least miss rate for the data cache. On the other hand,
for execution with the JIT compiler, a block size of 32
or 64 bytes is better than 16 bytes in a majority of the
cases. The increase in data cache miss rates when the
line size is increased can be explained using method lo-
cality and bytecode size information. Prior research on
method locality and size distribution [27] showed that
45% of all dynamically invoked methods were either 1
or 9 bytecodes long. Since average bytecode size has
been shown to be 1.8 bytes [12], 45% of all methods
can be expected to be less than 16 bytes long. There-
fore, unless methods invoked in succession are located
contiguously, increasing line sizes beyond 16 bytes (or
32 at the most) cannot capture further useful future
references, explaining the data cache behavior of the
interpreted code. The data cache in the JIT compiler
mode is affected by the size of the objects accessed by
the applications. While mean object sizes of individual
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objects range from 16 to 23 bytes for the SpecJVM98
benchmarks, the commonly used character arrays range
between 26 and 42 bytes [18]. Thus, line sizes of either
32 or 64 bytes provide the best locality for most of the
benchmarks.

Layout of translated code installed by the JIT com-
piler can have a large impact on miss behavior. We
are not aware of the details on the techniques used by
Kaffe or JDK to optimize code layout. Dynamically
generated code layout can thus be an interesting area
for further research.

4.4 1ILP Issues
Instruction level parallelism support is becoming in-
creasingly predominant in current microprocessors. An
investigation of ILP issues for Java runtime systems can
not only enlighten us on the suitability of this support
on general-purpose microprocessors for Java programs,
but can also help us incorporate such support in spe-
cialized Java processors. It should be remembered that
these general purpose processors have not really been
tuned for the object-oriented nature of Java or the stack
architecture of the JVM. In order to draw some insight
into ILP related issues, we have simulated the execu-
tion of SpecJVMI8 programs on a superscalar processor
simulator 2.

Figure 9 illustrates the rate of execution of the
benchmarks in interpreted and JIT compiler modes and

2The simulation configurations used are described in [28].
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points to the available parallelism in the programs. A
noticeable observation is that the Instructions Per Cycle
(IPC) is higher in the interpreter mode in comparison
to the JIT compiler mode. We attribute this to two rea-
sons: (i) the superior cache performance of interpreter
mode compared to JIT compiler mode (as observed in
Section 4.3) and (ii) the inherent unoptimized nature of
interpreted code which leads to significant overlap and
concurrency while using dynamic scheduling and opti-
mization techniques in modern microprocessors. As ob-
served in Section 4.2, the JIT compiler has a superior
branch predictor performance compared to the inter-
preter. This enables the JIT to overcome some of the
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deterioration in IPC performance caused by poor cache
performance. Hence, the JIT compiler mode achieves
an IPC not significantly worse than that in interpreter
mode. The corresponding normalized execution times
for CPUs with different issue widths are shown in Fig-
ure 10.

While the absolute IPC of the interpreter mode is
better, the progressive improvement with larger issue
processors becomes smaller for the interpreter as can
be observed for jess and mirt in Figure 9. These re-
sults can be attributed to the poor target prediction
for the switch construct used in the interpreters. This
construct is used to jump to the corresponding inter-
pretation code for the bytecode to be executed. The
IPC is initially higher for the interpreter as the in-
structions for interpreting a single bytecode could be
optimized by removing false dependencies imposed by
the stack based processing. However as issue width
increases some of the simple bytecodes such as iadd,
wsub {1] would be completely executed in a cycle and
fetching the next bytecode is a bottleneck. This bot-
tleneck is caused by the inaccuracy in predicting the
target of the switch construct. This observation indi-
cates an interesting possibility for improving the struc-
ture of the interpreters. The picoJava processor [11]
employs a folding optimization in which commonly oc-
curring sequences of bytecodes of length 2, 3, and 4 are
combined in a single execution cycle. An interpreter
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normalized to performance on a 4-way configuration.

code that identifies these sequences of bytecodes can
mitigate the effect of inaccurate target prediction and
scale better. We also expect the scaling of interpreters
to improve with architectural support features such as
trace caches to exploit cache locality of the instructions
and indirect branch predictors to improve the target
prediction of switch constructs. This raises an interest-
ing question: Can we actually do more efficient software
interpretation with these enhancements as compared to
hardware interpretation performed by stack-based Java
Processors{11, 29}?

5 Synchronization Issues

Having examined the hardware issues that are im-
portant in the interpretation, or translation-execution
parts of the JVMs, we next look at another important
issue that can help reduce some of the time spent in
the execution/interpretation components shown in Fig-
ure 1. Runtime support in the form of synchroniza-
tion mechanisms, as well as class loading and resolu-
tion can play a crucial role in execution/interpretation
overheads (they are common to an interpreter as well
as a JIT-based execution). We examine one of these
issues, namely synchronization, which is a common op-
eration in most Java programs [30]. Even if a user-
program is single-threaded, the class libraries create
special threads to handle finalization {1} and weak ref-
erences [31]. Hence, it is important for the runtime sys-
tem to implement synchronization efficiently i.e. pro-
vide a scalable solution when several threads contend
for the synchronization mechanism while minimizing
the overheads in the uncontended cases.

Java provides the monitor synchronization construct
to user programs for guarding accesses to shared data.
One has to keep space and time efficiency, together with
scalability in multiprocessor environments, in mind
when implementing this construct in the JVM. Sun’s
JDK 1.1.6 [4] targets a space-efficient implementation,
but is not very scalable or time-efficient. It maintains an
auxiliary open hashing data structure (with 128 buck-
ets), called a monitor cache, that leads to all the (mon-
itor) locks associated with the objects. When a thread
invokes a method in a synchronized object, the handle
address of the object is used to hash into the monitor
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cache to find the lock associated with the object (which
may require a linked-list traversal within the corre-
sponding bucket). Further, the entire monitor cache
data structure is itself locked before the lock for the
object can be located. While such an implementation
is space-efficient (proportional to the actual number of
monitors used/referenced), there is a lot of overhead in
accessing a lock for an object, which can become sig-
nificant specifically in the uncontended case. We can
classify synchronized object accesses by a thread into
four cases: (a) attempting to lock an unlocked object,
(b) attempting to lock an object that has already been
locked by the same thread (recursive) with a recursion
depth less than 256, (c) same as case (b) with a re-
cursion depth greater than or equal to 256, and (d)
attempting to lock an object already locked by another
thread. Of these, only (d) is the contended case. The
rationale behind the separation of the recursion depth
into two separate cases (with a threshold of 256) will be
explained shortly. An examination of the synchroniza-
tion behavior of the SpecJVM98 benchmarks with re-
spect to these four cases is shown in Figure 11 (i). It can
be observed that most synchronization accesses in these
benchmarks fall under cases (a) and (b). This indicates
that the original JDK implementation of the monitor
cache would be inefficient for these benchmarks.

There have been attempts to improve the perfor-
mance of the synchronization operations using cooper-
ative thread scheduling [32], or by making special pro-
vision for faster execution of single-threaded user pro-
grams [33, 34]. We will consider a more general alter-
native that modifies the original JDK implementation
by trading some of the space saving for time. For in-
stance, in addition to the monitor cache structure, we
can devote 24 bits within each object for the purpose
of locking. These 24 bits can be used to implement
what is called a thin lock mechanismn as proposed by
Bacon et al. [35]. One of these bits indicates whether
a thin or the traditional (fat) lock is being used. Of
the remaining 23 bits, 8 are used to track the recursion
level (up to 256) of the locking, and 15 bits are de-
voted to maintain the identifier of the thread currently
holding the lock. In case (2) described above, the invok-



ing thread uses the thin lock, increments the recursion
level, and sets its thread identifier in the 15 bits. If case
(b) occurs (which is detected by comparing the thread
identifier with that stored in the thin lock) when the
thin lock bit is on, the thread simply increments the
recursion level. If the recursion level exceeds 256, the
thread indicates that the traditional fat lock (using the
monitor cache structure) should be used for subsequent
accesses. Cases (c) and (d) would default to using the
traditional fat lock structure. Such a thin lock mecha-
nism can help lower the overheads in the common cases
((a) and (b)). This modified synchronization mecha-
nism has been compared with the original JDK imple-
mentation. The results for five of these benchmarks are
shown in Figure 11. The reduction in monitor cache
access overheads and avoidance of locking the moni-
tor cache itself in the common case leads to nearly two
fold improvement in the speed of synchronization oper-
ations. Synchronization operations amount to around
10-20% (while it may be lower as a percentage for the
interpreter mode) of the overall execution time in the
JIT mode.

It should be noted that the space overhead of the pro-
posed thin lock implementation is rather high. Given
that many objects typically tend to be small, the ex-
tra space that is required can make it a less attrac-
tive option. Further, we are adding the extra space
for all objects, regardless of whether they are synchro-
nized or not {only around 8% of objects are accessed
in synchronized mode). One possible way of alleviat-
ing these problems is to use a two bit implementation
of thin locks (without requiring 24 bits), and optimize
only case (a) accesses. Figure 11, which suggests that
more than 80% of synchronization accesses fall in the
case (a) category, is another motivating reason for this
alternative.

6 Architectural Implications

We have looked at a spectrum of architectural issues
that impact the performance of a JVM implementa-
tion, whether it be an interpreter or a JIT compiler.
In the following discussion, we briefly summarize our
observations, review what we have learned from these
examinations, and comment on enhancements for the
different runtime systems. More importantly, we try
to come up with a set of interesting issues, that are,
perhaps, worth a closer look for future research.

Even though our profiling of the JVM implementa-
tions for many of the SpecJVM98 benchmarks shows
that there is a substantial amount of time spent by the
JIT compiler in translation, it appears that one cannot
hope to save much with a better heuristic than compil-
ing a method on its first invocation (10-15% saving at
best with an ideal heuristic). Rather, the effort should
be expended in trying to find a way of tolerating/ hid-
ing the translation overhead. We also found that one
cannot discount interpretation in an ad hoc manner,
since it may be more viable in a resource-constrained
(memory in particular) environment.

An examination of the architectural interactions of
the two runtime alternatives, has given us useful in-
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sights. It has been perceived that Java (object-oriented
programs in general) executions are likely to have sub-
stantial indirect branches, which are rather difficult to
optimize. While we find this to be the case for the in-
terpreter, the JIT compilers seem sufficiently capable
of performing optimizations to reduce the frequency of
such instructions. As a result, conventional two-level
branch predictors would suffice for JIT mode of execu-
tion, while a predictor optimized for indirect branches
(such as [22]) would be needed for the interpreted mode.
The instruction level parallelism available in interpreted
mode is seen to be higher than while using a JIT
compiler. However, lack of predictability of indirect
branches resulting from interpreter switch construct af-
fects the performance as one moves to wide superscalar
machines. We find that the interpreter exhibits bet-
ter locality for both instructions and data, with sub-
stantial reuse of a few bytecodes. The I-cache locality
benefits from the interpreter repeatedly executing the
native instructions corresponding to these bytecodes,
and D-cache locality is also good since these bytecodes
are treated as data. In general, the architectural impli-
cations of a Java runtime system are more dependent
on the mode of execution (interpreter or JIT) rather
than the object-oriented nature of Java programs.

Figure 1 shows that a significant component of the
execution time is spent in the translation to native code,
specifically for applications like db, javac and jess. A
closer look at the miss behavior of the memory refer-
ences of this component in Section 4 shows that this is
mainly due to write misses, particularly those that oc-
cur in code generation/installation. Installing the code
will require writing to the data cache, and these are
counted as misses since those locations have not been
accessed earlier (compulsory misses). These misses in-
troduce two kinds of overheads. First, the data has
to be fetched from memory into the D-cache before
they are written into (on a write-allocate cache, which
is more predominant). This is a redundant operation
since the memory is initialized for the first time. Sec-
ond, the newly written instructions will then be moved
(automatically on instruction fetch operations) from the
D-cache to the I-cache (not just causing an extra data
transfer, but also potentially double-caching). To avoid
some of these overheads, it would be useful to have a
mechanism wherein the code can be generated directly
into the I-cache. This would require support from the
I-cache to accommodate a write operation (if it does
not already support it), and preferably a write-back
I-cache. It should also be noted that for good per-
formance, one should be careful to locate the code for
translation itself such that it does not interfere/thrash
with the generated code in the I-cache. We are look-
ing into the possibility of reusing the recently translated
code in subsequent translations (so that translation can
be speeded up). It was also suggested earlier in Section
4 that it may be a worthwhile effort to look into issues
of translated code location (perhaps using associations),
to improve locality during subsequent executions.

Figure 1 shows that there are applications, like com-
press, and jack, in which a significant portion of the
time is spent in executing the translated code. One
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Figure 11: Synchronization behavior of SpecJVM98

possible way of improving these applications, is to gen-
erated highly optimized code (spending a little more
time to optimize code will not hurt these applications).
Another approach is to speed up the execution of the
generated code. This could involve hardware and sys-
tems software support for memory management, syn-
chronization and class resolution/loading. We are cur-
rently in the process of isolating the time spent in these
components, and their interactions. We have looked
into one issue with respect to synchronization in this pa-
per, and plan to examine the others in our future work
apart from optimizing synchronization performance fur-
ther.

There is a common (and interesting) trait in the com-
press, jack and mpeg applications, where the execution
time dominates and a significant portion of this time is
spent in certain specific functions. For instance, com-
press and mpeg employ a standard set of functions to en-
code all the data. The benchmark jack scans the data,
looking for matching patterns. If we are to optimize
the execution of such functions, then we can hope for
much better performance. We are currently trying to
identify such commonly employed functions (for at least
certain application domains), so that we can configure
hardware cores using reconfigurable hardware (such as
Field Programmable Gate Arrays) on-the-fly (similar
to how JIT dynamically opts to compile-execute rather
than interpret).

7 Conclusions and future work

The design of efficient JVM implementations on diverse
hardware platforms is critical to the success of Java
technology. An efficient JVM implementation involves
addressing issues in compilation technology, software
design and hardware-software interaction. We began
this exercise with an exploration of how well a dynamic
compiler can perform by using intelligent heuristics at
runtime. The scope for such improvement is observed
to be limited, and stresses the need for investigating
sophisticated compilation techniques and/or architec-
tural support features. This study has focused on un-
derstanding the influence of hardware-software interac-
tions of the two most common JVM implementations
(interpreter and JIT-compiler), towards designing ar-
chitectural support for efficient execution of Java pro-
grams. The major findings from our research are the
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following;:

e When Java applications are executed with a JIT
compiler, selective translation using good heuristics can
improve performance. However, even an oracle can im-
prove performance by only 10-15% for the SpecJVM98
applications. Further improvement necessitates im-
proving the quality of the translated code or architec-
tural enhancements.

e The instruction and data cache performance of
Java applications are better compared to that of
C/C++ applications, except in the case of data cache
performance in the JIT mode.

¢ Except using smaller block sizes for data caches or
using branch predictors specially tailored for indirect
branches, we feel that optimizing caches and branch
predictors will not have a major impact on performance
of Java execution.

e Write misses resulting from installation of JIT com-
piler output has a significant effect on the data cache
performance in JIT mode. Certain enhancements, such
as being able to write to the instruction cache, could be
useful during dynamic code generation.

e The instruction level parallelism available in in-
terpreted mode is seen to be higher than while using a
JIT compiler. However, lack of predictability of indirect
branches resulting from interpreter switch construct af-
fects the performance as one moves to wide superscalar
machines.

e Synchronization using a thin lock structure im-
proves performance two-fold compared to using the
monitor cache structures in JDK 1.1.6. It is also ob-
served that a single bit per object would be sufficient to
implement the thin lock mechanism to minimize space
overheads and still speed-up 80% of all synchronization
operations in the SpecJVM98 benchmarks.

The topics that seem to hold the most promise for
further investigation are new architectural mechanisms
for hiding the cost of translation during JIT. Techniques
for achieving this may also be used in conjunction with
dynamic hardware compilation (one could visualize this
as hardware translation instead of compilation that is
done by a traditional JIT compiler) of Java bytecodes
using reconfigurable hardware. Another important di-
rection, that has not been addressed in this paper, is on
providing architectural support for compiler optimiza-



tion, such as those undertaken in {36]. For example, a
counter could track the number of hits associated with
an entry in the branch target buffer. When the counter
saturates, it can trigger the compiler to perform code in-
lining optimization that can replace the indirect branch
instruction with the code of the invoked method. Of
course, we may need some mechanism to monitor the
program behavior changes to undo any optimizations
that may become invalid later. It has also been ob-
served that it would be worthwhile investigating the
translated code location issues towards improving the
locality during subsequent execution.

In this work, we were able to study the translation
part of the JVM in isolation and focus on the impli-
cations of the synchronization mechanism on perfor-
mance. Further investigation is necessary to identify
the impact of the other parts of the JVM such as the
garbage collector, class loader, class resolver and object
allocator on the overall performance and their archi-
tectural impact. The key to an efficient Java virtual
machine implementation is the synergy between well-
designed software, an optimizing compiler, supportive
architecture and efficient runtime libraries. This paper
has looked at only a small subset of issues with respect
to supportive architectural features for Java, and there
are a lot of issues that are ripe for future research.
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