
Proxy Benchmarks for Emerging Big-data Workloads

Reena Panda and Lizy Kurian John

The University of Texas at Austin

reena.panda@utexas.edu, ljohn@ece.utexas.edu

Abstract—Early design space evaluation of computer systems
is usually performed using performance models (e.g., detailed
simulators, RTL-based models, etc.). However, it is very chal-
lenging (often impossible) to run many emerging applications on
detailed performance models owing to their complex software-
stacks and long run times. To overcome such challenges in
benchmarking these complex applications, we propose a proxy
generation methodology, PerfProx to generate miniature proxy
benchmarks, which are representative of the performance of real-
world applications and yet, converge to results quickly and do not
need any complex software-stack support. Past proxy generation
research utilizes detailed micro-architecture independent metrics
derived from detailed simulators, which are often difficult to
generate for many emerging applications. PerfProx enables fast
and efficient proxy generation using performance metrics derived
primarily from hardware performance counters. We evaluate
the proxy generation framework on three modern databases
(Cassandra, MongoDB and MySQL) running data-serving and
data-analytics applications. The proxy benchmarks mimic the
performance (IPC) of the original applications with ∼94%
accuracy, while significantly reducing the instruction count.

I. INTRODUCTION

Early computer design evaluation is performed using per-
formance models such as execution-driven simulators or RTL-
based models. However, several emerging applications are
often complex targets to evaluate on early performance models
owing to their complex software-stacks, significantly long run
times, system dependencies, etc. Moreover, detailed perfor-
mance models are significantly slower than real hardware that
makes it difficult to analyze complete execution characteristics
of these long-running applications. A set of standard bench-
marks are typically used for performing computer design space
exploration. Cloudsuite [1] and BigDataBench [2] benchmark
suites have been recently proposed to represent the broad range
of emerging big-data applications. Few research studies [3]
have also tried to simplify database benchmarking by using
smaller data-sets etc. However, these efforts suffer from similar
challenges as the real-world applications, i.e., they rely on
the ability of early performance models to support complex
software stacks with back-end database support. On the other
hand, benchmarks like SPEC CPU2006 [4] are comparatively
simpler targets for performance evaluation but several prior
research studies [2], [5] have showed that their performance
behavior is very different from the big-data applications.

In order to overcome the difficulties in evaluating emerging
applications, in this paper, we propose a proxy synthesis
methodology, “PerfProx”, to create miniature proxy bench-
marks that are representative of the performance of real-world
database applications and yet, converge to results quickly and
do not need any complex software-stack support. Past research
on proxy generation [6], [7] utilizes micro-architecture inde-
pendent metrics derived from detailed functional simulators,
which are often very difficult to generate for many emerging
applications. Program profilers such as Pin [8] also face diffi-
culties when dealing with Java based databases etc. PerfProx
enables fast and efficient proxy generation for such applica-
tions using performance metrics derived primarily from hard-

ware performance counters. Several big-data workloads do not
work reliably with many profiling tools and thus, performance-
counter based characterization and associated extrapolation
into generic parameters that the code generator can take is
an important contribution. We evaluate the effectiveness of
the proxy benchmarks using three real-world databases (Cas-
sandra [9], MongoDB [10] and MySQL [11]) running data-
serving and data-analytics applications and demonstrate that
the proxy benchmarks closely follow the performance behavior
of the original applications while significantly reducing the
instruction counts. The mean error in IPC between the proxy
benchmarks and the database applications is 5.1% for data-
serving applications and 6.5% for data-analytics applications.

II. METHODOLOGY

The proposed proxy benchmark generation framework is
shown in Figure 1. During the workload characterization step
A©, PerfProx characterizes the low-level dynamic execution
characteristics of the database application using the following
metrics: (i) Instruction mix (IMIX) - PerfProx captures the
IMIX of the original application (categorized into fraction of
loads, stores, control instructions, etc.) using hardware per-
formance counters; (ii) Control-flow performance - PerfProx
estimates the average branch transition rate of the database
application in a directly correlated fashion based on the appli-
cation’s branch misprediction rate (measured using hardware
performance counters). It assigns an appropriate transition rate
to the component branch instructions of the proxy benchmark
to achieve this target branch transition rate; (iii) Memory
access model - PerfProx models data memory accesses using
strided stream classes over fixed-size data arrays. PerfProx
calculates the memory strides by using a pre-computed table
that holds the correlation between L1/L2 cache hit rates and the
corresponding stride values [6]. TLB performance is modeled
by controlling the degree of concurrency within the active
memory streams. The proxy data footprint is scaled based on
the data-set size of the database application; (iv) Instruction-
level parallelism (ILP) - PerfProx models application ILP
using the inter-instruction dependency distance metric. Perf-
Prox estimates the application’s inter-instruction dependency
distance based on the measured dependency-related stall events
of the database application; (v) System activity - PerfProx

Real-world 

Database 

Application
MEM 

INS1

ADD R1, R2, R3

LD R4, R1, R6

MUL R3. R6, R7

STORE R4. R1. #2

INS2

INS3

INS4

MEM 

INS5

BR 

INS6

INS7

INS8

INS9

MEM 

INS10

INS11

INS12

INS13

INS14

MEM 

INS15

BR 

INS16

Workload 

characterization

Generate 

Workload Profile

Workload-

specific 

Profile

Workload 

Synthesis 

Algorithm

Proxy 

Benchmark

C

A

B

D

BR

BR
BR

BR

0.8
0.2

1.0
1.0

0.9 0.1

Nested loops 

with basic 

blocks

Conditional 

test 

instructions 

satisfying 

target branch 

transition rate

Register 

assignment and 

code 

generation

Memory access stream 

assignment satisfying target 

memory access pattern

Stream A

Stream B

Stream C

Stream N

(a) (b)

charac

A

Worklo

B

C

Fig. 1: Proxy generation framework



-20

-15

-10

-5

0

5

10

15

20

0

0.4

0.8

1.2

1.6

%
 E

rr
o

r 
in

 I
P

C

In
st

ru
ct

io
n

s 
P

e
r 

C
y
cl

e

Actual Proxy Error ρ = 0.99

Fig. 2: IPC of real databases and proxy applications

tracks system activity using the STRACE tool and the fraction
of executed user-mode and kernel instructions measured using
hardware performance counters.

Together, the above metrics form a unique “workload-
specific profile” for the database application that summarizes
the application’s low-level runtime behavior over its entire ex-
ecution. The workload synthesis algorithm uses this workload-
specific profile to generate the proxy benchmark C©. Synthe-
sizing using statistics rather than the actual source code hides
the functional meaning of code/data, which can address any
proprietariness concerns about sharing end-user workloads. To
generate the proxy, PerfProx first estimates the number of
static basic blocks to instantiate in the proxy benchmark. It
then chooses a basic block based on its access frequency and
assigns its size to satisfy the mean and standard deviation of the
target basic block size. For every basic block, PerfProx assigns
the individual instructions an appropriate instruction type (last
instruction is always a conditional branch), dependency dis-
tance, memory stride (for memory operations) etc. System calls
are injected based on the target system call frequency. These
steps are repeated till the target number of static basic blocks
are generated. Finally, the generated instruction sequence is
nested under a two-level loop, where the inner loop controls the
dynamic data footprint and the outer loop controls the dynamic
instruction count of the proxy benchmark. The outer loop
iterations reset each data-stream access to the first element of
the memory array. The proxy synthesizer generates C-language
based proxy benchmarks with embedded x86-based assembly
instructions using the asm construct.

III.EXPERIMENTAL SETUP

In this paper, we evaluate both data-serving and data-
analytics applications using the Yahoo! Cloud Serving Bench-
mark (YCSB)[12] (in-memory setup, ∼12GB data-set) and
TPC-H benchmarks [13] (∼10GB data-set) respectively. The
applications are setup using three popular, modern NoSQL and
SQL back-end databases (Cassandra, MongoDB and MySQL).
Characterization and generation of proxy benchmarks is per-
formed on 64-bit Intel Xeon servers, with 4 out-of-order cores,
2-level cache hierarchy, 16GB DRAM memory and running at
a frequency of 2GHz. The proxy benchmarks are compiled
using gcc with the -O0 optimization flag to avoid compiler
optimizations (e.g., dead code removal). We use Linux perf
tool [14] to measure the hardware performance of applications.
Intel’s Pin tool [8] is used for performing micro-architecture
independent workload characterization.

IV.RESULTS AND ANALYSIS

Figure 2 compares the instructions per cycle (IPC) of
Cassandra, MySQL and MongoDB databases running the
YCSB and TPC-H benchmarks along with their corresponding

proxies. The IPC of the proxy benchmarks closely follow the
IPC of the original applications, with a high correlation (ρ
= 0.99). The mean error in IPC is 6.1% (max 10.7% for
MongoDB) across all workloads. Considering the data-serving
applications alone, the average error in IPC between the proxy
and the actual application is 5.1%, while the data-analytics
applications have an average error of 6.5%. The dynamic
instruction count of the proxy benchmarks is also ∼528 times
smaller than the database applications, which can significantly
reduce their simulation time on simulation frameworks.

V. CONCLUSION

In this paper, we proposed PerfProx to generate proxy
benchmarks that enable performance evaluation of emerging
workloads without needing back-end database or complex
software stack support. PerfProx captures application perfor-
mance using hardware performance counters. We evaluated
PerfProx using three modern databases, Cassandra, MySQL
and MongoDB for data-serving and data-analytics applications
and demonstrated that the proxy benchmarks mimic the perfor-
mance of the original applications with ∼94% accuracy, while
significantly reducing the instruction count.

VI. ACKNOWLEDGEMENT

The authors of this work are supported partially by SRC
under Task ID 2504 and National Science Foundation (NSF)
under grant number 1337393. We wish to acknowledge the
computing time we received on the Texas Advanced Comput-
ing Center (TACC) system. Any opinions, findings, conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of NSF
or other sponsors.

REFERENCES

[1] M. Ferdman et al., “Clearing the clouds: A study of emerging scale-out workloads

on modern hardware,” in ASPLOS. New York, NY, USA: ACM, 2012, pp. 37–48.

[2] W. Gao et al., “Bigdatabench: a big data benchmark suite from web search

engines,” CoRR, vol. abs/1307.0320, 2013.

[3] K. Keeton and D. A. Patterson, “Towards a simplified database workload for

computer architecture evaluations,” in In Workload Characterization for Computer

System Design, edited byh. Kluwer Academic Publishers, 2000, pp. 115–124.

[4] “SPEC CPU2006,” https://www.spec.org/cpu2006.

[5] R. Panda, C. Erb, M. Lebeane, J. Ryoo, and L. K. John, “Performance character-

ization of modern databases on out-of-order cpus,” in IEEE SBAC-PAD, 2015.

[6] R. H. Bell, Jr. and L. K. John, “Improved automatic testcase synthesis for

performance model validation,” in Proceedings of the 19th Annual International

Conference on Supercomputing, ser. ICS ’05, 2005, pp. 111–120.

[7] K. Ganesan, J. Jo, and L. K. John, “Synthesizing memory-level parallelism aware

miniature clones for spec cpu2006 and implantbench workloads.” in ISPASS, 2010.

[8] C.-K. Luk et al., “Pin: Building customized program analysis tools with dynamic

instrumentation,” in PLDI, 2005, pp. 190–200.

[9] “Cassandra,” wiki.apache.org/cassandra/FrontPage.

[10] “MongoDB,” mongodb.org.

[11] “MySQL,” http://www.mysql.com.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-

marking cloud serving systems with ycsb,” in SoCC, 2010, pp. 143–154.

[13] “TPC-H Benchmark Suite,” http://www.tpc.org/tpch.

[14] “Linux perf tool,” https://perf.wiki.kernel.org/index.php/Main Page.


