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Abstract
With increasing deployment of virtual machines for cloud

services and server applications, memory address translation
overheads in virtualized environments have received great
attention. In the radix-4 type of page tables used in x86 archi-
tectures, a TLB-miss necessitates up to 24 memory references
for one guest to host translation. While dedicated page walk
caches and such recent enhancements eliminate many of these
memory references, our measurements on the Intel Skylake
processors indicate that many programs in virtualized mode of
execution still spend hundreds of cycles for translations that
do not hit in the TLBs.

This paper presents an innovative scheme to reduce the
cost of address translations by using a very large Translation
Lookaside Buffer that is part of memory, the POM-TLB. In
the POM-TLB, only one access is required instead of up to 24
accesses required in commonly used 2D walks with radix-4
type of page tables. Even if many of the 24 accesses may
hit in the page walk caches, the aggregated cost of the many
hits plus the overhead of occasional misses from page walk
caches still exceeds the cost of one access to the POM-TLB.
Since the POM-TLB is part of the memory space, TLB entries
(as opposed to multiple page table entries) can be cached
in large L2 and L3 data caches, yielding significant benefits.
Through detailed evaluation running SPEC, PARSEC and
graph workloads, we demonstrate that the proposed POM-
TLB improves performance by approximately 10% on average.
The improvement is more than 16% for 5 of the benchmarks.
It is further seen that a POM-TLB of 16MB size can eliminate
nearly all TLB misses in 8-core systems.

1. Introduction
Cloud services such as Amazon EC2 [1] or Rackspace Open-
Stack [45] use virtualization platforms to provide their ser-
vices. These platforms use hypervisors (ESX, KVM, Xen)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’17, June 24-28, 2017, Toronto, ON Canada

hL4 
(1) 

hL3 
(2) 

hL2 
(3) 

hL1 
(4) 

gL4 
(5) 

hL4 
(6) 

hL3 
(7) 

hL2 
(8) 

hL1 
(9) 

gL3 
(10) 

hL4 
(11) 

hL3 
(12) 

hL2 
(13) 

hL1 
(14) 

gL2 
(15) 

hL4 
(16) 

hL3 
(17) 

hL2 
(18) 

hL1 
(19) 

gL1 
(20) 

hL4 
(21) 

hL3 
(22) 

hL2 
(23) 

hL1 
(24) 

hPA 

gVA 
47:39 

38:30 

29:21 

20:12 

11:00 

HOST WALK 

G 
U 
E 
S 
T 
 
W 
A 
L 
K 

gPA 

gCR3 

hCR3 

hCR3 

hCR3 

hCR3 

hCR3 

Figure 1: x86 2D Page Walk In Virtualized Environment

to enable easier scalability of applications and higher system
utilization by abstracting the underlying host resources. While
virtualization provides many benefits, the overhead of virtual-
ization is not universally low [18].

One of the largest contributors of performance overhead in
virtualized environments is memory virtualization. An applica-
tion executing on a guest OS generates guest virtual addresses
(gVA) that need to be translated to host physical addresses
(hPA). Since physical memory is under the exclusive control
of a hypervisor, every guest physical address (gPA) needs to
be translated to host physical before the guest application-
issued memory access can complete. This requires navigating
through two sets of page tables: a guest page table that the
guest OS implements (gVA→ gPA), and a host page table that
the hypervisor implements (gPA→ hPA). In x86 architectures,
both the guest and host page tables employ a 4-level radix-tree
table organization. Translating a virtual address to physical
address takes 4 memory references in a bare metal case using
a radix-4 table, and in the virtualized case, it becomes a full
2D translation with up to 24 memory accesses as depicted in
Figure 1.

In order to bridge the performance gap associated with
address translations, recent processors have added architecture
support in the form of nested page tables [8] and extended page
tables [25] that cache guest-to-host translations. Processor
vendors have also added dedicated MMU/page walk caches
[5, 24] to cache the contents of guest and host page tables.
Additional techniques to reduce the overhead of page walks
include caching of page table entries in data caches, agile
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Figure 2: Average Translation Cycles per L2 TLB Miss (Virtual-
ized Platform)

paging [18], TLB prefetching [11], shared L2 TLBs [10],
transparent huge pages (THP) [3], translation storage buffers
(TSB) [37], speculative TLB fetching [6] and splintering [43].
These page walk enhancements have significantly reduced
translation costs, however the translation overhead continues
to be a source of inefficiency in virtualized environments.

Figure 2 based on our experiments on a state-of-the-art Intel
Xeon system (Skylake i7-6700) shows the average number
of cycles spent in address translation (per L2 TLB miss) in
several SPEC, PARSEC and graph workloads. The workloads
are run on a VM, with Linux THP support enabled and the
performance overhead is measured using the Linux perf utility.
Further details of our experimental setup are presented in
Section 3. The translation overhead per L2 TLB miss is seen to
range from 61 cycles in the canneal benchmark to 1158 cycles
in the connected component graph benchmark despite the
fact that Skylake core includes special MMU/paging structure
caches (PSCs). Translation overhead running into 100+ cycles
has also been reported in prior work [13, 17, 42].

The experiments on the Intel Skylake platform also shed
light on the virtualization overhead compared to native execu-
tion of the same workload. Figure 3 plots the ratio of transla-
tion cycles in virtualized and native setups. Workloads such
as gups (1.5x), con_comp (26x), gcc (1.9x), lbm (2.5x) and
mcf (2.5x) have far higher translation overhead in virtualized
execution compared to native execution. Many benchmarks
spend up to 14% execution time in translation even in the bare
metal case and hence will benefit from the proposed scheme
which improves both native and virtualized cases.

With the increased number of cores and big data sets, the
conventional two-level SRAM TLBs cannot hold translations
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Figure 3: Ratio of Virtualized to Native Translation Costs
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Figure 4: L2 TLB Scaling Trend

of all pages in the working set. Increasing L2 TLB sizes
to sufficiently reduce TLB misses is not feasible because
larger SRAM TLBs incur higher access latencies. We used
CACTI [52] to show the access latency sensitivity study with
larger L2 TLB capacities in Figure 4. The access latency is
normalzed to that of 16KB SRAM. As seen, naively increasing
the SRAM capacity does not scale.

In the light of the above discussion, it would be desirable to
have a TLB with a large reach at tolerable latency, so that a
large majority of translations can be handled by TLBs rather
than by Page Table Walkers (PTW). This paper presents a
novel solution in this direction, the POM-TLB, a very large
level-3 TLB that is Part of Memory. While TLBs are dedicated
structures and not ordinarily addressable, the POM-TLB is
mapped into the memory address space, and is stored in the
DRAM (or any other emerging memory technology such as
die-stacked DRAM). It is large enough to house translation
entries for significantly huge working sets.

By making the POM-TLB as part of memory, it becomes
possible to automatically take advantage of the growing L2
and L3 data cache capacities. While data caches already cache
page table entries, multiple page table entries will be required
per each translation, whereas a single POM-TLB entry will
be sufficient to accomplish the virtualized translation. Hence
caching TLB entries is more effective and beneficial than
caching page table entries.

This paper makes the following contributions:
• We demonstrate that slow memory structures like DRAM

can be used to house a large capacity TLB that can hold
nearly all required address translations. On average, the pro-
posed POM-TLB can achieve 10% performance improve-
ment over a baseline system. For 5 of the benchmarks, the
speedup is 16% or higher.

• We have presented a mechanism that makes it possible
to cache TLB entries (not page table entries) into data
caches. To the best of our knowledge, no prior work pro-
posed caching of TLB entries into general (non-dedicated)
caching structures.

• We present several solutions to the challenges encountered
while implementing a TLB in DRAM. We present a low
overhead TLB location predictor and other enhancements
to make a DRAM-based L3 TLB a feasible option.

• We present a characterization of the virtual memory over-
heads on state-of-the-art hardware in several SPEC, PAR-
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Figure 5: Die-Stacked DRAM Row Organization

SEC and Graph workloads, while executing in bare metal
and virtualized environments.
The rest of this paper is organized as follows: Section 2

gives a detailed architectural description of POM-TLB; Sec-
tion 3 describes our experimental setup; Section 4 presents
our evaluation results; Section 5 discusses additional design
benefits of our work; finally, Section 7 concludes the paper.

2. POM-TLB: A Very Large L3 TLB

In this section, we describe the overall operation of POM-
TLB, our very large L3 TLB, which can be implemented in
off-chip memory or die-stacked DRAMs. Implementing in
emerging die-stack DRAMs gives some advantages, although
conceptually that is not a requirement.

2.1. System Level Organization

Most modern processors have private multi-level TLBs. In
this work, we assume the TLB organization in a system similar
to Intel Skylake architecture [24] where there are two levels
of TLBs. We add a large shared L3 TLB after the private L2
TLBs. Conceptually, L2 TLB misses look up the large shared
TLB and initiate a page walk if this shared TLB also suffered
a miss. In practice, since DRAM look-up is slow, we make
our POM-TLB addressable thereby enabling caching of TLB
entries in data caches and faster translations. This is discussed
in detail in Section 2.1.3.
2.1.1. POM-TLB Organization While conceptually not a re-
quirement, implementing POM-TLB in emerging die-stacked
DRAMs integrated onto the processor gives bandwidth and
possibly small latency advantages, but is challenging. Die-
stacked DRAM has a DRAM-like organization, typically with
access granularities such as 64B.

Figure 5 shows a single channel of a typical die-stacked
DRAM with multiple banks. We show the detailed layout of a
single row in a bank. Each row can house multiple TLB entries
as the row size is 2KB. Each entry has a valid bit, process ID,
Virtual Address (VA), and Physical Address (PA) as in on-chip
TLBs. To facilitate the translation in virtualized platforms, we
also have Virtual Machine (VM) ID to distinguish addresses
coming from different virtual machines as in Intel’s Virtual
Process ID (VPID) [25]. The attributes include information
such as replacement and protection bits. Each entry is 16B

and four entries make 64B. We implement our TLB as a four
way associative structure since 1) we have found that the asso-
ciativity lower than four invokes significantly higher conflict
misses and 2) 64B is the common die-stacked DRAM burst
length where no memory controller design modifications are
necessary. Upon a request, four entries are fetched from a
single die-stacked DRAM row. Each row can incorporate 128
TLB entries and with 4 way associativity, a row can hold 32
sets of TLB entries. As we will discuss in Section 4.4, due
to spatio-temporal locality, the accesses to L3 TLB entries
exhibit a very high row-buffer hit rate resulting in low average
access times.
2.1.2. Support for Two Page Sizes In order to support both
small page (4KB) and large page (2MB) TLB entries, and to
avoid complexity in addressing a single TLB structure with
two page sizes, we simply partitioned TLBs into two, one dedi-
cated to hold 4KB page entries (denoted POM_T LBSmall) and
the other 2MB page entries (denoted POM_T LBLarge)1. In our
implementation, their sizes are statically set and remain fixed.
As they are DRAM-based and can afford large capacities, we
observed that their exact sizes do not matter much.

We use a page size predictor (described in Section 2.1.4)
to minimize having to perform two DRAM look-ups for the
two page sizes. Based on the predicted page size, the corre-
sponding TLB is accessed first. If it is a miss, the other TLB
is accessed next. As discussed in Section 4.3, the page size
predictor is highly accurate thereby almost always requiring
just a single DRAM access.
2.1.3. Caching TLB Entries While L1 and L2 TLBs
are designed for fast look-up, the POM-TLB is designed
for very large reach and consequently its DRAM-based
implementation incurs higher access latency. In order to
alleviate this, we map the POM-TLB into the physical address
space. By making the TLB addressable, we achieve the
important benefit of enabling the caching of TLB entries in
data caches. Both POM_T LBSmall and POM_T LBLarge are
assigned address ranges. A POM-TLB comprising N sets
is assigned an address range of 64×N bytes as each set
holds four 16-byte TLB entries. The virtual address (VA) of
the L2 TLB miss is converted to a POM-TLB set index by
extracting log2(N) bits of the VA (after XOR-ing them with

1Unified designs with more complex addressing schemes such as skew-
associativity [47] could be explored; we leave this for future work.
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Figure 6: Large Shared L3 TLB Architecture Overview

the VM ID bits to distribute the set-mapping evenly). For the
POM_T LBSmall , the memory address of the set that the VA
maps to is given by:

AddrPOM_TLB_Small(VA) =

((VA⊕V M_ID)>> 6)
(1 << log2(N)−1))∗64 +

Base_AddrPOM_TLB_Small

I am working where Base_AddrPOM_T LB_Small is the starting
address of the POM_T LBSmall . POM_T LBLarge addresses are
computed similarly.

In our scheme, L2 TLB misses do not initiate page walks.
Instead, for each L2 TLB miss, the MMU computes the POM-
TLB (say POM_T LBLarge) set address where the TLB entry
for the virtual address of the miss may be found. The MMU
then issues a load request to the L2D$ with this address. At
this point, this becomes a normal cache access. If the entry
is found in the L2D$, then the MMU reads the L2D$ cache
block (64B) to access all the 4 translation entries stored in it.
It performs associative search of the 4 entries to find a match
for the incoming virtual address. If a match is found, then the
corresponding entry provides the translation for this address.
Being a normal read access, if the L2D$ does not contain
the POM_T LBLarge address, then the request is issued to the
L3D$. If no match was found in the L3D$, then the physical
memory (in this case a POM_T LBLarge location) is accessed.
Associative search of the set stored in the POM_T LBLarge is
used to identify if a translation of the virtual address is present
or not. Like data misses, TLB entries that are misses in data
caches are filled into the caches after resolving them at the
POM-TLB or via page walks.

Since the POM-TLB provides two potential set loca-
tions where the translation for a given VA may be found

(POM_T LBSmall and POM_T LBLarge), we would have to per-
form two cache look-ups starting with the L2D$. Assuming
an equal number of accesses to 4KB and 2MB pages, this
results in 50% additional TLB look-up accesses into the L2D$.
This has both latency and power implications. In order to
address this, we design a simple yet highly accurate Page Size
Predictor whose implementation is described next.
2.1.4. Page Size Prediction We implement a simple yet
highly effective page size predictor. The predictor comprises
512 2-bit entries, with one of the bits used to predict the page
size and the other bit used to predict whether to bypass the
caches (see next Section). The predictor is indexed using 9
bits of the virtual address of the L2 TLB miss (ignoring the
lower order 12 bits). If the predicted page size is incorrect
(0 means 4KB, 1 means 2MB), then the prediction entry for
the index is updated 2. While consuming very little SRAM
storage (128 bytes per core), it achieves very high accuracy as
discussed in Section 4.3.
2.1.5. Cache Bypass Prediction In workloads where the data
load/store access rate to the data caches far exceeds the rate
of L2 TLB misses, the caches tend to contain very few POM-
TLB entries since they get evicted to make room to fill in data
misses. In such a scenario, looking up the data caches before
reaching the POM-TLB is wasteful in terms of both power
and latency. Thus we incorporate a 1-bit bypass predictor to
bypass the caches. The predictor implementation is shared
with the page size predictor described above.
2.1.6. Putting It All Together Our scheme relies on making
the large TLB addressable to achieve both a high hit rate in
data caches as well as lower the access latency. Figure 6
shows an overall flow of POM-TLB. L2 TLB misses start
out by consulting the page size predictor. If the predictor

2One could improve accuracy by adding hysteresis via a multi-bit saturat-
ing predictor or by using a larger predictor table.

CONFID
ENTIA

L



indicates a cache bypass, then the MMU directly accesses the
predicted POM-TLB depending on the predicted page size. If
a translation entry is found, the PFN (Physical Page Frame)
is returned. If it is predicted not bypass, the MMU checks
the POM-TLB entries in data caches. In the common case,
the predictor does not predict cache-bypassing. The L2D$ is
first probed with the address of the predicted POM-TLB set
location. If a match is found with correct (VA,V M_ID), then
the translation is done with a single cache access by returning
the corresponding PFN. If no match is found, then the MMU
probes the L3D$ similarly. If the probed POM-TLBaddress
misses in both L2D$ and L3D$, then the MMU computes a
new POM-TLB address (corresponding to the size that was not
predicted) and initiates cache look-up. If the new POM-TLB
address misses, then a page walk is initiated. In practice, we
observed that a vast majority of POM-TLB entries hit in the
L2D$ and L3D$ resulting in very few DRAM accesses. As
discussed in Section 4, the caching of POM-TLB entries in
data caches causes very little degradation to the data cache hit
rate for normal load/store accesses.

2.2. Implementation Considerations

We explain the key design decisions of the POM-TLB here:
Consistency: Since POM-TLB is shared across cores, the
consistency requirement between entries in L3 and underlying
L1/L2 TLB has to be met. Although strictly inclusive L3 TLB
is desirable, it adds significant hardware complexity. Since
our TLB operates at DRAM latency, which is already much
slower than on-chip SRAM TLBs, adding such structure is
not a practical option. Similar to prior work [10], we adopt
the mostly inclusive implementation, which is adopted in x86
caches [22]. In this design, each TLB can make independent
replacement decisions, which makes it possible that some
entries in L1/L2 TLBs are missing from L3 TLB. However,
this significantly reduces the hardware overheads associated
with keeping strictly inclusive. Therefore, our TLB is designed
to be aware of TLB-shootdowns. TLB-shootdowns require
that all corresponding TLBs are locked until the consistency
issue is resolved. Yet, TLB-shootdowns are rare occurrences
and recent work [38] has shown a shootdown mechanism that
can significantly reduce the overheads. Thus, the benefits
of having simpler consistency check hardware outweigh the
shootdown overheads, and hence such a design can be adopted.

In addition, the consistency across different virtual ma-
chines is already handled by modern virtual machine managers
such as KVM hypervisor [2]. Upon a change in TLB, a mem-
ory notifier is called to let the host system know that a guest
TLB has been updated. Then, the host OS invalidates all re-
lated TLBs in other VMs. Therefore, issues such as dirty page
handling, process ID recycling, etc are already incorporated in
KVM and host OS. The recent adoption of VM ID facilitates
this process, and thus, POM-TLB can maintain consistency
in the presence of multiple virtual machines. Although not
all virtual machine managers have such feature, since such

feature is implemented in software, future virtual machines
can incorporate it.
Channel Contention: Memory systems share a common
command/data bus to exchange data between controllers and
multiple banks. Many of today’s applications experience mem-
ory contention as the bandwidth is either saturated or near
saturation [20]. Implementing the L3 TLB in an integrated die-
stacked DRAM offers advantages from this perspective. Our
proposal adds additional traffic only to the integrated DRAM
to retrieve translation entries and not to the off-chip DRAM.
Also this additional traffic is minor and only incurred when the
L2D$ and L3D$ return cache misses when probed for cached
VL_TLB entries. The path from last level caches to die-stacked
DRAM architecture is different from one to off-chip DRAM
as it has its own dedicated high-speed bus to communicate
with processors. Hence, additional traffic due to our L3 TLB
does not interfere with existing main memory traffic. In fact,
our TLB’s high hit rate reduces a significant amount of page
table walks that result in main memory accesses, so it is likely
that the main memory traffic sees considerable performance
benefits as well.
Entry Replacement: Since our structure is four way asso-
ciative, the attribute metadata (annoted as attr in Figure 5)
contains 2 LRU bits. These bits are updated upon each L3
TLB access and the appropriate eviction candidate is chosen
using these bits. Since LRU bits of four entries are fetched in
a DRAM burst, the replacement decision can be made without
incurring additional die-stacked DRAM accesses.
Other Die-Stacked DRAM Use: Die-stacked DRAM capac-
ity is growing to multi-gigabytes, and in our experiments,
POM-TLB achieves good performance at capacities like 32MB.
The remaining die-stacked DRAM capacity can be used as a
large last level data cache or a part of memory as proposed by
prior work [12, 19, 44, 28, 27, 33, 23, 48, 14, 49, 16, 35, 34,
29, 15, 55, 50]. Since JEDEC standard incorporates multiple
channels in the HBM specification [26], we assume we are
using one dedicated channel to service the POM-TLB requests.
When the large die-stacked DRAM is used as both a large TLB
and a large last level cache, the performance improvement will
be even higher than results shown in this work, which only
presents performance improvement from address translation.

Assuming 16MB capacity of POM-TLB, there can be a
tradeoff between using this additional capacity as L4 data
cache vs L3 TLB. In a cache design, a hit saves one memory
access. However, in the case of an L3 TLB, especially in virtu-
alized environment, the L3 TLB hit can save up to 24 accesses.
This significantly reduces the total number of overall mem-
ory accesses. Furthermore, data accesses are non-blocking
accesses where multiple requests can be on the fly. The access
latency can be hidden by means of memory level parallelism
such as bank level parallelism, which is common in today’s
DRAM. On the other hand, an address translation is a critical
blocking request where upon a TLB miss, the processor exe-
cution stalls. Therefore, the impact of serving the translation
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Processor Values
Frequency 4 GHz
L1 I- Cache 32KB, 8 way, 4 cycles
L1 D-Cache 32KB, 8 way, 4 cycles
L2 Unified Cache 256KB, 4 way, 12 cycles
L3 Unified Cache 8MB, 16 way, 42 cycles
MMU Values
L1 TLB (4KB) 64 entries

9 cycle miss penalty
L1 TLB (2MB) 32 entries

9 cycle miss penalty
L1 TLBs 4 way associative

L2 Unified TLB 1536 entries
17 cycle miss penalty

L2 TLBs 12 way associative
PSC Values
PML4 2 entries, 2 cycle
PDP 4 entries, 2 cycle
PDE 32 entries, 2 cycle
Die-Stacked DRAM Values
Bus Frequency 1 GHz (DDR 2 GHz)
Bus Width 128 bits
Row Buffer Size 2KB
tCAS-tRCD-tRP 11-11-11
DDR Values
Type DDR4-2133
Bus Frequency 1066 MHz

(DDR 2133 MHz)
Bus Width 64 bits
Row Buffer Size 2KB
tCAS-tRCD-tRP 14-14-14

Table 1: Experimental Parameters

request is much higher. Consequently, using the same capacity
as a large TLB is likely to save more cycles than using it as L4
data cache. Note that 16MB is a small fraction of a die-stacked
DRAM, and as previously mentioned, the rest of die-stacked
DRAM can be used as a large data cache via separate channel
without translation traffic contention.

3. Experimental Evaluation

We evaluate the performance of POM-TLB using a combina-
tion of real system measurement, PIN-based and Ramulator-
like [32] simulation, and performance models. Our virtual-
ization platform is QEMU 2.0 with KVM support. Our host
system is Ubuntu 14.04 running on Intel Skylake [24] with
Transparent Huge Pages (THP) [3] turned on. Our host sys-
tem has Intel VT-x with support for Extended Page Tables
while the guest OS is Ubuntu 14.04 installed on QEMU also
with THP turned on. The host system parameters are listed
in Table 1 under Processor, MMU, and PSC categories. The
system has separate L1 TLBs for each page size (4KB, 2MB,
and 1GB in our system) though our applications do not use

1GB size. The L2 TLB is a unified TLB for both 4KB and
2MB pages. Finally, the specific performance counters (e.g.,
0x0108, 0x1008, 0x0149, 0x1049) that we used read page
walk cycles taking MMU cache hits into account, so the page
walk cycles we use in this paper are the average cycles spent
after a translation request misses in L2 TLB.

3.1. Workloads

The main focus of this work is on memory subsystems, and
thus, applications, which do not spend a considerable amount
of time in memory, are not meaningful. Consequently, we
chose a subset of SPEC CPU and PARSEC applications that
are known to be memory intensive. In addition, we also ran
graph workloads such as the graph500 and big data workloads
such as connected components and pagerank. The bench-
mark characteristics are collected from the Intel Xeon Skylake
platform, and they are presented in Table 2. We included ap-
plications whose page walk cycles, walk overheads, etc are
in a wide range of spectrum (low to high). Since SPEC CPU
applications are single threaded, we run multiple copies of
SPEC CPU applications (as in the SPECrate mode), to evalu-
ate performance on our multicore simulator. We ensure that
they do not share the physical memory space via proper virtual-
to-physical address translation. For multithreaded workloads,
we profiled benchmarks with 8 threads.

3.2. Evaluation Methodology

A combination of measurement (on real hardware), simula-
tion and performance modeling is used to estimate the perfor-
mance of the proposed scheme. First, the workloads listed in
Table 2 are executed to completion and the Linux perf utility
is used to measure the total instructions (Itotal), cycles (Ctotal),
number of L2 TLB misses (Mtotal) and total L2 TLB miss
penalty cycles (Ptotal) in a manner similar to the methodology
in prior work [18, 11, 10, 9, 53]. We obtain the baseline IPC
as: IPCbaseline = Itotal/Ctotal . We also compute the ideal cy-
cles Cideal and average translation penalty cycles per L2 TLB
miss PBaseline

Avg as:

Cideal = Ctotal−Ptotal (1)

PBaseline
Avg = Ptotal/Mtotal (2)

Note that the effects of various caching techniques like page
walk caches, caching of PTEs in data caches, Intel extended
page tables and nested TLBs are already included in the perfor-
mance measurement since they are part of the base commodity
processor. The average translation costs per L2 TLB miss as
computed above are also listed in the workloads table.

Next, we use PIN and the Linux pagemap to generate mem-
ory traces for our workloads. For each workload, all load and
store requests are recorded. The Linux pagemap is used to
extend the PIN tool to include page size and other OS related
metadata. Our trace contains virtual address, instruction count,
read/write flag, thread ID and page size information of each
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astar bwaves canneal ccomponent gcc
Overhead Native (%) 13.89 0.73 3.19 0.73 0.30
Overhead Virtual (%) 16.08 7.70 6.34 7.40 12.12

Average Cycles-per-L2TLB-miss Native 98 128 53 44 46
Average Cycles-per-L2TLB-miss Virtual 114 151 61 1158 88

Frac Large Pages (%) 41.7 0.8 16.0 50.0 29.0
GemsFDTD graph500 gups lbm libquantum

Overhead Native (%) 10.58 1.03 12.20 0.05 0.02
Overhead Virtual (%) 16.01 7.66 17.20 12.02 7.37

Average Cycles-per-L2TLB-miss Native 129 79 43 110 70
Average Cycles-per-L2TLB-miss Virtual 133 80 70 290 75

Frac Large Pages (%) 71.0 7.0 2.59 57.4 32.9
mcf pagerank soplex streamcluster zeusmp

Overhead Native (%) 10.32 4.07 4.16 0.07 0.01
Overhead Virtual (%) 19.01 6.96 17.07 2.11 10.22

Average Cycles-per-L2TLB-miss Native 66 51 144 74 136
Average Cycles-per-L2TLB-miss Virtual 169 61 145 76 137

Frac Large Pages (%) 60.7 60.0 12.3 87.2 72.1
Table 2: Benchmark Characteristics Related to TLB misses

reference. Memory instructions are traced in detail while the
non-memory instructions are abstracted. We collected the
memory traces for 20 billion instructions.

Furthermore, we developed a detailed memory hierarchy
simulator that simulates two levels of private TLBs, two levels
of private data caches, a 3rd level shared data cache, and fi-
nally, the proposed 3rd level shared memory-based TLB. The
simulator also models the size predictor and the cache bypass
predictor, which are indexed using memory addresses. The
simulator executes memory references from multiple traces
while we schedule them at the proper issue cadence by using
their instruction order in a manner similar to Ramulator. Infor-
mation on the number of instructions in between the memory
instructions are captured in the traces and thus memory level
parallelism and overlap/lack of overlap between memory in-
structions are simulated. Note that our simulator is simulating
both address translation traffic as well as data request traffic
that go into underlying data caches. Finally, our simulator
reports the L2 TLB miss cycles and detailed statistics such as
hits and misses in the L1, L2 TLBs, data caches, the POM-TLB
and predictor performance.

3.3. Performance Simulation of POM-TLB

The detailed cache and memory system parameters used in the
simulation are listed in Table 1. DRAM simulation accounts
for access latencies resulting from row-buffer hits and misses.
It may also be noted that, since our baseline performance
(obtained from real system measurements) already includes
the benefits of hardware structures such as large pages, EPT
and Page Structure Caches, we do not model these in our
simulator and instead, use the baseline ideal cycles together
with the estimated cost incurred by the POM-TLB when the
DRAM-based TLB incurs a miss.

Total cycles taken by the POM-TLB and the resulting IPC
for each core are obtained as:

CPOM_T LB
total = Cideal +Mtotal ∗PPOM_T LB

Avg (3)

IPCPOM_T LB = Itotal/CPOM_T LB
total (4)

PPOM_T LB
Avg denotes the average L2 TLB miss cycles in POM-

TLB obtained from simulation. Having obtained the base-
line and POM-TLB IPCs for each core, we obtain the overall
performance improvement of the POM-TLB. It may be ob-
served that we use the linear additive formula to add the L2
TLB miss cycles to the ideal cycles. This linear performance
model ignores potential overlap of TLB processing cycles
with execution cycles but is similar to models used in previ-
ous research [18, 10, 11, 9, 53]. Such effects not only exist
in POM-TLB but also in the baseline, so the performance
impacts from this equally exist in all schemes.

In addition, we compare POM-TLB against another prior
work, which we annotate as Shared_L2 in the rest of this paper.
We implemented this scheme similar to [10] to the best of
our knowledge. Shared_L2 combines private SRAM based L2
TLBs into a single shared TLB, so when a request misses in
L1 TLB, the large SRAM based shared TLB is looked up.

Finally, we implemented Translation Storage Buffer (TSB)
that exists in SPARC processors. Since TLB misses are han-
dled by OS in SPARC processors, TSB is managed by OS
although indexing and address calculation is done by dedicated
hardware. Unlike x86 architecture, upon a TLB miss in the
SPARC architecture, an OS trap is called and appropriate TSB
lookup or a software page table walk is initiated. TSB can
be considered as a large MMU cache implemented in a large
buffer, but is dedicated and cannot be cached. We compare
POM-TLB against such TSB design to show the benefits of
POM-TLB.
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Figure 7: Performance Improvement of POM-TLB (8 Core)

4. Results

This section presents performance improvement for POM-
TLB in comparison to other related schemes proposed in prior
research for multicore systems [11, 10] as well as a current
existing system feature that is most closely similar to ours,
SPARC’s TSB. The results presented in this section are on top
of a baseline with dedicated page structure caches as in the
Intel Skylake processors.

4.1. Performance Improvement

Figure 7 plots the performance improvements of POM-TLB
on 8 core configuration with 16MB POM-TLB size. Here, the
baseline is the execution time gathered from our experimental
runs on SkyLake processors. Note that the improvement is
shown in percentage (%) and 2 different comparables are
presented in addition to POM-TLB.

The improvement ranges from 1% in streamcluster to 17%
in soplex. We observe that workloads with high page walk
overheads in virtualized platforms (see Table 2) have the high-
est improvement (such as mcf, soplex, GemsFDTD, astar and
gups), which indicates that POM-TLB is effective in reducing
costly page walks. The streamcluster benchmark does not
contain significant page walk overhead to begin with (2.11%).
Therefore, this benchmark does not possess a lot of headroom
for improvement from POM-TLB. On average, POM-TLB is
able to achieve the performance improvement of 9.57%. It
may also be noted that these performance gains are obtained
on top of the use of large pages. Even where a large fraction
of pages are 2MB pages (for example, mcf has 70% and as-
tar has 40% large pages in Table 2), the workloads exhibit
considerable performance improvements.

Shared_L2 is able to achieve 6.10% performance improve-
ment on average. This scheme does benefit from sharing of the
combined L2 TLB capacities, yet it is still limited in terms of
capturing the hot set of TLB entries. Thus, it encounters high
shared L2 TLB miss penalty. On the other hand, POM-TLB
is able to capture much more TLB entries. First, the physi-
cal capacity of our design is 16MB, which is a few orders of

magnitude higher than TLBs in existing systems or L2 TLB
capcity in Shared_L2 design. Upon a TLB miss in Shared_L2,
the page walk is initiated when data caches are also searched,
since intermediate PTEs are stored in data caches. However, in
order to get a complete translation, many of these intermediate
entries must be searched until the last level PTE is found. Only
then, the translation is done. Even though the access is done
in SRAM latency in this case, multiple accesses have to be
made in order to complete the page walk. MMU caches, such
as PSC, help to reduce the number of such intermediate entry
walks, yet their capacity is very limited, so it only caches a
small amount of TLB misses. In addition, even though POM-
TLB is located in die-stacked DRAM, which incurs an access
latency similar to DRAM, we cache many of TLB entries in
data caches. This enables us to achieve much lower access
latency, as many of these entries are cached in data caches.
Also, the use of L2D$ and L3D$ allow us to have a lot of
TLB entries stored in caches. An additional advantage is that
single virtual address only requires single entry in data caches
whereas Shared_L2 has multiple intermediate PTEs stored in
caches, which consumes much more capacity in data caches.

TSB achieves an average performance improvement of
4.27% across our workloads. This is surprising considering
that it uses 16MB capacity as in POM-TLB. However, the per-
formance of this scheme is limited as each TLB miss incurs a
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Figure 8: Hit Ratio of POM-TLB (8 Core)
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Figure 9: Predictor Accuracy (8 core)

trap operation, which is required in the operation of TSB as it
is software managed. Also, unlike POM-TLB which has an as-
sociativity of 4, TSB is a direct mapped organization, so it sees
more conflict misses. POM-TLB uses the 64B cacheline size,
so each cacheline has 4 TLB entries. Since the data transfer
granularity between die-stacked DRAM and on-chip caches is
done at 64B, we exploit this and allow POM-TLB to have an
associativity of 4. Furthermore, TSB entries are not cached as
with the POM-TLB so an access to TSB incurs a higher access
latency than POM-TLB. An interesting observation is made
for the gups benchmark. This benchmark is known to have
low locality in page tables, so an ability to achieve high perfor-
mance for such low spatial locality workloads can show how
well each scheme retains translation entries. In case of TSB, it
is not able to capture many of these entries even with 16MB
as it only achieves 1.80% improvement. However, POM-TLB
achieves performance improvement of 16%, approximately an
order of difference in performance. Therefore, we can see that
POM-TLB makes much better use of the 16MB space that is
located in die-stacked DRAM.

4.2. Hit Ratio

The effectiveness of POM-TLB can be shown using the hit
ratio. Here, we analyze how well POM-TLB can capture L2
TLB misses, thereby reducing costly page walks. Figure 8
shows the hit ratio perceived at different level of the memory
subsystem where TLB entries are stored by our scheme. First,
the L2D$ has a very high hit rate of 89.7% on average. Since
L2 data caches are private, it is not affected by interference
from other cores. Since the L2 capacity is much larger than
other private TLB structures in the processor, it keeps a lot
of translation traffic from performing page walks. Note that
caching of TLB entries is only feasible since we have a very
large TLB and that is addressable. In conventional systems,
the TLB entries are not visible as they are entirely managed
by MMUs, yet our novel idea of making the large TLB ad-
dressable has enabled a larger number of TLB requests to be
cached in rather large on-chip caches.

When a request misses in L2D$, then it is looked up in
shared L3D$. The hit ratio here is not as good as L2D$. First,
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Figure 10: Row Buffer Hits in L3 TLB (8 core)

it is a shared data structure, so interference starts degrading
performance. Also, a majority of TLB requests are filtered
by L2D$, so only requests with a low degree of locality are
passed down to the L3D$. However, POM-TLB in die-stacked
DRAM again picks up a lot of these requests as shown by a
higher hit ratio of 88% on average. POM-TLB can achieve
this as the capacity is rather large, so it can recapture many
translation requests that missed in a smaller L3D$. It may also
be noted that the data caches are also caching the normal data
accesses made by the cores and are not being used solely for
TLB entries.

4.3. Predictor Accuracy

In our scheme, we implemented two predictors, which are size
and bypass predictors. The size predictor speculates whether
the incoming translation address is going to be a request for
a large or small pages. Although there are proposals [47]
that enable simultaneous accesses to TLB structures to check
both small and large pages, we avoid doing this as it requires
sophisticated design/verification efforts as well as consumes
more power. We rather used a simple predictor, but as seen in
Figure 9, the size predictor is highly accurate as it achieves
an average accuracy of 95%. The accuracy is calculated by
dividing the total number of correct speculations by the total
number of speculations. In such cases, we can reduce 95% of
the second TLB accesses to look for the TLB entry of the other
size. Yet, in comparison to performing a serialized access, our
predictor can fetch the correct TLB entry in a single POM-TLB
access.

Our implementation adds a miss penalty if translations miss
in data caches as additional on-chip cache lookups are per-
formed prior to accessing POM-TLB. The bypass predictor
effectively eliminates such latency and forwards the request
directly to POM-TLB upon L2 TLB miss. Our predictor is
achieving a low accuracy of 45.8% on average. Although
some workloads such as bwaves, lbm and libquantum are able
to achieve close to perfect accuracy, others such as soplex
and pagerank have a low hit rate. Although the data cache
access latencies are an order of magnitude lower than page
walk cycles, the misprediction penalty keeps POM-TLB from
achieving the best performance. We leave it to the future work
to perform other approaches such as using the instruction
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address to increase the accuracy.

4.4. Row Buffer Hits (RBH) in the L3 TLB

We quantify the intuition that the spatial locality of TLB ac-
cesses leads to a high Row Buffer Hits (RBH) in the stacked
DRAM. Figure 10 plots the RBH values. As reported, the
stacked DRAM achieves a high average RBH of 71%, thereby
ensuring a low latency L3 TLB lookup. Each row contains
128 TLB entries, which is similar in capacity as an on-chip
L2 TLB. Since they are located in the same row, these TLB
accesses are likely to hit in the row buffer. As expected, appli-
cations with high spatial locality show high RBH values. For
example, streamcluster has streaming behaviors, which thus
has high spatial locality [39], explaining its high RBH value
in Figure 10.

4.5. POM-TLB without Data Caches

In this section, we quantify the performance benefits POM-
TLB gets from storing TLB entries in data caches. Figure 11
shows the performance improvement when TLB entries are
cached in data caches and when not cached. As shown,
caching significantly helps performance as it provides an ad-
ditional performance improvement of 5%. The performance
aspect that caching helps is not in reducing the number of page
walks. Whether data caches are used or not does not affect the
number of page walks as this reduction is performed by the
large capacity of POM-TLB. Instead, what caching enables is
hiding the long latency of die-stacked DRAM accesses, bridg-
ing the latency gap between on-chip TLBs and die-stacked
DRAM-based POM-TLB.

4.6. POM-TLB Discussion

We have experimented with different POM-TLB capacities.
Although not presented as they do not provide meaningful
daata, we have found that varying POM-TLB capacity to either
8MB or 32MB changes our performance improvement less
than 1%. We have found that it is extremely difficult to find
workloads whose memory footprint exceed such large TLB
sizes. In fact, 16MB capacity used in our default value is a
scaled down version of die-stacked DRAM capacity to be a
representative fraction of our workloads working set. In the
market today, we see die-stacked DRAM capacity reaching
several gigabytes [36]. Therefore, if we scale up and use a
fraction of the capacity of today’s die-stacked DRAM, we
expect that POM-TLB will be able to eliminate a significant
amount of page walks for even emerging applications with
vastly larger footprint than ones we see today. Note that the
TLB reach of POM-TLBis orders of magnitude larger than
today’s on-chip TLBs only with 16MB. Similarly, we have also
varied the core count to 4 and 32 cores. Yet, the performance
improvement stays approximately the same as again even with
few or more core count, POM-TLB is so large that, most of
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Figure 11: POM-TLB With and Without Data Caching (8 core)

page walks are eliminated3.

5. Unlocking Additional Benefits

In this section, we present additional benefits unlocked by our
addressable POM-TLB and briefly discuss those benefits.

5.1. TLB-Aware Caching

Since TLB entries are addressable and get cached in L2D$ and
L3D$, it is possible to design cache allocation and replacement
policies that can adaptively allocate appropriate cache capacity
to hold TLB entries and normal data. In workloads where L2
TLB misses incur high penalty, the data caches could prioritize
retaining POM-TLB entries, while in workloads with higher
data misses as compared to L2 TLB misses, the caches could
prioritize retaining data contents.

5.2. Efficient Virtual Machine Switching

Even though modern TLBs can simultaneously hold transla-
tions for multiple virtual machines (identified by VM ID), the
major bottleneck is the small size of the SRAM-based TLBs.
Running multiple VMs is common in today’s large scale vir-
tual platforms such as Amazon EC2 [1] and each VM contains
a full OS, making the TLB reach again the problem. The large
L3 TLB can alleviate this capacity issue by simultaneously
retaining the address translations of multiple VMs. With the
L3 TLB, when different VMs interfere with each other, the
L3 TLB can provide a high hit rate that results in avoiding the
vast majority of expensive page walks.

5.3. Reduction in Design Complexity

Modern processors employ an array of complex hardware
techniques to accelerate page walks, including sophisticated
page walk caches [5] and intra/inter-core TLB prefetchers [11].
These techniques result in significant design complexity to
ensure TLB consistency and integrity of page table contents.
With the introduction of the L3 TLB that offers very high hit
rates at moderately low latencies, these structures could be

3Per-core L2D$ continue to provide the bulk of the latency improvements
in all core counts.
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simplified or even eliminated, resulting in an overall simpler
hardware implementation.

6. Related Work

Caching and speculation techniques have been proposed to
improve the two dimensional address translation overheads in
virtualized platforms [18, 8, 5, 6, 43, 17]. Caching schemes
such as page walk cache [18, 5, 9, 4] attempt to bypass the
intermediate level walks. Speculation schemes [6, 43] let
the processor execution continue with speculated page table
entries and invalidate speculated instructions upon detecting
the misspeculation. These schemes are motivated by the fact
that conventional TLBs are likely to cause more page table
walks [8] for emerging big data workloads with large mem-
ory footprints. Therefore, they focus on reducing/hiding the
overheads of page table walks. In our work, we address a
more fundamental problem that very large TLBs can with-
stand increased address translation pressure from virtualiza-
tion by offering a translation storage with high capacity and
high bandwidth, thereby significantly reducing the number of
walks.

Some other schemes [18, 31, 7] attempt to reduce the lev-
els of page table walks in either native or virtualized system.
However, our scheme tackles the fundamental problem of cur-
rent TLB’s insufficient capacities. Thus, by increasing the
capacity significantly, we are solving the inherent structural
bottleneck in today’s system. However, our scheme is orthogo-
nal to aforementioned schemes, as we do not alter the existing
or proposed page walk hardware structures. Thus, our scheme
can easily be augmented to these schemes. Moreover, TLB
prefetching [11, 30, 46] improves the TLB hit rate by fetch-
ing entries ahead of time. These TLB prefetchers are also
orthogonal to our scheme. Our POM-TLB augmented with
a prefetcher can reduce the prefetching latency and achieve
considerable performance improvement.

The Linux Transparent Huge Page [3] along with various
schemes [17, 54, 51, 21, 41, 40, 31] try to increase the fraction
of large pages either in hardware or by OS to reduce the
number of TLB misses. Although we do not take advantage of
such schemes, but rather use large pages created by existing
OS, using their scheme can even further increase the data
cache or POM-TLB hit rate as single 2MB entry incorporates
512 4KB entries, thereby further increasing the already large
the reach of POM-TLBẎet, they can be implemented along
with our large L3 TLB to achieve even higher performance.

7. Conclusions

In this work, we evaluated the feasibility of building very large
level 3 TLBs in DRAMs. We have presented a TLB which
is part of the memory space, thereby allowing the possibil-
ity of caching TLB entries in conventional L2 and L3 data
caches. Our thorough analysis using measurements on state
of the art Xeon Skylake processors, the simulation and an

additive model results show that the proposed POM-TLB can
practically eliminate the page walk overhead in most memory
intensive workloads, particularly those in virtualized and mul-
tithreaded environments. In addition, we have shown that the
proposed POM-TLB provides higher performance improve-
ment than previously proposed shared TLB or prefetching
techniques at the L1/L2 TLB level. Simulation studies with
various number of cores running SPEC, PARSEC and graph
workloads demonstrated that more than 16% performance
improvement can be obtained in a third of the experimented
benchmarks (with an average of 10% over all benchmarks). In
most configurations 99% of the page walks can be eliminated
by a very large TLB of size 16 MB.
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