
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 1

Koios 2.0: Open-Source Deep Learning Benchmarks
for FPGA Architecture and CAD Research

Aman Arora1, Andrew Boutros2, Seyed Alireza Damghani3, Karan Mathur1, Vedant Mohanty1, Tanmay Anand1,
Mohamed A. Elgammal2, Kenneth B. Kent3, Vaughn Betz2, Lizy K. John1

1The University of Texas at Austin 2University of Toronto 3University of New Brunswick
E-mail: aman.kbm@utexas.edu

Abstract—With the prevalence of deep learning (DL) in many
applications, researchers are investigating different ways of
optimizing FPGA architecture and CAD to achieve better quality-
of-results (QoR) on DL-based workloads. In this optimization
process, benchmark circuits are an essential component; the
QoR achieved on a set of benchmarks is the main driver for
architecture and CAD design choices. However, current academic
benchmark suites are inadequate, as they do not capture any
designs from the DL domain. This work presents the second
version of our suite of DL acceleration benchmark circuits for
FPGA architecture and CAD research, called Koios. This suite of
40 circuits covers a wide variety of accelerated neural networks,
design sizes, implementation styles, abstraction levels, and numer-
ical precisions. These benchmarks include 32 DL designs and 8
synthetic (proxy) benchmarks. The Koios benchmarks are larger,
more data parallel, more heterogeneous, more deeply pipelined,
and utilize more FPGA architectural features compared to
existing open-source benchmarks. This enables researchers to
pinpoint architectural inefficiencies for this class of workloads
and optimize CAD tools on more representative benchmarks that
stress the CAD algorithms in different ways. In this paper, we
describe the Koios designs, compare their characteristics to prior
FPGA benchmark suites, and present results of running them
through the Verilog-to-Routing (VTR) flow using a recent FPGA
architecture model. Finally, we present case studies showing
how exploration of DL-optimized FPGA architecture and CAD
algorithms can be performed using our new benchmark suite.

Index Terms—FPGA, benchmarks, Deep Learning, VTR,
Koios, Titan

I. INTRODUCTION

With compute and data intensive deep learning (DL)
becoming a major component of many applications,
specialized hardware acceleration of such workloads has
become commonplace. More recently, field-programmable
gate arrays (FPGAs) have been shown to deliver state-of-the-
art performance when accelerating different DL workloads
because of their massive parallelism, flexibility and energy
efficiency [1], [2]. With new DL use cases emerging faster
than ever, FPGAs are also starting to adapt. This includes the
emergence of DL-optimized FPGA fabrics [3], the integration
of FPGAs with specialized DL accelerators [4], [5], and also
tuning FPGA CAD tools to the properties of these workloads
[6].

As shown in Figure 1, the process of development of
novel FPGA architectures and CAD algorithms involves:
(1) a set of benchmarks written in a hardware description
language or synthesized using high-level synthesis, (2) an
architecture model that captures the organization of FPGA

CAD
Tool

FPGA
Architecture

Model

Benchmarks

Area,
Frequency,

Power

Fig. 1: FPGA architecture and CAD algorithm exploration requires
a set of representative benchmarks

blocks and routing architecture as well as area/timing/power
models from circuit-level implementations, and (3) a CAD
flow that implements the given benchmarks on a target FPGA
architecture [7]. Although most research efforts in the FPGA
community are focused on architecture and CAD, benchmarks
also play a crucial role in this flow. The quality-of-results
(QoR) achieved on a specific set of benchmarks is the main
driver for architecture and CAD design choices. As a result,
it is essential that these benchmarks capture the markets
and application domains targeted by the candidate FPGA
architecture. Using an unrepresentative set of benchmarks
means optimizing for the wrong targets.

Existing open-source benchmark suites do not focus on
(or even capture any) benchmarks from the increasingly
important DL domain. Therefore, it impedes the development
of architecture and CAD optimizations for DL-targeted
FPGAs, since researchers have to first implement their own
benchmarks. This limits any research efforts in this direction to
only individual isolated ones, and makes it virtually impossible
to have meaningful comparisons between different ideas across
the FPGA research community. Our work addresses this by
presenting Koios 2.01, an open-source benchmark suite of DL
acceleration benchmark circuits. These benchmarks can be
used by FPGA researchers for exploring FPGA architectures
and tuning FPGA CAD algorithms. This suite consists of
40 benchmarks that capture a wide variety of accelerated
neural networks, design sizes, numerical precisions, and
circuit characteristics. To maximize the utility of these
benchmarks, we made them compatible with the Verilog-to-
Routing (VTR) flow [8], which is the most widely-used FPGA
architecture and CAD research framework. Researchers can
use these benchmarks seamlessly with VTR and, with minor
modifications, can also use them with other toolchains.

1Koios (also written as Coeus) is the Titan of intelligence in Greek
mythology. Unlike the Titan benchmarks, our suite focuses on deep learning.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 2

The Koios benchmarks are representative of modern DL
workloads; many of them are re-created from prior works
and some are replicas of industrial benchmarks. In addition to
being more pipelined and heavily using FPGA hard blocks2,
these benchmarks have higher usage of structures like wide
buses, large reduction trees, hard block dedicated cascade
routing and large fanouts. This makes the Koios benchmarks
better suited for DL-targeted FPGA architecture exploration
than other non-DL benchmark suites.

In this paper, we introduce Koios 2.0, an enhanced version
of the Koios suite [9], and make the following contributions:
• Extending the Koios suite, which originally contained 19

benchmarks, with 13 new DL application circuits.
• Introducing a framework for generating synthetic/proxy

benchmarks with specific circuit characteristics, and
extending the Koios suite with 8 proxy benchmarks.

• Showcasing a new synthesis frontend (Yosys+Odin) in
the VTR flow that significantly expands the Verilog and
SystemVerilog syntax coverage of VTR.

• Presenting the results of running our benchmarks through
VTR using an FPGA architecture model that we develop to
capture complex hard blocks typical of recent FPGAs.

• Comparing circuit statistics to the VTR and Titan
benchmarks to highlight the added value of Koios.

• Performing a QoR comparison of VTR with a commercial
tool chain (Intel Quartus) for the Koios benchmarks on the
Stratix-IV FPGA architecture.

• Describing example case studies that use these benchmarks
to explore architecture and CAD optimizations for DL.

II. RELATED WORK

A. FPGA Benchmark Suites

Several benchmark suites have been curated and used by
FPGA architecture and CAD researchers over the past three
decades. Table I provides an overview of the features of
the different suites. The classic MCNC20 (the twenty largest
MCNC) benchmarks [10] are extremely small (less than 10K
LUTs) and simple designs that do not use any FPGA hard
blocks. While these designs were used in many early CAD
and architecture studies such as [11], they are no longer very
representative of modern FPGA use-cases. The UMass RCG
HDL Benchmark Collection [12] has somewhat larger designs
of up to 14, 000 look-up tables (LUTs) mostly representing
digital signal processing (DSP) applications. However, this
suite does not target an open-source FPGA framework, which
limits its use in architecture and CAD studies as they
generally need modifiable and retargetable CAD tools. The
Groundhog benchmarks [13] are intended to be architecture
independent; they work with academic tool flows and are
targeted towards evaluation of power consumption of FPGAs
for mobile computing applications. However, only two of the
benchmarks have HDL realizations (and hence can be run
through an implementation CAD flow) and both are very

2A hard block on an FPGA is a fixed function block that is embedded
into the silicon. It provides higher level functionality and performance than
building those functions from logic blocks. Examples of hard blocks are
multipliers (DSP blocks) and memory (Block RAMs).

TABLE I: Comparing FPGA benchmark suites

Benchmark Suite
Max.

primitives
per design

Use of
Hard

Blocks

Open
Source
CAD

Captures
DL

Domain
MCNC20 [10] 10K × ✓ ×
UMass RCG [12] 14K ✓ × ×
Groundhog [13] 1K ✓ ✓ ×
ERCBench [14] 65K ✓ × ×
VTR [8] 165K ✓ ✓ ×
Titan [15] 1.8M ✓ × ×
Koios 2.0 (This work) 1.6M ✓ ✓ ✓

small (under 1, 000 primitives). ERCBench [14] consists of
hybrid hardware/software applications. The designs in this
suite are from the multimedia, wireless communications and
cryptography domains and it contains some medium size
designs (up to 65, 000 LUTs). They do not contain DL
benchmarks, and do not readily work with academic (open
source) FPGA tools.

VTR [8] has a suite of Verilog benchmarks as well. These
VTR benchmarks vary from small (321 netlist primitives) to
medium-sized designs (165, 809 primitives) and they include
applications from several domains including image processing,
soft processors and arithmetic. The Titan benchmark suite [15]
contains modern heterogeneous large designs (90K to 1.8M
netlist primitives); these are HDL benchmarks (some of which
were generated from high-level synthesis) that are provided as
both as the source HDL and BLIF [16] format netlists that
can be input to VPR [8], [11] (VPR is the tool that performs
packing, placement and routing in the VTR flow). However,
they target a hybrid CAD flow that is architecture-specific as
logic synthesis is performed using the Intel Quartus tool only
for the Stratix-IV architecture. In contrast to all existing suites,
Koios is the only one that provides large, heterogeneous,
architecture-agnostic benchmarks that work with a completely
open-source flow, and focuses on the increasingly important
DL domain.

The Koios suite contains only Verilog benchmarks. The
focus of these benchmarks is the exploration of new FPGA
architectures and CAD algorithms (i.e. HDL to physical
design). There are other FPGA benchmarks written in C or
OpenCL such as the Rosetta [17] and Spector [18] suites. The
focus of these benchmarks is the FPGA HLS flow (i.e. high-
level language to HDL).

B. DL-Optimized FPGAs

Recently, FPGA vendors have released products with new
DL-targeted features to cater to the ever-growing demands
of this domain. For example, the Xilinx Versal ACAP
[5] added a 2D mesh of specialized vector processors
connected by streaming interconnect, and Intel’s Stratix 10
NX devices integrated in-fabric AI tensor blocks [3]. In
addition, the Achronix Speedster7t FPGA [19] has embedded
machine learning processor blocks that tightly couple memory
and compute for DL. For architecture exploration, FPGA
vendors typically use proprietary customer designs or internal
benchmarks that are not accessible to the research community.

There have also been a number of academic research
proposals to optimize FPGA architectures for DL. Eldafrawy

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 3

et al. [20] proposed several enhancements to logic blocks
to increase the density of multiply-accumulate (MAC)
operations implemented in the FPGA’s soft logic. They
used simple multiplier/MAC and 4×4 matrix multiplication
microbenchmarks to evaluate their proposed ideas. In [21],
[22], the authors explored enhancing DSP blocks by efficiently
supporting low precision multiplications and adding register
files inside DSPs for storage. For these studies, the authors
designed their own benchmarks to evaluate their ideas. Arora
et al. [23] also proposed adding Tensor slices in FPGAs.
Again, they use their own designs – a TPU-like overlay and
several microbenchmarks – for their evaluation. The authors of
[24] and [25], propose adding compute capabilities into block
RAMs (BRAMs) to increase the computational throughput
of FPGAs and reduce interconnect usage. They use custom
benchmarks to illustrate how these enhancements improve the
performance of DL applications.

All these investigations evaluate architecture ideas primarily
on microbenchmarks, with some also including a small number
of larger designs. The exact microbenchmarks and applications
used also vary between studies, making comparisons of the
gains achieved by different works difficult. An open-source DL
benchmark suite is needed to enable evaluation of architecture
enhancements across a wider range of use cases and to
facilitate comparisons across research works.

III. THE KOIOS 2.0 BENCHMARK SUITE

A. Overview

The Koios 2.0 benchmark suite is a DL-specific benchmark
suite for FPGA research. It consists of 40 benchmarks
covering a diverse representative space, coming from various
applications within the DL domain. Table II provides an
overview of the benchmarks and their properties. These
benchmarks are completely open-source, and we provide them
as both Verilog HDL source codes and BLIF netlists.

B. Diversity and Representativeness

The Koios benchmarks cover a wide variety of design sizes,
implementation styles, target neural networks, acceleration
paradigms, numerical precisions, and circuit properties.
• Design Size: The smallest design has 12, 097 netlist

primitives while the largest has 1, 608, 867. Any latch,
gate or hard block resulting from logic synthesis counts
as a netlist primitive. Some benchmarks, such as
clstm_like, dla_like, tpu_like, have multiple
size variants (i.e. small, medium, large). In these cases,
the size indicates the parallelism factor used in the design.
Bigger designs create a more challenging optimization
problem for the CAD tools, while smaller ones have faster
compilation time suitable for early-stage experiments.

• Implementation Style: Although all the designs in the
benchmark suite are provided to users in the form
of Verilog HDL implementations, some were originally
implemented in RTL while others were automatically
generated from higher-level language descriptions using
high-level synthesis (HLS) tools. HLS-generated designs
typically have specific design characteristics that are not

very common in hand-coded RTL designs, such as widely
distributed control signals and complex state machines.

• Target Neural Network: Our benchmarks cover all major
classes of neural networks. These include: multi-layer
perceptrons (MLPs), convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and reinforcement
learning (RL). These different classes have different
compute and memory requirements, which reflects on
the resource breakdown and routing patterns of their
corresponding benchmark circuits. Some designs are also
generic and can be used to accelerate any type of network.

• Acceleration Paradigm: FPGAs are used for acceleration
of DL workloads in different ways. One way is to design
a flexible software-programmable overlay architecture that
can execute different DL models without the need to
reprogram the FPGA with a new bitstream similar to the
Microsoft Brainwave [31] architecture. These designs tend
to have instruction decoders and more complicated control
logic to enable this level of flexibility. In other cases, a
custom network-specific dataflow architecture is mapped
to an FPGA to maximize efficiency similar to [1]. The
control logic of these circuits is usually hard-coded and
implemented as relatively simple state machines. Another
approach is to implement layer-specific accelerators that are
invoked by software running on a host or an embedded
CPU. These circuits are mostly streaming-style datapaths
with simple or even no control paths. Our benchmark suite
contains designs from all three acceleration paradigms.

• Numerical Precisions: One of the main advantages of
using FPGAs to accelerate DL workloads is the ability
to design hardware for custom numerical precisions,
which is a commonly used technique in accelerating
DL workloads [42]. The designs in our suite use
various precisions, including: binary (bin), different
fixed point types int4/8/16/18/32, brain floating
point (bfloat16 [43]), IEEE half-precision floating
point (fp16), and block floating point (bfp11 [31]).
This diversity is useful for exploring new DSP block
architectures and different hard arithmetic circuitry.

• Circuit Properties: Our benchmarks have varying circuit
styles that can exercise different components of the
CAD tools in different ways. For example, regular
structures like systolic arrays can be used for optimizing
placement algorithms, large reduction trees can form
local routing congestion that stress the routing algorithms,
long cascades (or chains) of hard blocks impose harder
placement constraints, etc. The benchmarks are also highly
heterogeneous (i.e. use different types of FPGA resources)
with varying degrees. They utilize a large number of DSP
blocks and BRAMs. DSPs are often used to form dot
product units and memory structures like double-buffered
RAMs and FIFOs are commonly used to store on-chip
weights and activations.

C. Curating the benchmark suite

The designs in the benchmark suite are chosen keeping
representativeness and diversity in mind. These designs are
implemented (either handcoded or script generated or using

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 4

TABLE II: The Koios 2.0 Benchmarks (in decreasing order of number of netlist primitives)

Benchmark Description Im
plem

en
tat

ion

Netw
or

k

Prec
isi

on

Acc.
Par

ad
igm

2D
Syst

oli
c

W
inog

ra
d/FFT

Red
ucti

on

Buffe
rs

DSP
usag

e

Cen
t.

buffe
rs

Base
d

on

Other Properties

dla_like (S/M/L) Intel-DLA-like accelerator RTL CNN2 int8/16 Overlay ✓ ✓3 ✓4 ✓ [26] [27] Daisy chain
clstm_like (S/M/L) CLSTM-like accelerator RTL RNN int18 Overlay ✓ ✓3 ✓ [28] Circular compression
deepfreeze ARM FixyNN design RTL CNN int4 Layer ✓ ✓ ✓ [29] Hardcoded weights
tdarknet_like (S/L) Accelerator for Tiny Darknet HLS CNN12 fp16 Custom ✓3 ✓ [30] Fused layer pairs
bwave_like Microsoft-Brainwave-like design RTL Any int8, bfp11 Overlay ✓ ✓ ✓4 [31] Mat-vec mult unit
lstm LSTM engine RTL RNN int16 Layer ✓ ✓ ✓ Streaming dataflow
bnn 4-layer binary neural network HLS MLP1 binary Custom ✓ [32] int16 act/norm
lenet Accelerator for LeNet-5 HLS CNN int8 Custom ✓ ✓ [33] 5x5 conv layers
dnnweaver DNNWeaver accelerator RTL Any int8 Overlay ✓ ✓3 ✓ ✓ [34] DDR and PCIe intf
tpu_like.ws (S/L) Google-TPU-v1-like accelerator RTL Any12 int8 Overlay ✓ ✓ ✓ ✓ [35] Weight stationary MMU
tpu_like.os (S/L) Google-TPU-v1-like accelerator RTL Any12 int8 Overlay ✓ ✓ ✓ ✓ [35] Output stationary MMU
gemm_layer Matrix multiplication engine RTL MLP bfloat16 Layer ✓ ✓ ✓ AXI interface
attention_layer Transformer self-attention layer RTL RNN int16 Layer ✓ ✓3 ✓ [36] GEMV based
conv_layer GEMM based convolution RTL CNN int16 Layer ✓ ✓ ✓ ✓ 3x3 filters
robot_rl Robot+maze application RTL RL int8/16/32 Custom ✓ ✓ ✓ [37] [38] Q-learning algo
reduction_layer Add/max/min reduction tree RTL Any int16 Layer ✓ ✓ ✓ Reduces 128 inputs
spmv Sparse matrix vector multiplication RTL MLP int8 Layer ✓ ✓ ✓ [39] [40] COO sparsity enc.
eltwise_layer Matrix elementwise add/sub/mult RTL Any bfloat16 Layer ✓ ✓ ✓ Broadcast heavy
softmax Softmax classification layer RTL Any fp16 Layer ✓ ✓ [41] LUT based exp/log
conv_layer_hls Sliding window convolution HLS CNN fp16 Layer ✓ ✓ 1x1 filters
proxy Proxy benchmarks RTL - - - - - - - - - Sec III-D -

1 Has Normalization layer 2 Has pooling layer 3 Uses double buffering 4 Has DSP cascade chains

HLS) and tested using commercial FPGA tools for ease
of development and debugging. Then, we performed many
modifications to these designs to ensure their compatibility
with the VTR flow. Vendor-specific and architecture-specific
IP cores (e.g. floating point adders and multipliers, RAM
macros) were replaced with ones that are compatible with VTR
and the FPGA architecture file used for our experiments. This
process was especially challenging for the designs generated
from HLS tools, which tend to be non-human-readable in
many cases. After that, various experiments (described later
in this paper) were run to ensure the suitability of these
benchmarks.

D. Proxy benchmarks

In the first version of Koios [9], there were 19 benchmarks
and in this work, we added 13 more designs. However, having
a larger set of benchmark circuits is desirable for most FPGA
architecture and CAD research. Obtaining real world designs
and curating them to be used as FPGA benchmarks is a
tedious process as it requires re-creating designs that are not
publicly available or modifying existing ones to be compatible
with open source CAD tools. Hence, deriving inspiration from
other fields [44], [45], we create a framework for generating
synthetic DL benchmark circuits. The synthetic benchmarks
generated by this framework have similar properties and circuit
compositions to real DL benchmarks as described in the
previous section. Since these benchmarks can be used as
proxies of real DL designs for FPGA architecture and CAD
research, we refer to them as proxy benchmarks. Unlike the
other benchmarks in Koios, the generated proxy benchmarks
are not functional DL accelerators – they instead mimic
the composition of key components of DL accelerators. We
perform statistical analysis on the properties of real designs

and synthetic designs generated from this framework, and
compare them in Section IV-D.

Proxy benchmarks are generated using design components
that are commonly present in real DL designs. We extracted
and parameterized different components from the existing
benchmarks and designed new ones to create a library
of modules that can be used in the generation of proxy
benchmarks, as listed in Table III. This library can be easily
extended to increase the diversity of the generated proxy
benchmarks. In addition to the Verilog implementation of
these components, the library also contains a Python dictionary
of the various components along with their properties (e.g.
size, precision, width) and the resource usage of each module
for the FPGA architecture we use for evaluation. Fig. 2a
shows how the proxy benchmark generation framework works.
The benchmark generator takes as input a YAML file which
specifies the graph structure the user desires (i.e. the specific
hardware components and the connections between them). A
snippet from a sample YAML file is shown in Fig. 2b. For each
component, its specific parameters (e.g. type, size, precision)
are also specified in the YAML file. The generator goes
through the graph structure described by the user, instantiates
the corresponding components in the top-level module, and
automatically generates the interconnections between them to
generate the Verilog file of the proxy benchmark.

Since the YAML input file specifies components connected
to each other regardless of the number of output and input
bits of each component, the generator inserts interfacing logic
between the component instances. For example, if the YAML
file specifies that component A with 40 output bits feeds
component B that has 20 input bits, some interface logic needs
to be generated that can enable connecting 40 signals to 20
signals. There are three cases that can arise:

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 5

TABLE III: Circuit components used to generate proxy benchmarks

Type Properties
Adder Tree Adder tree levels {3,4,5}, Precision {16, 8, 4, fp16}
DSP Chain # DSPs {2,3,4}, Precision {16, fp16}
Systolic Array Array size {4x4, 8x8}, Precision {4, 8, fp16}
Activations # of logical LUTs {32}, Precision {8, 16}
Dot Product Dot product length {10}, Precision {8, bf16}
RAM Depth {2048, 4096}, Width {40, 60}, # Ports {1, 2}
Double Buffer Depth {2048, 4096}, Widths {40, 60}
FIFO Depth {256, 512}, Widths {40, 60}

Benchmark
Generator

Dictionary

Top Module

Generation

Script

Interface

Generation

Script

Verilog Code

Final

Benchmark File

Interface
Options

Module
Library

YAML
File

(a) Flow overview

fifo1:

type: "fifo"

size: 256

precision: 40

number: 4

inputs: [top]

outputs: [dsp_ch1]

dsp_ch1:

type: "dsp_chain"

size: 4

precision: 18

number: 8

inputs: [fifo1, add_tree2]

outputs: [activ1]

activ1:

type: "sigmoid"

size: 16

precision: 16

number: 1

inputs: [dsp_ch1]

outputs: [sarray2,dbram2]

(b) YAML file snippet

Fig. 2: Proxy benchmark generation

1) The input bits are equal to the output bits and can be
directly connected.

2) The input bits are less than the output bits. In this case,
input bits are fanned out to match the number of outputs.

3) The input bits are greater than output bits. In this case,
a reduction of bits is performed by inserting reduction
trees of logical operations (e.g. xor/and/or gates, 2:1
multiplexers). The user can specify the mix of gates
and multiplexers to be used via command line options
(“Interface options" in Fig. 2a).

The interface logic always adds a register stage between
components. Note that these choices are also governed
by circuit properties observed in real world designs; deep
pipelines, high fanouts and reduction trees are common in DL
designs.

The proxy benchmark generator also generates statistics,
such as the number of I/Os, the expected number of logic
blocks, DSPs and BRAMs used by the generated benchmark.
Comparing these numbers with the numbers obtained after
running the generated benchmark through the VTR flow can
be useful for verifying the validity of the generated benchmark.

Currently, the user has to specify the exact structure of
the proxy benchmark in the input YAML file. However,
an enhancement to this framework where the user only
needs to specify an approximate mixture of components
they desire is work-in-progress. A YAML file can then be
automatically generated and passed as an input to the existing
framework, which enables easier and faster generation of
proxy benchmarks from circuit properties. For the Koios 2.0
suite, we have generated 8 proxy benchmarks of varying sizes
(14−43K netlist primitives) and containing different mixes of
components from our module library. We have open-sourced

Parsing &
Elaboration

Technology
Mapping

Netlist
Writer

Parsing &
Elaboration

Technology
Mapping

Netlist
Writer

Parsing &
Elaboration

Technology
Mapping

Netlist
Writer

Verilog
(HDL)
Code

BLIF
(Netlist)

File

Odin-only Flow (Traditional)

Yosys+Odin Flow (New)

Yosys-only Flow (In Development)

Odin

Yosys

Fig. 3: Various synthesis front-ends supported by VTR

the generator and the YAML files of the 8 benchmarks, so a
user can generate more designs, if required.

E. Enhancements to the VTR Flow

The VTR flow has traditionally been using Odin II [46]
as its synthesis front-end. For the first version of the Koios
suite [9], we found that some of the benchmark circuits could
not be synthesized using Odin II as it only supports a subset of
the Verilog-2005 standard. Some other benchmarks were also
originally written in SystemVerilog which is not supported
by Odin II. Therefore, we had to add support for some of
the commonly used Verilog constructs to Odin II or re-write
some of the benchmarks using only the supported subset of
the Verilog-2005 standard. However, this was a very tedious
and labor-intensive process that restricted the extension of the
Koios suite to include more benchmarks that were written
in SystemVerilog or used unsupported Verilog syntax. This
initiated a new effort to improve the language coverage of the
VTR synthesis front-end using a combination of the Yosys
synthesis tool and Odin II [47].

Yosys is an open-source synthesis engine with extensive
Verilog-2005 and SystemVerilog support [48]. Whereas most
commercial synthesis tools are closed source, Yosys offers a
flexible and open-interface synthesis process, which is valuable
for developing new and customized synthesis algorithms.
However, Yosys is totally agnostic to the target FPGA
architecture and thus limits opportunities for architecture-
aware logic inference (i.e. automatically inferring logic that
can be mapped to hard blocks). Therefore, in this newly
developed Yosys+Odin flow, Yosys provides better language
coverage support and performs HDL elaboration followed by
coarse-grained optimizations. After that, Odin II performs
partial technology mapping based on the target FPGA
architecture using a mix of genetic algorithms [49] and trade-
off analysis of hard vs. soft logic inference [50], and then
writes out the final netlist as illustrated in Fig. 3.

Our Koios 2.0 suite includes a variety of new benchmarks
that use Verilog constructs that are not supported by Odin II,
and therefore was used for developing and testing the new
hybrid synthesis front-end. During this process, the Koios
benchmarks helped identify and fix several issues such as:

• Unlike the Odin-only flow, the new hybrid front-end
produced netlists with randomly-generated net names that
cannot be traced back to their HDL declarations, which
made debugging CAD flow errors significantly harder.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 6

• Yosys used different names for the clock and reset signals
of netlist atoms that can be packed into the same hard
block (e.g. two multiplications to the same DSP block)
which prevented VPR from packing them together even
though they are actually connected to the same clock
and reset signals, leading to higher resource utilization
compared to the Odin-only flow.

• The new hybrid front-end generated a single black-box
module definition for each of the hard block models
specified in the VTR architecture description file. In
some cases when the hard block has different modes of
operation with different interface widths, this would result
in technology mapping failures.

More recently, a modified version of Yosys, adapted from the
Verilog-to-Bitstream tool [51], is also being integrated into the
VTR flow to provide the option of performing all the synthesis
steps solely using Yosys as shown in Fig. 3. However, this flow
is not currently used for the Koios benchmarks.

The Koios benchmarks were also useful in exercising
different parts of the tool flow that were not extensively
tested before and identifying subtle bugs/issues in them. For
example, multiple of the Koios circuits make heavy use
of cascaded chains of multiple DSP blocks in a column
to implement efficient dot product operations for DL. This
presents additional placement constraints since the DSP blocks
in a chain have to be initially placed and then moved
around during placement optimizations as a single combined
molecule to maintain the placement legality. Since VPR
picks the device grid size based on the number of required
blocks of each type without considering these additional
placement constraints for cascaded DSPs, some of the Koios
benchmarks (tpu_like.small.os, dla_like.large
and bwave_like.fixed.large) were failing at the initial
placement stage due to the absence of a legal solution given
the predetermined device grid size. For example, a design
can have a cascaded chain of N DSP blocks left to place
and the device still has enough DSP blocks available but
split across different columns (i.e. not in consecutive locations
along a column). This results in a failure since no legal solution
exists at this device grid size which was decided earlier in
the flow based solely on the number of required blocks. A
straightforward workaround is to manually specify a slightly
bigger grid size for the failing benchmarks or a maximum
resource utilization target for VPR when automatically sizing
the device grid (the latter workaround is currently used for
running the failing Koios benchmarks). It can also be fixed
by iteratively increasing the grid size during initial placement
in such cases until a legal solution is found. We flagged this
issue and its suggested solution, which will be implemented
by the VPR team in a future release.

F. Availability and Usage

The Koios 2.0 benchmarks are available at this link:
https://tinyurl.com/vtrkoios. They have been
tested and work out-of-the-box with the VTR flow. Scripts
to automatically run and generate QoR for these benchmarks
are also provided. In addition, we use the Titan flow [15] to

Fig. 4: FPGA architecture (not to scale) used for experimenting
with Koios 2.0 benchmarks. Blue = Logic Block, Green = Block

RAM, Red = DSP Slice, Yellow = Input Output Block

generate the netlist (BLIF) files of the Koios benchmarks for
the Stratix-IV FPGA architecture. These netlists can be used to
directly run placement and routing using VPR without the need
of an Intel Quartus license for running the synthesis front-end
in the Titan flow. The BLIF files can be downloaded separately
from this link: https://tinyurl.com/koiosblif.

These benchmarks are implemented and curated in this suite
to be used for FPGA architecture exploration and CAD tool
optimization. They aim to accurately capture all the different
circuit structures and compositions, but should not be expected
to be deployed as standalone functional designs. We are
confident that these circuits are structurally correct, and we
have verified their high-level functionality to the best of our
ability. However, full functional verification on many different
test cases is beyond the scope of this work.

IV. BENCHMARK RESULTS

A. Experimental Setup

We use the latest version of VTR 8 [8] for all our
experiments in this paper. When running VTR, we provide an
SDC (Synopsys Design Constraints) file in which the target
clock period is set to 0 (i.e. VTR will optimize the design for
maximum clock frequency). We also disable timing analysis
for paths to/from the FPGA IOs. Unless stated otherwise, we
run VTR with auto layout enabled (meaning the grid size
expands based on the resources required by the design), the
default timing-driven routing option with a maximum of 150
routing iterations, and a fixed channel width of 300 wires. All
reported results are the average of three runs with different
seeds. For experiments in which we report VTR flow runtime
and peak memory usage, we use an Intel Xeon CPU E5-2430
running at 2.5 GHz with 64 GB of memory.

B. FPGA Architecture Used

We develop a new FPGA architecture description file
to capture some relevant features of modern FPGAs. This
architecture description file is also open sourced along with
the benchmark suite. The delays and areas of all the FPGA
blocks, including the DSP tiles, are obtained from COFFE [52]
using a 22 nm technology node from PTM [53]. The circuits in
this architecture are optimized for area-delay product, which
leads to relatively higher delays compared to performance-
optimized commercial FPGAs such as the Arria 10 family.
Figure 4 shows a representation of this architecture, which is
described in the rest of this subsection.

https://tinyurl.com/vtrkoios
https://tinyurl.com/koiosblif

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 7

1) Floorplan: The FPGA contains columns of logic blocks,
DSPs and BRAMs. Both DSP and BRAM columns repeat
every 16 columns and are interleaved such that every 8th
column is a DSP or a BRAM. The DSP and BRAM tiles are
4 and 2 rows high respectively, and the IO pads are arranged
along the perimeter of the FPGA.

2) Routing Architecture: The architecture uses
unidirectional routing with wire segments of length 4
(260 out of 300 wires) and length 16 (40 out of 300 wires).
The length 16 wires do not directly connect to block pins
and are only accessible from the length 4 wires. Switches
appear after every 4 blocks on the length 16 wires. The
switch blocks use a custom switching pattern based on the
Stratix-IV-like architecture used in the Titan flow [15]. The
input and output flexibility of connection blocks are set to
0.15 and 0.1, respectively.

3) Logic Blocks: Each logic block (LB) contains 10 basic
logic elements (BLEs) similar to that in the Intel Stratix-10-
like architecture from [20]. Each block has 60 input pins, 40
output pins, and a 50% sparsely populated local input crossbar.
Each BLE has a 6-input LUT which can be fractured into
two 5-input LUTs. The BLE also has 2 flip-flops and 2 bits
of arithmetic with dedicated carry chains between LBs. Each
BLE has 8 inputs and 4 optionally registered outputs.

4) DSP Slices: This architecture has a complex DSP block
that supports most of the operating modes in the state-of-
the-art Intel Agilex DSP block [54]. Multiple fixed point
(9x9, 18x19, 27x27) and floating point (IEEE 32-bit (fp32),
IEEE 16-bit (fp16) and Brain floating point (bfloat16))
precisions are supported. In addition, the DSP block has
dedicated output chains for cascading several DSP blocks in
the same column for efficient dot product structures.

5) BRAMs: BRAM blocks have a capacity of 20 Kb and
have registered inputs and outputs. True and simple dual port
modes are supported. In the simple dual port mode, a BRAM
can be configured as: 512×40b, 1024×20b and 2048×10b,
while the widest mode is not supported in true dual port
mode. The delays and areas of a BRAM block are obtained
by interpolation between the values obtained from COFFE for
16 Kb and 32 Kb BRAMs.

Some benchmarks in Koios use advanced DSP features that
are available in the FPGA architecture described above. This is
done by instantiating DSP hard macros directly into the RTL
when implementing natively-supported fp16 multiplications
or DSP cascaded structures for example. Similarly, BRAMs
are also instantiated as hard macros in the RTL. Although
these hard macros are architecture-specific, users can still
use the Koios benchmarks with other FPGA architectures
by replacing these RTL instantiations with their alternatives.
To improve the usability of the Koios benchmarks, we
also implement the same functionality of the architecture-
specific hard macros using behavioral Verilog, and allow
users to switch between the hard macro and behavioral
implementations using pre-processor directives (i.e. ifdefs).
By disabling the complex_dsp and hard_mem directives,
the benchmarks become completely architecture-agnostic and
can be used with any FPGA architecture description file. In this
case, the synthesis tool infers the hard blocks to be used and

generates a netlist containing hard macro instances available in
the user’s FPGA architecture. If no hard blocks are available
in the FPGA, the code will just be mapped to FPGA soft
logic. We have verified running the benchmarks without these
directives for the FPGA architecture described in this section
and the VTR flagship architecture.

This makes the Koios benchmarks also suitable for
evaluating the addition of new hard blocks to an FPGA
architecture, similar to some recent DL-optimized FPGAs [3],
[23]. To perform such studies, users can either: (1) modify
the synthesis engine to automatically extract specific patterns
from the Verilog designs and map them to the new blocks, or
(2) modify the benchmarks to instantiate these new blocks as
hard macros (defined in the VTR architecture file).

C. Results of the Koios 2.0 Benchmarks

Table IV shows the VTR results for the Koios 2.0
benchmarks when running them with the FPGA architecture
described in Section IV-B. The results show that these
designs, with sizes ranging from 12K to 1.6M netlist
primitives, are deeply pipelined with 27 out of the 40
benchmarks having critical paths with 6 or less logic
levels on them. The benchmarks are also highly diverse in
heterogeneity, with varying circuit compositions between soft
logic, DSPs, and BRAMs. For example, some designs do
not utilize any BRAMs since they either implement only
the workload datapath (e.g. gemm_layer and softmax)
or use distributed registers for storage (e.g. bnn). On
the other hand, there are other BRAM-intensive designs
such as tdarknet_like.large with 4, 400 BRAMs
utilized. Similarly, with DSPs, there are some designs that
use very few or no DSPs (e.g. conv_layer_hls and
reduction_layer) as they mostly implement other non-
multiplication operations in DL workloads such as pop-count
or max/min/add reduction. Other designs are DSP-intensive
(e.g. deepfreeze.style2) with over 1, 700 DSP blocks.
Table IV also shows that different types of resources are the
grid size limiting factor for different benchmarks in our suite.
The majority of the designs are bound by hard blocks, as
indicated by the bold entries in the table, which emphasizes
that these benchmarks can be useful for exploring new DSP
and BRAM architectures.

Most of the designs in the Koios 2.0 suite can achieve
reasonably high operating frequencies up to 249 MHz and
an average of 124 MHz. The FPGA architecture used for our
experiments is not very fast. The delays in the architecture are
based on area-delay-optimized PTM models (with raw delays
similar to 40 nm Stratix-IV). Changing the delays of FPGA
resources to those typical of a high-speed (≤14 nm) device
would increase the frequency by >2×. The lenet design is
a clear outlier with a frequency of 53.9 MHz. This design is
generated by HLS and has a very high logic depth of 34.
The total routed wirelength of the benchmarks are largely
correlated with the circuit size and ranges from 102K up to
11.4M units of length 1 wire segments.

The top graph in Fig. 5 plots the VTR flow runtime for each
benchmark. The trendline shows that the runtime grows almost

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 8

TABLE IV: VTR results of the Koios 2.0 benchmarks

Benchmark Netlist
Primitives

Logic
Depth

Used
IOs

Used
LBs

Used
DSPs

Used
BRAMs

Max.
Freq.

Routed
Wirelength

Elapsed
Time

Peak
Memory

dla_like.large 1608867 5 819 28201 1376 864 107.4 11445 1140.0 15733.5
clstm_like.large 1083855 3 1518 26341 961 739 105.6 5785 842.7 12901.0
deepfreeze.style3 759656 3 540 18499 340 3489 116.3 5380 289.3 16131.7
clstm_like.medium 743071 3 1230 17854 661 498 113.9 3767 400.4 8805.7
deepfreeze.style1 687669 3 540 15115 700 1999 135.2 4673 243.0 10172.1
dla_like.medium 600492 5 411 10656 400 312 140.6 2920 209.0 5408.4
deepfreeze.style2 470421 3 540 12896 1762 1387 62.6 3466 246.3 15574.3
proxy.2 439725 8 574 8921 330 1099 130.9 3293 228.9 5796.2
clstm_like.small 402331 3 942 9396 361 257 131.3 1821 100.8 4739.3
tdarknet_like.large 391291 5 46 13574 367 4400 72.7 4173 775.4 18456.7
proxy.4 391195 7 2392 7768 757 1189 101.3 4510 401.9 7439.1
proxy.1 358143 7 1113 5989 1037 619 125.3 4325 206.8 9503.0
bwave_like.float.large 310527 6 1093 9699 640 1182 93.9 4440 114.5 6522.4
proxy.3 304125 10 1036 9585 107 847 96.8 2491 124.7 4569.3
dla_like.small 260199 5 207 4799 128 132 160.7 998 59.3 2143.0
proxy.7 248950 7 498 4937 302 492 114.2 2167 135.9 3214.4
lstm 247060 7 2677 5060 610 305 121.8 2129 272.2 5767.3
proxy.6 206539 3 1025 3403 300 406 134.7 1720 174.3 3053.7
bnn 204601 3 382 5694 63 0 131.0 1184 17.2 2171.0
lenet 190809 34 140 7417 497 820 53.9 3250 671.4 5850.0
dnnweaver 189706 6 3531 5552 288 1139 82.4 2921 49.7 5258.4
tdarknet_like.small 157431 6 46 6974 90 3978 63.8 2657 217.4 16043.7
proxy.8 150264 7 1002 3047 367 378 110.9 1266 67.2 3325.1
proxy.5 147618 7 785 3199 283 236 108.1 1227 70.2 2768.5
bwave_like.float.small 84893 6 200 2625 144 358 129.1 936 14.2 1802.7
tpu_like.large.ws 78335 8 1190 3011 1066 116 100.2 961 87.9 8848.8
tpu_like.large.os 70946 5 1188 1596 1064 64 120.4 2028 95.4 8826.8
gemm_layer 64765 4 1779 2001 200 0 173.9 789 17.6 1897.6
bwave_like.fixed.large 54871 6 328 1299 562 511 104.2 1816 32.4 5938.8
attention_layer 54865 7 1089 1455 137 194 124.5 480 18.6 1328.6
conv_layer 37268 4 156 938 42 56 218.6 245 6.5 562.0
robot_rl 30529 6 387 1285 18 96 148.8 232 6.0 522.9
tpu_like.small.ws 27097 7 646 1034 278 58 118.8 288 15.1 2407.2
tpu_like.small.os 21962 5 644 538 276 32 156.7 416 13.9 2381.5
reduction_layer 18323 6 54 805 0 52 147.4 183 1.9 340.2
spmv 17734 6 99 503 32 232 178.4 221 4.0 946.1
bwave_like.fixed.small 16632 5 198 404 139 170 132.7 397 5.2 1293.1
eltwise_layer 16187 4 249 355 50 72 249.1 193 2.6 472.8
softmax 13177 10 552 512 53 0 114.6 126 2.3 492.1
conv_layer_hls 12097 3 3299 1717 12 21 151.1 102 12.2 3983.8

Frequency is in MHz, Routed Wirelength is 1000 length-1 segments, Elapsed Time is in minutes, and Peak Memory is in MBs.

0 0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M 1.6M

0

20k

40k

60k
tdarknet.large
tdarknet.small
bnn
conv_layer_hls
dla_like.large
lenet
reduction_layer
Rest
Trendline

Netlist Primitives

VT
R

Ru
nt

im
e

(s
ec

on
ds

)

0 0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M 1.6M

0

10M

20M

30M

40M

50M

tdarknet.large
tdarknet.small
bnn
conv_layer_hls
dla_like.large
lenet
reduction_layer
Rest
Trendline

Netlist Primitives

VT
R

Pe
ak

 M
em

or
y

(K
ilo

by
te

s)

Fig. 5: VTR runtime (top) and peak memory usage (bottom) for the
Koios benchmarks

linearly with the number of netlist primitives in the circuits.
There are some notable exceptions; lenet and tdarknet

designs have very high runtime for their number of netlist
primitives. Looking at the components of runtime, we see
that in most benchmarks, ABC (the tool that performs logic
optimization and techmapping in the VTR flow) takes more
time compared to Odin/Yosys and VPR. The bottom graph
in Fig. 5 plots the VTR flow peak memory usage for the
Koios benchmarks. The trendline shows a sub-linear growth in
peak memory requirement as the number of netlist primitives
increases. The lenet and tdarknet designs again have
very high memory usage for their size, and we observe that
VPR consumes the majority of used memory compared to
Odin/Yosys and ABC.

The routing heat maps for some Koios benchmarks are
shown in Fig. 6, where the lighter color correspond to higher
routing congestion. The routing heat maps look very different
for different designs, highlighting the diversity in routing
requirements and patterns of the benchmarks, which exercises
the placement and routing algorithms in different ways. Some
benchmarks have a very regular pattern (e.g. bnn), which
implies heavy usage of LBs (soft logic). In other benchmarks,
we see high routing congestion along columns of hard blocks
(e.g. dnnweaver).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 9

(a) bnn (b) clstm_like (c) conv_layer (d) eltwise_layer

(e) dla_like (f) lenet (g) bwave_like (h) deepfreeze.3

(i) proxy.2 (j) proxy.7 (k) dnnweaver (l) tpu.ws

Fig. 6: Routing utilization heatmaps for some Koios benchmarks

D. Statistical Analysis

To perform statistical analysis on the Koios 2.0 suite,
we collect a large number of metrics (35 metrics) for all
benchmarks. Some metrics other than those in Table IV are
logic depth, max non-global fanout, average wire segments per
net, max routing channel utilization, number of near critical
connections, number of blocks before and after clustering,
and the maximum number of wire segments used by a net.
However, it is difficult to manually investigate the data and
conduct meaningful analysis. Hence, we perform principal
component analysis (PCA) [55], [56] on the collected data,
which converts N variables into a smaller group of m linearly
uncorrelated variables known as the principal components
(PCs). In our analysis, we use m = 4. Each PC is a linear
combination of different features or variables with a certain
weight. The first PC covers the majority of the variance, and
subsequent PCs cover diminishing variances. By eliminating
components with lower variance values, the dimensionality of
the data set can be reduced. We also examine benchmark
similarity by hierarchically clustering them. The Euclidean
distance of various metrics (or variables) is used to calculate
how similar two benchmarks are. The output of this clustering
can be displayed as a tree or dendrogram in which smaller
linkage distance between two benchmarks indicates higher
similarity between their metrics.

Fig. 7 shows the dendrogram plot for the Koios benchmarks.
The x-axis shows the linkage distance between the different
benchmarks on the y-axis. The absolute value of the distance
does not matter, but the relative value between benchmarks
does, and the ordering of benchmarks on the y-axis has no
special significance. We can observe that there is no one
benchmark that is particularly unique. If we draw a vertical
line at linkage distance = 15 (for example), we can then divide
the benchmark suite into the 4 subsets shown in different
colors. A user with limited compute resources or in early stage
experiments can choose one or a few benchmarks from each
subset to get the maximum coverage for their experiments. As

0 5 10 15 20 25 30
Linkage distance

lenet
lstm

dnnweaver
proxy.4
proxy.1

bwave_like.float.large
tpu_like.large.ws
tpu_like.large.os
dla_like.medium

proxy.2
proxy.3

clstm_like.small
proxy.6
proxy.7
proxy.8
proxy.5

attention_layer
dla_like.small

bnn
bwave_like.fixed.large
bwave_like.float.small
bwave_like.fixed.small

tpu_like.small.ws
tpu_like.small.os

conv_layer
eltwise_layer

spmv
gemm_layer

reduction_layer
robot_rl
softmax

conv_layer_hls
tdarknet_like.small
tdarknet_like.large
deepfreeze.style3
deepfreeze.style1
deepfreeze.style2
clstm_like.medium
clstm_like.large
dla_like.large

Fig. 7: Dendrogram showing similarity between Koios 2.0
benchmarks

another example, this analysis shows that among the 8 proxy
benchmarks, {1,4}, {2,3} and {5,6,7,8} are three groups that
have very similar characteristics across the circuits in each
of them. This means that a user could choose one proxy
benchmark from each group as a representative benchmark
in case of limited resources/time. It also means that we can
use the proxy generator to design unique proxy benchmarks
that have higher linkage distances in the future.

Fig. 8 shows a scatter plot of all the Koios benchmarks
based on the first two PCs covering 65% of the variance
(50% in PC1 and 15% in PC2). The PCA analysis provides
coefficients for each of the metrics to identify the main
contributors to each PC. PC1 is mainly dominated by metrics
related to the size (netlist primitives, CLB usage, routing
wirelength, runtime). PC2 is dominated by average net length,
near critical connections, device size and frequency. The 4
benchmarks at the extreme opposites of PC1 and PC2 in
Fig. 8 are tdarknet_like.small, eltwise_layer,
bnn and dla_like.large. These 4 benchmarks belong
to different groups from the dendrogram in Fig. 7. We also
see that the proxy benchmarks appear towards the center of
the scatter plots, implying that they represent the common
benchmarks of the suite. Thus, if a user is constrained on
resources, a representative subset of the benchmark suite could
be the 4 extreme benchmarks and one or more of the proxy
benchmarks for example. The next two PCs cover a small
amount of variability (7.5% in PC3 and 6.5% in PC4). PC3 is
dominated by the logic depth and maximum routing channel
utilization. PC4 is dominated by maximum non-global fanout
and maximum net length.

V. COMPARISON TO OTHER BENCHMARK SUITES

A. Methodology

In this section, we compare various properties of our
Koios benchmarks to those of other existing non-DL-
targeted benchmarks that are commonly used to drive FPGA
architecture and CAD research. The most relevant suite for

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 10

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5
Principal Component 1

4

2

0

2

4

6

Pr
in

cip
al

 C
om

po
ne

nt
 2

dla_like.large
clstm_like.large
deepfreeze.style3
clstm_like.medium
deepfreeze.style1
dla_like.medium
deepfreeze.style2
proxy.2
clstm_like.small
tdarknet_like.large

proxy.4
proxy.1
bwave_like.float.large
proxy.3
dla_like.small
proxy.7
lstm
proxy.6
bnn
lenet

dnnweaver
tdarknet_like.small
proxy.8
proxy.5
bwave_like.float.small
tpu_like.large.ws
tpu_like.large.os
gemm_layer
bwave_like.fixed.large
attention_layer

conv_layer
robot_rl
tpu_like.small.ws
tpu_like.small.os
reduction_layer
spmv
bwave_like.fixed.small
eltwise_layer
softmax
conv_layer_hls

Fig. 8: Analyzing the Koios 2.0 benchmarks using PCA

comparison is the VTR benchmark suite, because these are
compatible with the same fully open source VTR flow. Other
existing suites are either too small and do not represent
realistic modern use cases of FPGAs or depend partially on
commercial CAD tools. For this comparison, we only use the
VTR benchmarks with more than 10, 000 netlist primitives
(9 benchmarks), which is a common practice in CAD-related
studies [57]. Smaller designs are not representative of realistic
benchmarks, and they cannot be used to derive any reliable
conclusions. We use the same VTR settings and architecture
file as in Section IV.

In addition, we also compare the Koios benchmarks to
the Titan23 benchmarks [15]. The Titan benchmarks are
not compatible with the fully open source VTR flow and
depend on the Intel Quartus tool to perform logic synthesis
and generate netlist BLIF files. Therefore, they can only
be placed and routed using the Stratix-IV-like architecture
capture in VTR, which limits their usability for FPGA
architecture studies. However, they are commonly used as
large representative benchmarks for FPGA CAD research and
for evaluating QoR of different CAD algorithms/flows. For this
comparison, we run the BLIF netlists of the Titan benchmarks
provided in the v1.3.1 release of Titan through VPR and the
Koios HDL benchmarks through the end-to-end VTR flow.
We use the same VPR settings from the official VTR Titan
regression tests for running both sets of benchmarks.

Finally, we also present a QoR comparison between VPR
and Quartus using the Koios benchmarks implemented on
the Stratix-IV FPGA architecture, since this is currently
the only Intel FPGA architecture with a corresponding
architecture capture in VTR. In this experiment, we run Intel
Quartus Prime 20.1 using the default compiler effort settings
(i.e. STANDARD_FIT mode). For a fair comparison to VPR
with auto layout, we set the Stratix-IV device in Quartus
to AUTO which automatically selects the smallest Stratix-IV
device that can fit the given design. On the other hand, we

(a) (b)

Fig. 9: Comparing circuit compositions of Koios & VTR
benchmarks: (a) DSP/BRAM to LB and (b) FF/adder to LUT ratios

synthesize the Koios benchmarks for Stratix IV using Intel
Quartus Prime 20.1 and then use the vqm2blif tool from the
Titan flow to generate Koios BLIF netlists. Then, we run them
through VPR with the same settings used for evaluating QoR
in [8]. We set the placement inner_num to 1.0, the router
astar_fac to 1.0, and the router iterations to 400. Both
Quartus and VPR were also given equivalent timing constraints
with an aggressive 1ns clock period target and paths to/from
external IOs constrained on a virtual IO clock as in [8].

B. Comparison to the VTR Benchmarks

Fig. 9a shows a scatter plot of the DSP and BRAM to LB
ratios for both the Koios (red) and VTR (blue) benchmarks
as metrics for their DSP and memory density. The individual
ratios for each of the benchmarks are shown by (×) symbols
while the average across the whole benchmark suite is marked
by the stars. The figure shows that, on average, the Koios
benchmarks are more DSP and memory rich than the VTR
benchmarks; it has 2.9× and 6.2× higher DSP to LB and
BRAM to LB ratios, respectively. The individual benchmarks
of the Koios suite are also more scattered and varying
across the spectrum of DSP and BRAM compositions. More
importantly, it shows that most of the VTR benchmarks have
very low DSP and BRAM densities (except for the only
stereovision2 outlier circuit), making them inadequate
for evaluating any DSP or BRAM architecture modifications.

Fig. 9b has a similar plot for FF and single-bit adder to LUT
ratios. It shows that the Koios suite has 1.28× higher ratio
between FFs and LUTs which reflects their deeply pipelined
nature, and 20% lower adder to LUT ratio compared to the
VTR suite. However, the average adder to LUT ratio of the
VTR suite is significantly skewed by a single benchmark
(stereovision2) which has 60, 753 1-bit adders and only
29, 541 LUTs. If we exclude this outlier, the Koios benchmarks
have a 1.4× higher average adder to LUT ratio.

Fig. 10 illustrates averages and ranges of key metrics for
both the Koios and VTR benchmark suites. Fig. 10a-d show
that the Koios benchmarks have 4.5× more netlist primitives,
4.9× larger non-global fanouts, 2.07× more near (top 10%)
critical connections, and 1.5× higher frequencies on average
compared to the VTR benchmarks. The Koios benchmarks are

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 11

(a) (b) (c) (d) (e) (f)

Fig. 10: Averages and ranges of key metrics of Koios 2.0 (Red) &
VTR (Blue) suites.

also scattered across a much wider range of values for each
of those metrics. Fig. 10e shows that Koios circuits have 20%
higher average routed wirelength per tile compared to VTR
benchmarks. Fig. 10f shows that the circuit with the highest
max routing utilization in Koios has 35% higher utilization
compared to the circuit with max routing utilization in VTR
benchmarks. Koios designs also have an average of 6 logic
levels on the critical path, compared to 30 levels for the
VTR benchmarks. This reflects the deeply pipelined nature of
these benchmarks, which is a key property of modern FPGA
designs.

C. Comparison to the Titan Benchmarks

Only 22 out of 23 Titan benchmarks were successfully
placed and routed. The largest circuit (gaussianblur)
failed with runtime exceeding 4 days, and therefore was
excluded from the comparison. On the other hand, some of the
Koios benchmarks consume more resources than that available
in the largest Stratix-IV device, and thus were excluded for
a fair comparison (since the Titan benchmarks had to be
synthesized through Quartus to a real Stratix-IV device). 6
out of the 40 Koios circuits were excluded for DSP/BRAM
limitations and another 11 were excluded for IO limitations,
leaving 23 Koios benchmarks valid for this comparison.

Both Titan and Koios 2.0 suites are heterogeneous - they
have a large number of DSPs and BRAMs. On average,
the 23 Koios designs have 2.17× DSPs, 0.66× memory
bits and 0.51× routed wirelength, compared to the 22 Titan
designs. Fig. 11a shows that the Koios benchmarks are smaller;
there are 2.06× more netlist primitives on average in Titan
benchmarks. Koios benchmarks have 3× lower max non-
global fanout (Fig. 11b) than Titan benchmarks. However,
Koios benchmarks have higher min, max and average number
of near-critical connections, compared to Titan benchmarks,
as seen in Fig. 11c. Koios benchmarks run at significantly
faster frequency (Fig. 11d) compared to Titan benchmarks.
The fastest Koios 2.0 design runs at 1.55× higher frequency
compared to the fastest Titan design. There are designs with
very low frequency (minimum=1.1MHz) in the Titan suite.
The average wirelength per tile (Fig. 11e) is 15% higher in
Koios benchmarks. Fig. 11f shows that Koios benchmarks
have a much wider range of maximum routing utilization,
compared to Titan benchmarks, although the max routing
utilization is high on average in Titan benchmarks. Overall,
both suites pose challenging problems to CAD flows, but there
are some peculiar characteristics of Koios 2.0 benchmarks,

(a) (b) (c) (d) (e) (f)

Fig. 11: Averages and ranges of key metrics of Koios 2.0 (Red) &
Titan (Blue) suites.

like high frequency and heavy DSP usage, owing to them
belonging to the DL domain.

D. QoR Comparison of VPR and Quartus

Table V presents the detailed QoR comparison of VPR and
Quartus for a subset of the Koios benchmarks that could fit on
Stratix-IV devices. For most of the benchmarks, VPR packed
denser logic clusters, resulting in 33% less Logic Blocks
(column ‘LB’) on average. Although denser logic clustering in
VPR was previously reported in [15] and later reduced in [8]
resulting in better critical path delays, the Koios benchmarks
show a much bigger difference in logic packing density
between VPR and Quartus compared to the 5% difference
in [8] which uses an older version of Quartus. VPR also
uses 42% more DSP Slices (column ‘DSP’) than Quartus,
with some benchmarks (e.g. bwave_like.fixed.large)
using up to 4×. The reason is that VPR, due to its generality,
cannot efficiently map multiplication primitives to DSP blocks
in its complex modes of operation. On the other hand, Quartus
searches for specific patterns in the circuit netlists that can
be efficiently mapped to the target device DSP blocks. For
BRAMs, the results show that VPR rarely makes use of the
bigger 144 Kb BRAMs (column ‘M144K’) which it uses
in only one benchmark (lenet). In contrast, Quartus uses
these bigger BRAMs in 7 other circuits, as indicated by the
BRAM counts in brackets in Table V. For these benchmarks,
VPR maps all logical memories to the smaller 9 Kb BRAMs
(column ‘M9K’) resulting in a 1.9× higher utilization of
these blocks when averaged across the 7 benchmarks, which
translates to a 24% increase across the whole suite. VPR also
results in 1.46× higher total routed wirelength (column ‘WL’)
and 1.36× longer critical path delays (column ‘CP’) compared
to Quartus. These gaps are higher than the 1.26× higher total
routed wirelength and 1.2× longer critical path delay reported
in [8] on the less heterogeneous and less DSP-intensive Titan
benchmarks. These bigger gaps can be attributed to the less
efficient packing and mapping of hard blocks discussed above
which are more heavily used in the Koios benchmarks, and
also their deeply pipelined nature. This highlights the value
of having more challenging benchmarks that can exercise the
CAD tools in different ways.

VI. CASE STUDIES

Koios benchmarks are architecture-agnostic and do not
depend on commercial tools for any portion of the FPGA
CAD flow. Thus, they can be used to perform flexible FPGA

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 12

TABLE V: VPR and Quartus QoR comparison on Koios. Numbers
are ratios of VPR:Quartus results, ‘–’ represents unutilized resource

for both, and numbers in brackets are the absolute count of
resources used by Quartus when VPR used none.

Benchmark LB DSP M9K M144K WL CP
attention_layer 0.67 0.69 1.07 – 0.73 1.03
bnn 0.84 – – – 0.54 1.33
bwave_like.fixed.large 0.86 4.00 1.00 – 2.23 1.58
bwave_like.fixed.small 0.37 4.00 1.00 – 2.18 1.59
bwave_like.float.large 0.76 3.00 1.00 – 1.23 1.02
bwave_like.float.small 0.53 2.96 1.00 – 2.62 1.29
conv_layer 0.53 0.89 1.00 – 1.41 1.7
dla_like.large 1.15 1.73 1.27 (24) 1.35 1.25
dla_like.medium 1.10 1.67 1.42 (12) 2.04 1.14
dla_like.small 0.95 0.76 1.58 (6) 1.54 1.04
eltwise_layer 0.57 0.50 1.00 – 1.30 1.36
lenet 0.80 0.85 0.77 1.00 1.37 1.55
proxy.1 0.89 3.00 1.00 – 1.06 1.14
proxy.2 0.68 1.23 1.87 (60) 2.52 2.24
proxy.3 0.52 0.92 2.10 (60) 1.54 1.15
proxy.5 0.46 0.93 2.99 (16) 1.33 1.64
proxy.7 0.66 0.88 2.77 (48) 1.36 1.44
reduction_layer 0.76 – 1.00 – 0.97 1.44
robot_rl 0.78 2.00 1.00 – 1.35 1.15
softmax 0.68 0.63 – – 1.01 1.17
spmv 0.62 1.00 1.00 – 1.54 1.23
tpu_like.small.os 0.35 2.79 1.00 – 2.87 1.88
tpu_like.small.ws 0.50 1.89 1.00 – 2.16 1.55
Geomean 0.67 1.42 1.24 1.46 1.36

Baseline …

Denser …

Densest …

Baseline …

DSP-heavy …

BRAM-heavy …

(a)

(b)

Fig. 12: FPGA layouts for the architectures used in our case studies.
Blue = Logic Block, Green = Block RAM, Red = DSP Slice

Fig. 13: Effect of varying the density of DSPs and BRAMs on
Koios 2.0 and VTR benchmark suites

architecture and CAD exploration using the fully-open-source
VTR flow. In this section, we present three example case
studies to demonstrate that.

A. Case Study 1: Hard Blocks to Soft Logic Ratio

As shown in Table IV, our DL-focused circuits are highly
heterogeneous (i.e. DSP and BRAM intensive). Thus, in our
first case study, we vary the density of these hard blocks with
respect to soft logic. We experiment with 3 different density
levels, as shown in Fig. 12a, with 1:7, 1:3, and 1:1 ratio
between hard block and soft logic columns for the baseline,
denser, and densest architecture variations, respectively. We
evaluate all three architecture variations using both Koios and
VTR benchmarks. Fig. 13 shows the geomean frequency and

TABLE VI: Effect of varying the FPGA’s DSP to BRAM ratio

Metric Arch. Geo-
mean

DSP-heavy
tpu_like(L)

BRAM-heavy
tdarknet_like(L)

Freq.
Baseline 125.6 102.5 86.2

DSP-heavy 124.9 110.4 92.0
BRAM-heavy 126.2 106.0 114.6

WL
Baseline 1065K 749K 3105K

DSP-heavy 1065K 720K 3343K
BRAM-heavy 1098K 781K 3106K

Grid
Baseline 109×109 224×224 190×190

DSP-heavy 110×110 210×210 232×232
BRAM-heavy 111×111 228×228 167×167

Frequency is in MHz, Wirelength (WL) is in units of length 1 wires.

total routed wirelength for both suites. For the DL-oriented
Koios benchmarks, the frequency increases and wirelength
decreases as the density of hard blocks increases. Since
these benchmarks heavily utilize these blocks, increasing
their density in the FPGA grid brings them closer to each
other, which in turn reduces the critical path delays and
total length of used wires. The densest architecture variation
results in a 5.2% increase in frequency and 22% reduction
in total wirelength on average across all benchmarks in the
Koios suite. For the VTR benchmarks, wirelength is slightly
improved for the denser variation (4% lower), before getting
worse for the densest architecture. The frequency degrades for
both denser and densest architectures. These results show that
a higher density of DSPs and BRAMs is favorable for building
DL-optimized FPGAs, at the cost of a slight or no degradation
in QoR for the general VTR benchmarks (in the densest and
denser architecture variations respectively).

B. Case Study 2: DSP to BRAM Ratio

In our first case study, we varied the ratio of hard
blocks to soft logic while keeping a fixed 1:1 DSP to
BRAM ratio. For the second case study, we carry over
the best architecture variation for DL benchmarks from
the first case study (i.e. densest). However, we vary the
DSP to BRAM ratio between 2:1 and 1:2 to create DSP-
heavy and BRAM-heavy variations respectively (in addition
to the baseline with 1:1 ratio), as shown in Fig. 12b. Table
VI presents the results of this experiment. It shows the
geomean frequency, routed wirelength, and FPGA grid size
for the whole Koios suite, as well as the results for a DSP-
intensive benchmark (medium tpu_like.large.ws) and
a BRAM-intensive benchmark (tdarknet_like.large).
The geomean results do not show a strong trend that clearly
favors a specific architecture. However, we observe that the
DSP-heavy tpu_like.large.ws design has 7.7% higher
frequency and 4% lower wirelength when implemented on the
DSP-heavy architecture compared to the baseline. Similarly,
the BRAM-heavy tdarknet_like.large benchmark has
33% higher frequency and requires a 23% smaller device when
implemented on the BRAM-heavy architecture compared to
the baseline. This highlights that Koios strikes a good balance
between different circuit compositions and can be reliably used
for DL-optimized FPGA architecture exploration.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 13

100 200 300 400

0.95M

1M

1.05M

1.1M

1.15M

1.2M

1.25M VPR 8.0
RLPlace

Runtime (sec)

Es
t.

W
ir

el
en

gt
h

100 200 300 400
6.3

6.4

6.5

6.6

6.7

6.8

6.9
VPR 8.0
RLPlace

Runtime (sec)

Es
t.

CP
D

 (n
s)

Fig. 14: Comparison of RLPlace and VPR8 on different runtime
points for the Koios benchmarks

C. Case Study 3: RLPlace Behavior
RLPlace [58] is a simulated-annealing-based FPGA placer

built on top of VPR8 [8] infrastructure. RLPlace proposes
the use of multiple smart directed perturbations and a
reinforcement learning (RL) agent to balance between the
different move types and pick the most efficient one based on
the architecture, design, and annealing stage. RLPlace results
in 2× faster placement on the VTR and Titan23 benchmarks
[58]. In this case study, we use the Koios benchmarks to
compare the performance of the baseline VPR 8 placer [8]
and RLPlace [58]. As CPU runtime and the QoR are both
important metrics, we compare the quality/runtime tradeoff
curve for both tools by varying the number of moves per
annealing temperature. Fig. 14 shows the quality/runtime
tradeoff for the post-placement estimated wirelength (WL)
and critical path delay (CPD) obtained on all the Koios
benchmarks. To avoid CAD noise, the results of each design
are averaged first over three different seeds. Then, all the
results are geometrically averaged to get a single data point
on the curve.

The results show that RLPlace is outperforming the VPR
8 placer in all the tradeoff points. This means that RLPlace
can get the same or better QoR in 50% of the runtime and it
can achieve better QoR for both timing and wirelength at the
same runtime budget. These results match (and outperform for
CPD) what was reported by RLPlace on the VTR and Titan
benchmarks, giving more credibility to the gains of RLPlace.
Fig. 15 shows the move type distribution (i.e. the number of
times each move type was chosen by the RL agent) at each
annealing temperature for 2 Koios designs. Compared to the
patterns of the RL agent’s choices reported by RLPlace in
[58], some of the designs in Koios have totally different and
unique patterns. For example, Fig. 15 shows how the agent
prefers the Median move over all the other move types most
of the annealing time for the bwave_like.float.large
design (which was not the case for any VTR/Titan designs).
Another example shown is the eltwise_layer benchmark,
in which the RL agent prefers the random move starting from
the middle of the anneal to its end. While these results show
that the RL agent can learn to automatically adjust its online
decisions to maximize QoR/performance, they also highlight
the importance of using a variety of benchmarks to evaluate
new CAD algorithms.

VII. CONCLUSION

In this paper, we present Koios 2.0, a DL-focused
benchmark suite for FPGA architecture and CAD research.

eltwise_layerbwave_like.float.large

Fig. 15: Number of every move type chosen at each annealing
temperature for different designs

This suite is a diverse collection of 40 curated benchmarks
covering various facets of the DL acceleration landscape. The
Koios 2.0 suite is open-sourced as a part of VTR, and we
highly encourage the FPGA community to contribute to this
benchmark suite to help build a better and bigger set of
DL benchmarks that can guide the design of future FPGA
architectures and CAD algorithms.

ACKNOWLEDGEMENT

We are thankful to Alireza Azadi of the University of New
Brunswick, and Sara Mahmoudi and Kimia Talaei from the
University of Toronto for their help with debugging issues
in CAD tools (ODIN and VPR). We would like to thank
Helen Dai and Zach Zheng from the University of Toronto,
and Aatman Borda, Daniel Rauch, Aishwarya Rajen, Samidh
Mehta and Pragnesh Patel from the University of Texas at
Austin for contributing to the benchmarks. We are grateful to
the National Science Foundation (grant number 1763848), the
Vector Institute for AI, and the Intel/VMWare Crossroads 3D
FPGA Academic Research Center for funding support.

REFERENCES

[1] M. Hall and V. Betz, “HPIPE: Heterogeneous Layer-Pipelined
and Sparse-Aware CNN Inference for FPGAs,” arXiv preprint
arXiv:2007.10451, 2020.

[2] A. Boutros et al., “Beyond Peak Performance: Comparing the Real
Performance of AI-Optimized FPGAs and GPUs,” in International
Conference on Field Programmable Technology (FPT), 2020.

[3] M. Langhammer et al., “Stratix 10 NX Architecture and Applications,”
in International Symposium on Field-Programmable Gate Arrays
(FPGA), 2021.

[4] E. Nurvitadhi et al., “Why Compete When You Can Work Together:
FPGA-ASIC Integration for Persistent RNNs,” in International
Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2019.

[5] S. Ahmad et al., “Xilinx First 7nm Device: Versal AI Core (VC1902),”
in Hot Chips Symposium, 2019.

[6] J. Zhang et al., “Frequency Improvement of Systolic Array-Based
CNNs on FPGAs,” in International Symposium on Circuits and Systems
(ISCAS), 2019.

[7] A. Boutros and V. Betz, “FPGA Architecture: Principles and
Progression,” IEEE Circuits and Systems Magazine, vol. 21, no. 2, pp.
4–29, 2021.

[8] K. E. Murray et al., “VTR 8: High Performance CAD and Customizable
FPGA Architecture Modelling,” ACM Transactions on Reconfigurable
Technology Systems (TRETS), vol. 13, no. 2, 2020.

[9] A. Arora et al., “Koios: A Deep Learning Benchmark Suite for FPGA
Architecture and CAD Research,” in International Conference on Field-
Programmable Logic and Applications (FPL), 2021.

[10] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0,” 1991.

[11] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing
Tool for FPGA Research,” in International Conference on Field-
Programmable Logic and Applications (FPL), 1997.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 14

[12] J. Allen. (2006) UMass RCG HDL Benchmark Collection. [Online].
Available: http://www.ecs.umass.edu/ece/tessier/rcg/benchmarks/

[13] P. Jamieson et al., “Benchmarking and Evaluating Reconfigurable
Architectures Targeting the Mobile Domain,” ACM Transactions on
Design Automation of Electronic Systems, vol. 15, no. 2, 2010.

[14] D. Chang et al., “ERCBench: An Open-Source Benchmark Suite for
Embedded and Reconfigurable Computing,” International Conference
on Field Programmable Logic and Applications (FPL), 2010.

[15] K. E. Murray et al., “Timing-Driven Titan: Enabling Large Benchmarks
and Exploring the Gap between Academic and Commercial CAD,” ACM
Transactions on Reconfigurable Technology Systems, vol. 8, no. 2, 2015.

[16] “Berkeley logic interchange format (blif),” 1996.
[17] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin,

J. Featherston, Y.-H. Lai, G. Liu, G. A. Velasquez, W. Wang, and
Z. Zhang, “Rosetta: A Realistic High-Level Synthesis Benchmark
Suite for Software Programmable FPGAs,” in Proceedings of the
2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’18. New York, NY, USA: Association for
Computing Machinery, Feb 2018, p. 269–278. [Online]. Available:
https://doi.org/10.1145/3174243.3174255

[18] Q. Gautier, A. Althoff, P. Meng, and R. Kastner, “Spector: An OpenCL
FPGA benchmark suite,” in 2016 International Conference on Field-
Programmable Technology (FPT), Dec 2016, p. 141–148.

[19] Achronix Semiconductor. (2019) Speedster7t FPGAs. [Online].
Available: https://www.achronix.com/product/speedster7t/

[20] M. Eldafrawy et al., “FPGA Logic Block Architectures for Efficient
Deep Learning Inference,” ACM Transactions on Reconfigurable
Technology Systems (TRETS), vol. 13, no. 3, 2020.

[21] A. Boutros et al., “Embracing Diversity: Enhanced DSP Blocks for Low-
Precision Deep Learning on FPGAs,” in International Conference on
Field Programmable Logic and Applications (FPL), 2018.

[22] S. Rasoulinezhad et al., “PIR-DSP: An FPGA DSP Block Architecture
for Multi-precision Deep Neural Networks,” in International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2019.

[23] A. Arora et al., “Tensor Slices to the Rescue: Supercharging ML
Acceleration on FPGAs,” in International Symposium on Field-
Programmable Gate Arrays (FPGA), 2021.

[24] X. Wang et al., “Compute-Capable Block RAMs for Efficient Deep
Learning Acceleration on FPGAs,” in International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2021.

[25] A. Arora et al., “CoMeFa: Compute-in-Memory Blocks for FPGAs,” in
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2022.

[26] U. Aydonat et al., “An OpenCL Deep Learning Accelerator on Arria
10,” in International Symposium on Field-Programmable Gate Arrays
(FPGA), 2017.

[27] A. Boutros et al., “You Cannot Improve What You Do Not Measure:
FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network
Inference,” ACM Transactions on Reconfigurable Technology Systems
(TRETS), vol. 11, no. 3, 2018.

[28] S. Wang et al., “C-LSTM: Enabling Efficient LSTM Using Structured
Compression Techniques on FPGAs,” in International Symposium on
Field-Programmable Gate Arrays (FPGA), 2018.

[29] P. Whatmough et al., “FixyNN: Energy-Efficient Real-Time Mobile
Computer Vision Hardware Acceleration via Transfer Learning,” in
Proceedings of Machine Learning and Systems, 2019.

[30] J. Redmon. (2018) Tiny darknet. [Online]. Available: https://pjreddie.
com/darknet/tiny-darknet/

[31] J. Fowers et al., “A Configurable Cloud-Scale DNN Processor for Real-
Time AI,” in International Symposium on Computer Architecture (ISCA),
2018.

[32] J. Ngadiuba et al., “Compressing Deep Neural Networks on FPGAs to
Binary and Ternary Precision with hls4ml,” Machine Learning: Science
and Technology, vol. 2, no. 1, 2020.

[33] Y. Lecun et al., “Gradient-based Learning Applied to Document
Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[34] H. Sharma et al., “From High-level Deep Neural Models to FPGAs,” in
International Symposium on Microarchitecture (MICRO), 2016.

[35] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in International Symposium on Computer Architecture
(ISCA), 2017.

[36] A. Vaswani et al., “Attention is All You Need,” in International
Conference on Neural Information Processing Systems (NeurIPS), 2017.

[37] S. Spanò et al., “An Efficient Hardware Implementation of
Reinforcement Learning: The Q-Learning Algorithm,” IEEE Access,
vol. 7, 2019.

[38] L. Da Silva et al., “Parallel Implementation of Reinforcement Learning
Q-Learning Technique for FPGA,” IEEE Access, vol. 7, 2019.

[39] J. Fowers et al., “A High Memory Bandwidth FPGA Accelerator for
Sparse Matrix-Vector Multiplication,” in International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2014.

[40] Xilinx. (2017) Gemx. [Online]. Available: https://github.com/Xilinx/
gemx

[41] Z. Wei et al., “Design Space Exploration for Softmax Implementations,”
in International Conference on Application-specific Systems,
Architectures and Processors (ASAP), 2020.

[42] B. Darvish Rouhani et al., “Pushing the Limits of Narrow Precision
Inferencing at Cloud Scale with Microsoft Floating Point,” Advances in
Neural Information Processing Systems (NeurIPS), 2020.

[43] S. Wang and P. Kanwar. BFloat16: The Secret to High Performance
on Cloud TPUs. https://cloud.google.com/blog/products/ai-machine-
learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus.

[44] R. Panda and L. K. John, “Proxy Benchmarks for Emerging Big-Data
Workloads,” in International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2017.

[45] S. Song et al., “Proxy-Guided Load Balancing of Graph Processing
Workloads on Heterogeneous Clusters,” in International Conference on
Parallel Processing (ICPP), 2016.

[46] P. Jamieson et al., “Odin II: An Open-Source Verilog HDL Synthesis
Tool for CAD Research,” in 2International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 2010,
pp. 149–156.

[47] S. A. Damghani et al., “Yosys+Odin-II: The Odin-II Partial Mapper with
Yosys Coarse-grained Netlists in VTR,” in International Symposium on
Field-Programmable Gate Arrays (FPGA), 2022.

[48] C. Wolf, “Yosys Open SYnthesis Suite,” https://yosyshq.net/yosys/.
[49] S. A. Damghani et al., “Desired Footprint by Technology Mapping

Modification using a Genetic Algorithm in Odin II,” in International
Workshop on Rapid System Prototyping (RSP), 2020.

[50] G. Krylov et al., “Hard and Soft Logic Trade-offs for Multipliers in
VTR,” in Euromicro Conference on Digital System Design (DSD), 2020.

[51] E. Hung, “Mind the (Synthesis) Gap: Examining Where Academic
FPGA Tools Lag Behind Industry,” in International Conference on Field
Programmable Logic and Applications (FPL), 2015.

[52] S. Yazdanshenas and V. Betz, “COFFE2: Automatic Modelling and
Optimization of Complex and Heterogeneous FPGA Architectures,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 12, no. 1, 2019.

[53] Arizona State University. (2012) Predictive Technology Model.
[Online]. Available: http://ptm.asu.edu/

[54] Intel. (2019) Intel Agilex FPGAs and SOCs.
[Online]. Available: https://www.intel.com/content/www/us/en/products/
programmable/fpga/agilex.html

[55] G. Dunteman, Principal Components Analysis. Sage Publications, 1989.
[56] R. Panda et al., “Wait of a Decade: Did SPEC CPU 2017 Broaden

the Performance Horizon?” in International Symposium on High
Performance Computer Architecture (HPCA), 2018.

[57] M. Elgammal et al., “Learn to Place: FPGA Placement Using
Reinforcement Learning and Directed Moves,” in International
Conference on Field Programmable Technology (FPT), 2020.

[58] ——, “RLPlace: Using Reinforcement Learning and Smart Perturbations
to Optimize FPGA Placement,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2021.

Aman Arora is a Ph.D. candidate in the Department
of Electrical and Computer Engineering at The
University of Texas at Austin. His research interests
are in the areas of reconfigurable computing,
domain-specific acceleration and machine learning.
His work received a Best Paper Award at the
IEEE FCCM conference in 2022, and he currently
holds a fellowship from the UT Austin Graduate
School. He has over 10 years of experience in
the semiconductor industry in design, verification,
testing and architecture roles. Most recently, he

worked in the GPU architecture group at NVIDIA. He obtained his B.Tech.
degree from National Institute of Technology, Kurukshetra, India.

http://www.ecs.umass.edu/ece/tessier/rcg/benchmarks/
https://doi.org/10.1145/3174243.3174255
https://www.achronix.com/product/speedster7t/
https://pjreddie.com/darknet/tiny-darknet/
https://pjreddie.com/darknet/tiny-darknet/
https://github.com/Xilinx/gemx
https://github.com/Xilinx/gemx
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://yosyshq.net/yosys/
http://ptm.asu.edu/
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 00, NO. 00, MONTH 0000 15

Andrew Boutros received the B.Sc. degree in
electronics engineering from the German University
in Cairo, in 2016, and the M.A.Sc. degree in
electrical and computer engineering from the
University of Toronto, in 2018, where he is currently
pursuing the Ph.D. degree. He was a Research
Scientist at the Intel’s Accelerator Architecture
Laboratory, before he returned to the University
of Toronto. His research interests include FPGA
architecture and CAD, deep learning acceleration,
and domain-specific architectures. He is an affiliate

of the Intel/VMware Crossroads 3D-FPGA Academic Research Center, Vector
Institute for Artificial Intelligence, and Center for Spatial Computational
Learning. He received three best paper awards at Reconfig 2016, FPL 2018,
and ICM 2021.

Seyed Alireza Damghani is a software engineer
at Intel with a proven track record of research
accomplishments, having earned an M.Sc. and B.Sc.
in Computer Science. With considerable experience
in designing and developing software, he has made
notable contributions to the development of large-
scale CAD systems. He has demonstrated his
commitment to the open-source community through
his work as a developer for the Verilog-to-Routing
EDA tool, where he introduced the Yosys+Odin-II
front end into the flow.

Karan Mathur received a bachelor’s degree in
Electrical and Electronics Engineering from Birla
Institute of Technology and Science (BITS) Pilani,
India. He worked on the Koios benchmarks as an
undergraduate research intern at the University of
Texas at Austin. During his time at BITS he was the
student coordinator of Team Anant, a student team
building a 3U CubeSat satellite with a hyperspectral
camera as its payload. He is currently a professional
working on design verification in the semiconductor
industry in India.

Vedant Mohanty is currently a professional
working in the semiconductor industry in India. He
was a part-time undergraduate intern at University
of Texas at Austin. He received a bachelor’s degree
with distinction in Electronics and Communication
Engineering from Birla Institute of Technology and
Science Pilani, Goa, India. His research interests
include hardware acceleration for machine learning,
neuromorphic computing and FPGA design.

Tanmay Anand is currently a graduate student
at University of Wisconsin-Madison. Previously, he
was a research intern at University of Texas at
Austin from Fall 2021 to Summer 2022, during
which he worked on Koios 2.0. He completed his
undergraduate degree in Electrical and Electronics
Engineering from Birla Institute of Technology and
Science, Pilani, India. His research interests include
heterogenous systems and reconfigurable computing.

Mohamed A. Elgammal is a Ph.D. candidate at
the University of Toronto. His research interests
include CAD tools, FPGAs, and reinforcement
learning. Elgammal received the B.Sc. and
M.A.Sc degrees (Hons.) in electronics engineering
from Cairo University, Egypt. He is an affiliate
of the Intel/VMware Crossroads 3D-FPGA
Academic Research Center and Center for Spatial
Computational Learning.

Kenneth B. Kent has been a Professor in the Faculty
of Computer Science since 2002. He is the Barrett
Chair in Entrepreneurship for Digital Transformation
and the Director of the Center for Advanced Studies
– Atlantic. Dr. Kent is an Honorary Professor
at Hochschule Bonn-Rhein-Sieg, where he is also
involved in research through the Institute for
Visual Computing and the Department of Computer
Science. Dr. Kent’s research interests include FPGA
CAD tools, parallel and distributed systems, service
and cloud computing, virtual machines/runtimes and

software engineering. He has published more than 200 scientific works via
journals, conferences and patents.

Vaughn Betz received his B.Sc. degree in electrical
engineering from the University of Manitoba in
1991, his M.S. degree in electrical and computer
engineering from the University of Illinois at
Urbana–Champaign in 1993, and his Ph.D. degree
in electrical and computer engineering from the
University of Toronto in 1998. He is the original
developer of the widely used VPR FPGA placement,
routing and architecture evaluation CAD flow, and a
lead developer in the VTR project that is built upon
VPR. He co-founded Right Track CAD to develop

new FPGA CAD tools and architectures, and joined Altera upon Right Track
CAD’s acquisition. Dr. Betz spent 11 years at Altera (now part of Intel),
ultimately as Senior Director of software engineering. He is currently a
professor at the University of Toronto. He holds 101 US patents and has
published over 100 technical articles in the FPGA area, fifteen of which have
won best or most significant paper awards. He is a Fellow of the IEEE, the
National Academy of Inventors and the Engineering Institute of Canada, and
a Faculty Affiliate of the Vector Institute for Artificial Intelligence.

Lizy K. John holds the Truchard Foundation Chair
in Engineering in the Department of Electrical
& Computer Engineering at The University of
Texas at Austin. Her research is in the areas
of computer architecture, hardware architectures
for machine learning, performance evaluation
and benchmarking, workload characterization, and
reconfigurable computing. She holds 16 U. S. patents
and has published four books, 16 book chapters,
300+ refereed journal and conference publications.
She is the Editor-in-Chief of IEEE Micro, and has

served in the editorial boards of IEEE Transactions on Computers, IEEE
Transactions on VLSI, IEEE Transactions on Sustainable Computing, IEEE
Computer Architecture Letters, ACM Transactions on Architectures and Code
Optimization. She is an IEEE Fellow, ACM Fellow, and Fellow of the National
Academy of Inventors.

