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Abstract – An improved Infinite Impulse Re-
sponse (IIR) Least Mean Squares (LMS) algo-
rithm using parallel filters and evolutionary
programming techniques is introduced. IIR fil-
ters have the attractive property that they re-
quire fewer computations than a corresponding
FIR filter, but they are prone to instability and
local minimum problems. Evolutionary algo-
rithms are good in global optimization scenar-
ios, but are computationally very expensive.
Adaptive filter weights for a given step size and
initial weight vectors may not lead to optimal
solutions. In this paper we extend the IIR LMS
algorithm by embedding an evolutionary com-
putation, and also simultaneously implement
multiple filters (different initial weight vectors)
to achieve optimal solutions.

I. INTRODUCTION

Adaptive filters are now commonly used in a
wide range of Digital Signal Processing (DSP)
systems. Commercial systems that rely on adap-
tive filtering in one way or another include high-
speed modems, echo-cancellation in speaker-
phones, interference removal in medical imag-
ing, active noise control applications, on-line
system identification in chemical plants, linear
prediction, and beamforming in radio astron-
omy.

For practical reasons, first generation adap-
tive systems generally employed the basic Finite
Impulse Response (FIR) linear filter structures
along with simple gradient descent or least
squares algorithms such as Least Mean Squares
(LMS) and Recursive Least Squares (RLS) algo-
rithms. However, they have certain performance
limitations. Some applications require a more
general Infinite Impulse Response (IIR) filtering
structure as in the exact restoration of a received

signal corrupted by multipath distortion. Moreo-
ver, the IIR filter offers potential performance
improvement by proving to be less computation-
ally expensive than equivalent FIR filters. A re-
cursive IIR filter generally provides better per-
formance than a FIR filter that has the same
number of coefficients. This is because the de-
sired response can be approximated more effec-
tively by the output of a filter that has both poles
and zeros compared to one that has only zeros
[1]. To achieve a specified level of performance,
an IIR filter generally requires considerably
fewer coefficients than a corresponding FIR fil-
ter.

However, some practical problems still exist
in the use of adaptive IIR filters. As the error
surface of IIR filters is usually non-quadratic
and multimodal with respect to the filter coeffi-
cients, learning algorithms for IIR filters can
easily be stuck at local minima and cannot con-
verge to the global minimum [2]. Whereas the
error surface of FIR filters is quadratic and uni-
modal for linear system problems. Besides the
local minima problem, the stability of an IIR
filter during its adaptation is another issue. IIR
filters will become unstable if the poles move
outside the unit circle during the adaptation pro-
cess. Therefore, stability monitoring is of vital
importance, especially when adapting high-order
IIR filters.

Evolutionary algorithms [3], such as genetic
algorithms (Gas), evolutionary programming
(EP) and evolutionary strategies (ES) have re-
cently received much attention for global opti-
mization problems such as the error surfaces of
IIR filters. These evolutionary algorithms are
heuristic population-based search procedures
that incorporate random variation and selection.
But as the search space for these algorithms is
extremely large, the randomization process may
lead to time wasted in searching along incorrect



directions. This leads to slow convergence and
high computational complexity.

Several contributions have directed their in-
terests in employing evolutionary algorithms for
IIR filters [4][5][6][7][8] in one way or another.
In [4], a new learning algorithm for adaptive IIR
filtering using a genetic search approach is pre-
sented. Using both the LMS algorithm for IIR
filters and genetic programming techniques, the
authors demonstrate faster convergence and
global search capability by comparing with pure
LMS and genetic algorithm implementations. In
[5][6] and [7], the authors introduce evolution-
ary digital filtering for IIR adaptive digital fil-
ters. In this approach, instead of using any gra-
dient-based algorithms such as the LMS, several
digital filters (order of 1000) are used and the
best output among them is selected. Adapting
the filter coefficients is done in regular intervals
using evolutionary programming techniques.
This is a very computationally complex algo-
rithm, especially if implemented on a single
processor.

Initiated by the merits and shortcomings of
the IIR LMS algorithm and pure evolutionary
computations, embedding an evolutionary com-
putation in the pure LMS algorithm will help the
LMS algorithm to escape the local minima
problem. Also since the LMS is a directed
search, evolutionary computation will benefit
from escaping incorrect direction searches. In
this paper, we present an improved IIR LMS
algorithm implementing multiple filters which
exposes more parallelism at the algorithmic
level and also using some evolutionary compu-
tation when adapting filter weights during each
iteration of the algorithm.

II. ALGORITHM

The IIR LMS algorithm is an extension of
the FIR LMS algorithm. A direct-form imple-
mentation of the recursive IIR filter is preferred
over the parallel and lattice forms in view of the
computational complexity associated with the
latter structures. The IIR direct-form filter can
be constructed as:
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where x(n) is the current input value, y(n) is the
current output value. The learning algorithm of
the adaptive IIR filter is used to adjust the feed-
back and feedforward coefficients, ai and bj re-
spectively for a particular input and output to
optimize a performance criterion that generates a
suitable estimate based on a desired response
d(n).

Let the weight vector θ  and data vector X(n)
be defined as:

]......[ 01 ML bbaa=θ T (2)

)()..()()..1([)( MnxnxLnynynX −−−= ]T (3)

The LMS algorithm can be represented as:
For each n:
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gradient estimate (5)
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coefficient update (6)

where µ is a constant step size.

The instantaneous estimation error e(n) is:

e(n) = d(n) – y(n) (7)

For each value of n, Eq. (4) is to produce the
filter output and Eqs. (5) and (6) are then used to
compute the next set of coefficients θ (n+1).

In this paper, we extend the original IIR LMS
algorithm that was discussed above by simulta-
neously implementing multiple filters each with
different and unique initial weight vectors and
gradient estimate and coefficient vectors that are
updated during each iteration. We define several
digital filters with filter weight vectors θ 1, θ 2

.., θ n. The IIR LMS algorithm is applied to each
filter separately with the same input signal and
desired signal as shown in Fig. 1 below. The
convergence of the LMS algorithm very much
depends on the choice of the step size and the



choice of initial values for the filter coefficients.
Having multiple filters guarantees better conver-
gence and smaller mean squared error than when
using a single filter. The best output value is se-
lected from a summation of a block of mean
squared error values for each filter.

Fig. 1. Block diagram of IIR LMS algorithm ex-
tended with multiple parallel filters.

III. STABILITY MONITORING AND
EVOLUTIONARY COMPUTATION

IIR filters become unstable if the poles move
outside the unit circle during the adaptation pro-
cess. As a result, the output can grow without
bounds and the filter breaks down. Stability
monitoring is essential when adapting IIR filters.
During each adaptation of the filter coefficients,
stability of the filter needs to be ascertained be-
fore computing the output signal value.

Two methods were investigated for checking
the stability during the perturbation of the adap-
tive IIR filter. The first method is based on
Kharitonov’s theorem [9], which requires the
testing of four related polynomials to ascertain
the stability of the filter. This method is general
and can be used to stabilize any filter that has a
proper rational transfer function. Application of
the Kharitonov’s theorem with additional con-
straints yields optimal coefficient bounds. Over-
all the complexity of this method is high [4] and

it has been shown that it also restricts the size of
the coefficient space.

In the second implementation, the direct-
form IIR filter is converted into its equivalent
lattice form. The requirement for stability trans-
forms into verifying if each of the reflection co-
efficients has an absolute magnitude less than 1.
Only the direct-form feedback coefficients need
to be converted into their equivalent feedback
reflection coefficients for stability monitoring.

After testing the poles for stability, the filter
coefficients can be updated by using several ap-
proaches [1]. The simplest approach is to use the
previous stable coefficients if the current set of
filter coefficients is found to be unstable. How-
ever, this method is not deemed to be robust for
some applications. Another approach is to set
the value of the reflection coefficients that are
outside the permissible range to a value close to
the nearest bound [4] and convert them back to
the direct-form coefficients.

In our approach, whenever the LMS algo-
rithm has a slow convergence or the filter coef-
ficients are unstable, we embed an evolutionary
computation by randomly perturbing the values
of the previous stable filter coefficients. The co-
efficients are produced in a certain controlled
manner; particularly, they are tested if the sta-
bility criteria are satisfied. If found unstable
again after producing new filter coefficients, we
use the previous stable filter coefficients as the
current new filter coefficients during that itera-
tion. Depending on whether the convergence is
too slow or the filter is unstable again in the next
generation, we continue to evolve new filter co-
efficients once each per iteration.

Alternatively, the evolutionary computation
can be repeated multiple times per each genera-
tion/iteration for robustness. However, this in-
creases the serial computation in the algorithm
significantly. Moreover by implementing several
parallel filters, even if one filter is not robust,
another filter can be used for output generation.
Over several iterations, but without increasing
serial computation, the unstable or slowly con-
verging filter can be made to adapt in a correct
direction. Each set of filter coefficients are up-
dated as follows when using evolutionary com-
putation:

θ ->new = θ ->old + σD (8)
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where σ is a random number in the range [-1, 1]
and D is the allowable offset range for each
evolution.

IV. COMPUTATIONAL COMPLEXITY OF
MULTIPLE  PARALLEL FILTERS

Using several parallel filters for the IIR LMS
algorithm increases the computationally com-
plexity linearly with the number of filters. How-
ever, each filter can be operated on a different
processor thereby keeping the serial computation
of the algorithm the same as that of one filter.
For slow sampling rates, several filters can be
implemented on a single processor given today’s
superscalar and very long instruction word
(VLIW) processors.

To obtain the computational complexity, we
obtained the number of clock cycles consumed
by a Pentium II processor when implementing
our algorithm. Fig. 2 shows the results. Five dif-
ferent filter orders for [L, M] as per equation (1)
– [1,1], [2,1], [3,2], [4,3] and [5,4] are studied.
The number of filters is varied from 1 to 5. The
baseline case is a single filter with a [1,1] con-
figuration given an execution time value of 1.
The remaining 24 configuration’s execution
times are ratios with the baseline filter. The ex-
periment is conducted for 10,000 iterations of
the IIR LMS algorithm.

Fig. 2. Computational complexity of multiple filters
with different configurations.

V. CONVERGENCE RESULTS

The convergence behavior of the LMS algo-
rithm depends very much on the choices of step
size and the initial values of the filter coeffi-
cients. Fig. 3 below shows the effect of different
initial values of the filter coefficients for three
parallel filters operating on the same input and
desired signals. A unit signal with white noise
was used as the input signal. The filter configu-
ration was M=3 and L=2 with the step size being
0.01. The results shown below are an average of
100 independent runs.

Fig. 3. Different convergence characteristics with
different initial filter coefficients

Embedding an evolutionary computation in
the IIR LMS algorithm with parallel filters helps
in stability monitoring. Having only one filter, if
the IIR LMS filter goes unstable, the output
value is distorted heavily until the learning algo-
rithm finds the right direction to converge. But
by having multiple filters, even if one filter be-
comes unstable, another filter can generate the
output while the unstable filter is made to follow
the right direction for convergence. Fig. 4 below
shows the result of one filter going unstable
during adaptation while the other two filters
converge normally. The unstable filter slowly
converges as the number of iterations increase.
The filter configuration was M=3 and L=2, with
a step size of 0.04. Each of the sets of filter coef-
ficients was randomly initialized with one set
however, always being initialized to all zeros.
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1 Filter 2 Filters 3 Filters 4 Filters 5 Filters

1 Filter 1 1.08 1.59 2.14 2.76

2 Filters 2.01 2.16 3.18 4.3 5.57

3 Filters 3.01 3.26 4.8 6.5 8.46

4 Filters 4.03 4.35 6.44 8.69 11.4

5 Filters 5.07 5.46 8.06 10.93 14.48

[1,1] [2,1] [3,2] [4,3] [5,4]



Fig. 4. Learning curves (mean square error) of three
parallel filters

VI. CONCLUDING REMARKS

In this paper, we extended the original IIR
LMS algorithm in two ways. First, we imple-
mented multiple parallel filters each initialized
with a different set of coefficients. Complexity
of different order filters with different number of
parallel filters was measured. Next, we embed-
ded an evolutionary computation into the IIR
LMS algorithm mainly for stability monitoring.
We used minimal computations to increase par-
allelism in the algorithm. Results show that even
if one filter goes unstable, evolutionary compu-
tation can redirect the search in correct direc-
tions while parallel filters that are not unstable
contribute to the output.
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