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Abstract
Fine-tuning pre-trainedmodels is the preferredmethod for adapting
large language models (LLMs) for specific downstream tasks since
it is significantly more efficient in terms of computational costs
and energy than training the models from scratch. However, with
LLMs experiencing exponential growth, fine-tuning the models
becomes more challenging and expensive as they demand more
computational resources. Many approaches are proposed to fine-
tune state-of-the-art models efficiently, reducing the infrastructure
needed, and thus, making them accessible to the public.

In this paper, we investigate a technique called Low-Rank Adap-
tation (LoRA), one approach to efficiently fine-tuning LLMs by
leveraging low intrinsic dimensions possessed by the models dur-
ing fine-tuning. Specifically, we explore different data formats that
can be used during LoRA fine-tuning and compare them regarding
workload performance and model accuracy. The experiment com-
pared LoRA and its quantized counterpart (QLoRA) with regular
methods to fine-tune state-of-the-art LLMs. The analysis includes
estimating memory usage, measuring resource utilization, and eval-
uating the model quality after fine-tuning. Three state-of-the-art
Graphics Processing Units (GPUs) are used for experiments, includ-
ing NVIDIA H100, NVIDIA A100, and NVIDIA L40. We also use
the newest AMD MI300X GPU as a preliminary exploration.

The experiment shows that although LoRA with a 16-bit floating-
point format can significantly reduce the computational resource
demand, it still requires data-center-class GPUs with ample mem-
ory to fine-tune LLMs with 70 billion parameters. Using QLoRA
with 4-bit floating-point format significantly lowers the memory
requirements by as much as 75% compared to LoRA, allowing a
single GPU with 48 GB and 80 GB of memory to fine-tune 70 billion
parameter models. In addition, QLoRA delivers model quality that
is on par with or exceeds the quality of the model obtained from
conventional fine-tuning.

CCS Concepts
• General and reference → Evaluation; Performance; Mea-
surement; Experimentation; • Computing methodologies→
Machine learning; Natural language generation.
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Figure 1: The imbalance trend between the growth of large
language model size (green line, in billion parameters) and
the increase in GPU memory capacity (orange line).

1 Introduction
Large Language Models (LLMs) have been growing exponentially
following the neural network scaling laws [13, 35, 39], gaining
popularity in recent years [36, 37, 44, 46, 58, 73, 89]. LLMs size
grew by a factor of 1000× between 2018 and 2020, while during the
same period, the memory capacity of Graphics Processing Units
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(GPUs), popular accelerators for machine learning [32, 43, 57, 59,
72, 91], only saw 5× increase [60, 61]. Single GPU is no longer
sufficient to train state-of-the-art LLMs; hundreds or thousands of
GPUs are needed, making training LLMs more costly [16, 80], and
significantly impacting the environment [5, 12, 70, 83].

With the increasing costs of training LLMs from scratch, fine-
tuning is the preferred method for adapting LLMs to perform spe-
cific downstream tasks [20, 28, 78]. This involves taking available
pre-trained models and subjecting them to more particular datasets.
However, as the size of LLMs grows exponentially, even fine-tuning
the models becomes prohibitively expensive, necessitating finding
more efficient methods. One approach to efficiently fine-tune LLMs
is Low-Rank Adaptation (LoRA), introduced in 2022 by researchers
at Microsoft [40]. Further improvement of LoRA comes from using
smaller data formats through quantization to reduce memory re-
quirements, as seen with Quantized LoRA (QLoRA), introduced by
the researcher at the University of Washington in 2023 [18].

This paper explores the fine-tuning performance under differ-
ent GPU architectures and the model’s performance under differ-
ent data formats on conventional fine-tuning, LoRA fine-tuning,
and QLoRA fine-tuning for state-of-the-art LLMs, including Llama
[86], Llama2 [87], Falcon [3], and WizardLM [98]. The experiments
done in this paper are unique since they involve performance mea-
surements on state-of-the-art Graphics Processing Units (GPUs) at
the time of writing, including NVIDIA H100, NVIDIA A100, and
NVIDIA L40. We also use the newest AMD MI300X GPU as pre-
liminary performance exploration, making our paper among the
first to investigate the performance of this GPU to fine-tune LLMs
using LoRA and QLoRA. Specifically, the objectives of our paper
are the following:
• We briefly summarize the LoRA and QLoRA fine-tuning methods
compared to conventional fine-tuning methods to familiarize
them with general readers (Sections 2.4 and 2.5).

• Weperform fine-tuning of the latest state-of-the-art LLMs: Llama,
Llama2, Falcon, and WizardLM with different numbers of pa-
rameters on three different GPUs: NVIDIA A100 80 GB, NVIDIA
H100 80 GB, and NVIDIA L40 48 GB (Section 4.2).

• We estimate the memory required for fine-tuning the LLMs and
correlate it to the actual memory usage (Sections 4.1 and 4.2.3).

• Wemeasure the time needed to fine-tune the LLMs using conven-
tional, LoRA, and QLoRAmethods on different computation data
formats: FP32, BF16, and FP16. In addition, we also compare the
effect of quantization on QLoRA for two data formats, NF4 and
FP4, as well as multi-level quantization (Sections 4.2.1 and 4.2.2).

• We evaluate the quality of fine-tuned LLMs using Massive Mul-
titask Language Understanding (MMLU) benchmark [34], which
then is used to compare LoRA and QLoRA against conventional
fine-tuning flow. We also analyze the effect of quantization on
the model quality of QLoRA for NF4 and FP4 data formats and
multi-level quantization (Section 4.3).

• We perform early performance exploration with AMD MI300X
GPU and investigate the behavior of the software stack when
running LoRA and QLoRA for fine-tuning LLM (Section 4.4).

The major insights of this paper are summarized as follows:
• For small-size LLMs (i.e., 7 billion parameters or less), NVIDIA
H100 and A100 with 80 GB memory are sufficient to perform
conventional fine-tuning by leveraging paged optimizers. While

excessive data movement between CPU and GPU degrades the
overall performance, consumer-grade GPUs with lower memory
capacity cannot be used to fine-tune these models.

• For large-size LLMs (i.e., 40 billion parameters or more), single
GPU available today, even with 192 GB of GPUmemory on AMD
MI300X, is no longer viable; it needs multi-GPU setup.

• LoRA significantly reduces the memory utilization, allowing
GPU with less than 48 GB of memory to fine-tune small-size
LLMs (i.e., 7 billion parameters or less) at the expense of slightly
longer fine-tuning time compared to conventional fine-tuning
due to overhead associated with LoRA. However, LoRA is no
longer sufficient to fine-tune large-size LLMs (i.e., 40 billion
parameters or more) using single GPU available today.

• QLoRA further reduces the memory utilization of LoRA by as
much as 75%, allowing single GPU with 80 GB memory to fine-
tune larger-size LLMs (i.e., 40 billion parameters or more) at the
expense of more computation overhead due to quantization.

• Models fine-tuned with LoRA or QLoRA give on-par or better
accuracy than standard fine-tuning. Specifically for QLoRA, the
NF4 provides better accuracy compared to FP4.

• While AMD MI300X provides the highest memory capacity and
the highest number of vector units at the time of writing, the
software stack needs to be further optimized and refined to
get the most performance out of the hardware. Relying on the
compiler to port available codes is not sufficient.

2 Background
2.1 Hardware and MLWorkload Trend
The models’ size and the dataset to train them are growing expo-
nentially as they follow the neural network scaling laws [13, 35, 39].
Obtaining higher accuracy models can often be accomplished by
increasing the size of the models [10, 74] and exposing them to the
vast amount of high-quality datasets during the training [4, 7, 37].
This is especially true for the recently-popular LLMs [19, 29, 36–
38, 44, 46, 58, 67, 73, 89] that find their ways into many applications
[8, 9, 21, 22, 33, 41, 52, 66, 81, 84, 85, 88, 94, 95, 97, 99, 100, 102–
104, 107]. Between 2018 and 2020, the size of LLMs increased by a
factor of 1000: from 94 million parameters ELMo introduced in 2018
[71] to 175 billion parameters GPT-3 introduced in 2020 [11]. The
introduction of ChatGPT at the end of 2022 [26, 77, 96] marked the
beginning of the Generative AI era [6, 23, 24, 45], which demands
even larger models [14, 24]. Its successor, GPT-4, was released in
March 2023 and is estimated to have 1.76 trillion parameters [69].

In contrast, within the same 2-year period, Graphics Process-
ing Units (GPUs), the popular accelerators for training AI and ML
[31, 32, 43, 57, 59, 72, 91], only see a 5× increase in memory capacity:
from NVIDIA Tesla V100 with 16 GB of HBM2 memory released in
June 2017 [60] to the NVIDIA A100 with 80 GB of HBM2E memory
released in November 2020 [61]. Since its successor, the NVIDIA
H100 [62], still retains the same 80 GB memory capacity, we need
more than three years to see GPUs with double that memory ca-
pacity: AMD MI300X with 192 GB of HBM3 memory released in
December 2023 [1], NVIDIA H200 with 141 GB of HBM3E mem-
ory released in the second quarter of 2024 [65], and the upcoming
NVIDIA B100 and B200 GPUs with 192 GB of HBM3E memory
expected to be launched at the second half of 2024 [64].
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Figure 2: Conventional fine-tuning flow (a) and its alternative
counterpart (b).

Due to the trend imbalance shown in Figure 1, hundreds or even
thousands of GPUs are required to handle state-of-the-art LLMs by
aggregating computational power, memory, and bandwidth [42, 79,
82, 105]. This requires building expensive infrastructure, making
training models from scratch more expensive [16, 80]. For example,
training GPT-3 and GPT-4 models could cost more than $5M [53]
and $100M [48], respectively, as estimated from the infrastructure
required to handle such models. In addition, training such models
has significant environmental impacts due to the enormous energy
consumed [5, 12, 70, 83].

2.2 Conventional Model Fine-tuning
Fine-tuning becomes the favored method for adopting the mod-
els for specific downstream tasks since training the models from
scratch is prohibitively expensive. In fine-tuning, one can take pre-
trainedmodels trained from scratch usingmore general datasets and
subject them to more specific datasets to adapt them to new specific
tasks (i.e., downstream tasks). In addition to saving significant time,
computational resources, and energy, using pre-trained models for
fine-tuning has the benefit of generalization and regularization,
reducing overfitting and improving the fine-tuned model’s perfor-
mance and accuracy for downstream tasks [25, 54, 101]. Fine-tuning
also does not require a huge amount of data, which is beneficial for
tasks where the dataset is small and scarce [55].

Figure 2 (a) illustrates the high-level overview of conventional
fine-tuning of a pre-trained LLM. The𝑊 , which is the pre-trained
model’s weight, is subjected to short training on the specific datasets
tailored for the target downstream tasks. After backpropagation,
the weight updates, Δ𝑊 , are obtained by multiplying the negative
gradient of the loss, −∇ 𝐿𝑊 , and the learning rate 𝛼 . The weight
updates, Δ𝑊 , are used to update the pre-trained model’s weight𝑊 ,
which is then used to generate the output ℎ. Alternatively, Δ𝑊 and
𝑊 can be stored as separate matrices as shown in Figure 2 (b) where
the𝑊 is frozen (i.e., not changed or updated) after the fine-tuning.
The output, ℎ, can be computed using ℎ =𝑊𝑥 + Δ𝑊𝑥 . While this
means that it needs double the memory to store both𝑊 and Δ𝑊
separately, its benefit will become more apparent when Low-Rank
Adaptation (LoRA) is introduced (Section 2.4).

Although conventional fine-tuning previously promised a more
economical and efficient way of adapting LLMs, it has become
more demanding as the LLMs become larger. In addition to the
pre-trained weights, the optimizer states and gradients consume a
significant amount of memory, which easily exceeds the memory
capacity of single GPU (Section 4.1). Multi-GPU systems are needed
to fine-tune state-of-the-art LLMs, necessitating the finding of more
efficient fine-tuning methods.
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Figure 3: LoRA fine-tuning is performed by decomposing
the weight update matrix into two lower-rank matrices (a),
which are then used for fine-tuning (b).

2.3 Intrinsic Dimensionality of Models
In their work published in 2020, Aghajanyan et al. analyzed the
behavior of the models during the fine-tuning using intrinsic di-
mensions [2]. Their goal is to find the minimum number of free
parameters required to closely approximate the quality of the mod-
els when full-parameter fine-tuning is used. In other words, instead
of using the whole pre-trained weights during fine-tuning as shown
in Figure 2, their objective is to find the smaller representation of
the model for fine-tuning without losing too much information.
Their investigation showed that pre-trained models have signifi-
cantly fewer intrinsic dimensions, and thus, there exists a lower
dimension representation of the models that are as effective as their
full parameter counterparts for fine-tuning.

2.4 Lower Rank Representation of Models
Based on the finding summarized in Section 2.3, an efficient fine-
tuning method called Low-Rank Adaptation (LoRA) was proposed
by Hu et al. from Microsoft in 2021 [40]. Leveraging the fact that
models can have lower intrinsic dimensions during fine-tuning,
lower-dimension matrices can replace the weight updates matrix,
Δ𝑊 , without losing too much information. As shown in Figure 3 (a),
the Δ𝑊 matrix with dimension 𝑎 × 𝑏 can be decomposed into two
smaller rank matrices,𝑊𝐴 and𝑊𝐵 , whose dimensions are 𝑎 × 𝑟 and
𝑟 × 𝑏, respectively. With these two matrices, the LoRA fine-tuning
is performed as shown in Figure 3 (b).

Replacing the Δ𝑊 matrix with two smaller LoRA matrices,𝑊𝐴

and𝑊𝐵 , dramatically reduces the number of trainable parameters.
For example, replacing Δ𝑊 whose dimension is 1000 × 1000 with
two matrices whose dimensions are 1000 × 5 and 5 × 1000 reduces
the number of trainable parameters by 99% (i.e., 1 million vs. 10,000
parameters). The lower number of trainable parameters means
that the number of gradients and optimizer states is significantly
reduced, greatly reducing the memory requirements. The𝑊 matrix
in its original dimension is frozen (i.e., not updated during fine-
tuning), and thus, it does not require optimizer states and gradients.

The matrix’s rank, 𝑟 , becomes the LoRA hyperparameter that
controls the size of the LoRA matrices. A smaller 𝑟 implies fewer
trainable parameters, resulting in faster fine-tuning and lower re-
quired compute resources, but at the expense of a reduced model’s
ability to capture task-specific information. Therefore, by adjusting
𝑟 , we can control the trade-off between model complexity, model
adaptation ability, and the cost of fine-tuning.

Finally, we would like to highlight the benefit of having sep-
arate matrices to store pre-trained weight𝑊 and weight update
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Figure 4: Comparison of conventional, LoRA, and QLoRA
fine-tuning in terms of data format usage. Note that there is
no standardized FP4 format.

Δ𝑊 , as briefly mentioned in Section 2.2. With multiple fine-tuned
models derived from the same pre-trained model, one can store
one𝑊 matrix and numerous pairs of LoRA matrices𝑊𝐴 and𝑊𝐵

corresponding to each fine-tuned model, which is significantly
smaller than the𝑊 matrix. This saves a tremendous amount of stor-
age/memory compared to storing the whole dimension of updated
𝑊 for each fine-tuned model. This is why these two LoRA matrices
are also called LoRA adapters.

2.5 Quantization for Low-Rank Adaptation
Although LoRA promises to significantly reduce the memory re-
quirement for fine-tuning LLMs, the𝑊 matrix can still be huge
for large models. For example, LoRA still needs 100 GB of GPU
memory to fine-tune the 65-billion-parameter 16-bit Llama model
(Section 4.1). Although the memory requirement is already reduced
significantly compared to 780 GB needed in conventional fine-
tuning, it is still beyond the capacity of single data-center class
GPU (e.g., 80 GB NVIDIA A100 or 80 GB NVIDIA H100), let alone
the consumer class GPU that usually has lower memory capacity.

In 2023, Dettmers et al. from the University of Washington pro-
posed an improvement to LoRA called Quantized LoRA (QLoRA)
[18]. In summary, QLoRA stores the𝑊 matrix in quantized 4-bit
floating-point formats, significantly reducing the memory required.
Figure 4 compares conventional, LoRA, and QLoRA fine-tuning
regarding data format usage. Three significant improvements of
QLoRA compared to LoRA are explained as follows.

2.5.1 FP4 and NF4Quantization. Unlike LoRA, which stores the𝑊
matrix in a 16-bit floating-point format (FP16), QLoRA stores it in a
4-bit floating-point format through quantization. QLoRA supports
two 4-bit floating-point formats: FP4 and NF4. For FP4, there is no
standardized fixed format; it can be E3M0 to prioritize dynamic
range, E2M1 to get more accuracy, and E1M2 to prioritize accuracy.
The E3M0 often performs better due to the larger dynamic range.
On the other hand, the NF4 format stands for normal-float, which is
an information-theoretically optimal data format. The NF4 format
is obtained through quantization using an empirical cumulative
distribution function where each quantization bin has an equal
number of values based on𝑊 . The authors claim that NF4 gives
better fine-tuning quality than FP4 and 4-bit Integer (INT4) formats.

While the LoRA adapters are stored in 32-bit floating-point for-
mat (FP32), QLoRA allows storing its adapters either in FP32 or a

special 16-bit floating-point format called BF16 [92], which retains
the same dynamic range as FP32 while sacrificing precision. Using
BF16 on hardware that has native support for it, such as Tensor
Cores on NVIDIA A100 [61], NVIDIA H100 [62], and NVIDIA L40
[63] or Matrix Core on AMDMI300X [1] GPUs can reduce memory
requirements and improve computation performance.

It is important to note that although the𝑊 is quantized and
stored in 4-bit floating-point format (FP4/NF4), the fine-tuning is
still done in either mixed precision (FP32/FP16) or BF16 to preserve
accuracy. This requires dequantization of the pre-trained weights
before they can be used for computation, which may add additional
compute overhead.

2.5.2 Double Quantization. In addition to the quantized values,
the 4-bit quantization of𝑊 results in quantization constants, which
are the overhead of quantization. In QLoRA, quantizing 64 val-
ues results in a 32-bit floating-point (FP32) quantization constant,
which gives an overhead of 0.5 bits per model parameter. To fur-
ther lower the quantization overhead, QLoRA uses second-level
quantization, which quantizes the quantization constants. A group
of 256 first-level quantization constants is quantized, resulting in
one 8-bit floating-point (FP8) second-level quantization constant.
This reduces the quantization overhead to 0.127 bits per model
parameter, translating to 3 GB memory saving on Llama with 65
billion parameters.

2.5.3 Paged Adam Optimizer. The Paged Adam optimizer allows
QLoRA to utilize NVIDIA Unified Virtual Memory (UVM) to store
the optimizer states in GPU and CPU memory. In the case of insuf-
ficient GPU memory to store the optimizer states, CPU memory is
used to store parts of them, and the NVIDIA UVM takes care of the
data movement between GPU memory and CPU memory. However,
significant spillage will quickly degrade overall performance due
to excessive data movement between CPU and GPU through the
PCI Express bus.

3 Methods
3.1 Hardware and Software Setup
The experiments are performed on two different compute platforms:
Dell PowerEdge XE9680 and Dell PowerEdge R760xa.With identical
CPU configuration, the Dell PowerEdge XE9680 platform has three
different GPU configurations: eight AMD MI300X GPUs (MI300X)
[1], eight NVIDIA H100 GPUs (H100) [62], and eight NVIDIA A100
GPUs (A100) [61]. On the other hand, only one GPU configuration
for R760xa: four NVIDIA L40 GPUs (L40) [63]. Table 1 summarizes
the platform configurations. The vector unit is called CUDA Cores
and Stream Processors in NVIDIA and AMD GPUs, respectively,
while the matrix unit is called Tensor Cores and Matrix Cores in
NVIDIA and AMD GPUs, respectively.

Configurations that use NVIDIA GPUs are equipped with CUDA
12.2 and NVIDIA driver 535.86.10. To leverage the newer CUDA 12.2,
PyTorch [68] version 2.2.0 is built from scratch inside an Anaconda
23.7.2 environment. On the other hand, configurations that use
AMD GPUs are equipped with Radeon Open Compute (ROCm) 6.0,
AMD driver 6.7.0, and officially-built PyTorch version 2.3.0 for the
ROCm Platform.
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Table 1: Hardware Configuration
Platform XE9680 R760xa

GPU
Manufacturer AMD NVIDIA
Model (# GPUs) MI300X (8) H100 (8) A100 (8) L40 (4)
Form Factor OAM SXM5 SXM4 PCIe
# Vector Unit 19456 16896 6912 18176
# Matrix Unit 1216 528 432 568
Memory Size 192 GB 80 GB 80 GB 48 GB
Memory Type HBM3 HBM3 HBM2E GDDR6
Bandwidth 5427 GBps 3350 GBps 2039 GBps 864 GBps

Typical Power 750 W 700 W 500 W 300 W
CPU (2 Sockets)

Model Xeon 8470 Xeon 6430
Base Clock 2.00 GHz 2.10 GHz
# Total Cores 104 64
Memory Size 2048 GB 512 GB
Memory Type DDR5-4400 DDR5-4400
Bandwidth 281 GBps 281 GBps

Typical Power 350 W 270 W
Interfaces

CPU-to-CPU UPI 16 GT/s
CPU-to-GPU PCIe 5.0 x16 PCIe 4.0 x16
GPU-to-GPU ∞ Fabric 4.0 NVLink 4.0 NVLink 3.0 None

Table 2: LLMs in Experiment
Name Developer # Parameters HuggingFace Hub Link
Llama Meta AI 7 billion huggyllama/llama-7b
Llama Meta AI 65 billion huggyllama/llama-65b
Llama2 Meta AI 7 billion meta-llama/Llama-2-7b-hf
Llama2 Meta AI 70 billion meta-llama/Llama-2-70b-hf
Falcon TII UAE 7 billion tiiuae/falcon-7b
Falcon TII UAE 40 billion tiiuae/falcon-40b

WizardLM Microsoft 7 billion WizardLM/WizardLM-7B-V1.0
WizardLM Microsoft 70 billion WizardLM/WizardLM-70B-V1.0

In addition, several libraries are used for the experiments. While
most of the libraries arewritten to givemore optimized performance
for NVIDIA GPUs, they may not be optimized for AMDGPUs. Some
of the libraries need to be built from sources, relying on the compiler
provided by ROCm to port the codes from NVIDIA to AMD GPUs.
The following is the list of third-party libraries.
• HuggingFace Transformers [93], which provides APIs for quick
interaction with pre-trained models.

• HuggingFace Evaluate [90], which provides tools for evaluating
and comparing models’ performance.

• HuggingFace PEFT [56], which provides access to state-of-the-art
parameter efficient fine-tuning, including LoRA.

• HuggingFace Accelerate [27], which provides an abstraction to
run PyTorch in any device, including multi-GPU.

• DeepSpeed ZeRO [75, 76], which provides library for distributed
training on multi-GPU.

• BitsandBytes [17], which provides 4-bit and 8-bit quantization
for pre-trained weights for QLoRA.
Due to limited space, we provide a more detailed experimental

setup in an open repository accessible through Zenodo [30]. The
repository contains scripts, guidance, and log files for interested
readers to be able to replicate the experiments done in this paper.

3.2 Model, Dataset, and Evaluation
The experiments use four popular large language models as sum-
marized by Table 2: the Llama (Llama-7B, Llama-65B) [86] and its
successor, Llama2 (Llama2-7B, Llama2-70B) [87] fromMeta AI, the
Falcon (Falcon-7B, Falcon-40B) [3] from Technology Innovation

Institute of UAE, and theWizardLM (WizardLM-7B, WizardLM-70B)
from Microsoft and Peking University [98]. The experiment will
mostly focus on handling the smallest variant of each model (i.e.,
7 billion parameters) with limited discussion on the largest vari-
ant (i.e., 65-billion-parameter Llama, 70-billion-parameter Llama2,
40-billion-parameter Falcon, and 70-billion-parameter WizardLM).

In general, the experiments compare conventional fine-tuning
(std) with LoRA (LoRA) and QLoRA (QLoRA) fine-tuning in terms
of fine-tuning performance (i.e., the time needed to fine-tune the
models), resource usage (i.e., CPU memory, GPU memory), and
model quality. The dataset used for fine-tuning the models is the
OpenAssistant Conversation Dataset (OASST1) [50], which can
also be downloaded from HuggingFace Hub (OpenAssistant/oasst1).
Finally, the model quality is measured using the Massive Multitask
Language Understanding (MMLU) benchmark [34] after 2048 steps
of the fine-tuning process. For QLoRA, additional experiments are
performed to observe the effects of FP4 and NF4 data formats on
model quality, the impact of double quantization on memory usage
and model quality, and the performance advantages of using BF16
instead of mixed precision FP32/FP16.

4 Evaluation and Discussion
4.1 Estimating Memory Requirements
The number of parameters is roughly used to estimate the memory
requirements. In conventional fine-tuning (std), all parameters are
trainable, and each needs optimizer states and gradients. On the
other hand, LoRA and QLoRA freeze the model parameters (Figure 4)
and add the adapters. Only the adapters have trainable parameters,
reducing the memory due to fewer optimizer states and gradients.

In PyTorch, parameters are trainable when requires_grad prop-
erty is set to True. Therefore, we can determine the total number of
trainable parameters of the models and adapters using this property.
Note that, for LoRA and QLoRA, the calculation must be done after
the adapters are attached and pre-trained weights are frozen. Spe-
cial handling is required for QLoRA, which uses 4-bit quantization.
Computer memory is byte-addressable, so the smallest unit is a
byte. To store parameters in the memory, two 4-bit values must
be packed together to form a byte, which is taken care of by the
BitsandBytes library [17]. In other words, one byte contains two
model parameters for QLoRA with 4-bit quantization.

The next step is to approximate memory usage based on the
number of parameters (trainable and frozen) and the data formats
they use. Property dtype can be used for each variable in PyTorch to
determine the data formats formodel parameters and adapters. Note
that the data format shown for QLoRA with 4-bit quantization for
pre-trained weight is an 8-bit integer for the reason explained in the
previous paragraph. In addition to storing the pre-trained weights
in the memory, each trainable parameter will need optimizer states
and gradients in a 32-bit floating-point format (FP32). For Adam
Optimizer [47], each trainable parameter needs two state variables,
and hence, 8 bytes (i.e., two FP32 values) per trainable parameter.
For gradients, 4 bytes are required per trainable parameter.

Additional memory required and not included in our approxima-
tion includes memory for forward activations, datasets, quantiza-
tion constants in QLoRA, temporary variables, and unusable memory
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Figure 6: Approximate memory usage for conventional, LoRA, and QLoRA fine-tuning of small-size models (a) and large-size
models (b). For small-size models, single GPU memory capacity is shown on the right for reference, while for large-size models,
aggregate GPU memory capacity inside the compute platform is shown instead.

due to fragmentation. The memory size for forward activations de-
pends on the model configuration, which includes the sequence
length and hidden size. Therefore, the actual memory may be larger
than the approximation derived in this section.

4.1.1 Memory for Small-Size Models. Figure 5 (a) shows the train-
able (purple) and frozen (grey) parameters for Llama-7B, Llama2-7B,
Falcon-7B and WizardLM-7B models on conventional (std), LoRA,
and QLoRA fine-tuning. The memory usage approximation is shown
in Figure 6 (a). In conventional fine-tuning (std), the majority of
memory is used to store the optimizer states (dark red) and gradients
(orange). This results in massive memory consumption, exceeding
the memory capacity of single L40, A100, and H100. On the other
hand, single MI300X GPU provides plenty of memory to run con-
ventional fine-tuning on these models. The paged Adam optimizer
(Section 2.5.3) may be helpful in the situation to allow the fine-
tuning to run even though the optimizer states cannot fit inside
GPU memory at the expense of performance degradation due to
excessive data movement between CPU and GPU.

Moving to LoRA fine-tuning, only the adapters are trainable,
which significantly reduces the number of optimizer states and
gradients. With LoRA, single L40 is sufficient to fine-tune these

models. This also opens the possibility to use high-end consumer-
grade GPUs with memory in the range of 8 GB to 24 GB, making the
models more accessible to the general public. Additional memory
savings come from QLoRA by quantizing the pre-trained weights
to a 4-bit floating-point format. However, since LoRA can already
fit these models into single GPU, QLoRA may not be beneficial at
this point. Its advantage becomes more apparent when fine-tuning
large-size models.

4.1.2 Memory for Large-Size Models. Figure 5 (b) shows the train-
able (purple) and frozen (grey) parameters for large models consist-
ing of Llama-65B, Llama2-70B, Falcon-40B and WizardLM-70B
on conventional (std), LoRA, and QLoRA fine-tuning. The memory
usage approximation is shown in Figure 6 (b).

Like the smaller-size models, most of the memory stores the
optimizer states and gradients. At this size, single GPU cannot suf-
ficiently handle the memory demand for conventional fine-tuning
(std). Thus, we look at themulti-GPU configuration on the compute
platform. The R760xa with four L40 GPUs cannot provide sufficient
aggregate GPU memory to fine-tune these models conventionally.
The XE9680 equipped with eight H100 or eight A100 GPUs may still
be able to do conventional fine-tuning using the paged optimizer.
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Figure 7: Time needed to fine-tune models with conventional (std), LoRA, and QLoRA. For conventional fine-tuning of large-size
models, a multi-GPU setup (four or eight GPUs) is used with either HuggingFace Accelerate or Microsoft DeepSpeed Stage 2
backend. Note that when handling large-model sizes, only Accelerate and QLoRA can run on NVIDIA H100 and NVIDIA A100
GPUs and only QLoRA with BF16 can run on NVIDIA L40 GPU.

The XE9680, equipped with eight MI300X GPUs, provides sufficient
aggregate memory to fine-tune these models.

While LoRA could fine-tune small-size models using a single
GPU, this is no longer true with large-size models. Although mem-
ory requirements are significantly reduced, it still exceeds the mem-
ory capacity of single L40, A100, and H100 GPU. Only MI300X GPU
provides plenty of memory for LoRA fine-tuning for these models.
Finally, QLoRA shines over LoRA, enabling fine-tuning large-size
models with only one GPU. Both single A100 and H100 GPU can
fine-tune these models using QLoRA. However, L40 may not be able
to fine-tune these models using QLoRA since its memory capacity
is roughly the same as the estimated required memory, and addi-
tional memory is needed to store forward activations, dataset, and
quantization constants excluded from the estimation.

4.2 Performance and Resource Utilization
In the previous section, we analyze and approximate the memory
requirement of LoRA and QLoRA compared to conventional fine-
tuning (std), giving us an idea of how significant the memory

reduction offered by them. This section confirms the previous esti-
mation by running the actual fine-tuning on four different GPUs
for small-size models (i.e., 7 billion parameters) and large-size mod-
els (i.e., 40 billion parameters and above) to compare conventional
(std), LoRA, and QLoRA fine-tuning in terms of performance (i.e., the
time needed) and resource utilization (i.e., CPU and GPU memory).
Figure 7 shows the time needed to fine-tune the models using dif-
ferent fine-tuning methods (i.e., std, LoRA, and QLoRA) on various
GPUs (i.e., H100, A100, and L40).

4.2.1 Fine-tuning Performance for Small-Size Models. The left part
of Figure 7 shows the time needed to fine-tune small-size models
(i.e., Llama-7B, Llama2-7B, Falcon-7B, WizardLM-7B). Thanks to
the Paged Adam Optimizer (Section 2.5.3), all GPUs can complete
the conventional fine-tuning (std) process on small-size models.
We previously estimated that it requires more memory than what
is available in H100, A100, and L40 GPUs (Section 4.1.1). The Paged
Adam Optimizer leverages NVIDIA Unified Virtual Memory (UVM)
to move the optimizer states between CPU and GPU memory. How-
ever, excessive data movement between CPU and GPU can degrade
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Figure 8: Aggregate GPU memory utilization during conventional (std), LoRA, and QLoRA fine-tuning. Note that when handling
large-model sizes, only Accelerate and QLoRA can run on NVIDIA H100 and NVIDIA A100 GPUs and only QLoRA with BF16 can
run on NVIDIA L40 GPU.

fine-tuning performance. The most notable impact of data move-
ment is observed with L40 with only 48 GB available GPU memory.

Although single GPU is already sufficient for conventionally fine-
tuning small-size models, we explore the performance improve-
ments when using multiple GPUs with two different backends:
HuggingFace Accelerate [27] and DeepSpeed ZeRO Stage 2 [75, 76].
With HuggingFace Accelerate to utilize multiple GPUs results in
significant performance improvements for L40 since the model,
optimizer states, and gradients are distributed among the avail-
able GPUs, reducing the need to transfer the data back and forth
between CPU memory and GPU memory. However, for H100 and
A100, addingmore GPUs results in a slight performance degradation
due to the communication overhead between GPUs. Single GPU
already have sufficient memory to handle conventional fine-tuning.

On the other hand, the DeepSpeed ZeRO-2 backend partitions
the optimizer states and gradient to remove data redundancy across
GPUs, improving data parallelism. In this experiment, the offload
features on DeepSpeed ZeRO are intentionally disabled. Compared
to HuggingFace Accelerate, DeepSpeed ZeRO-2 performed slightly
worse in H100 and A100, and performed significantly worse in
L40. There are two reasons why DeepSpeed ZeRO-2 performed

significantly worse in L40: 1) Inter-GPU communication in L40
must use the slower PCIe bus since it does not have a dedicated
inter-GPU link (i.e., NVLink); and 2) DeepSpeed ZeRO-2 replicated
the model to each GPU instead of partitioned it across GPU, causing
the optimizer states to spill over to CPU memory due to smaller
GPU memory in L40, which putting strain on the PCIe bus.

Moving into LoRA, the fine-tuning performance is improved for
A100 and L40. Significant improvements are observed in L40 since
there is no need to store parts of optimizer states in CPU memory,
eliminating the data movement overhead. Finally, QLoRA perfor-
mance is worse than conventional fine-tuning (std) and LoRA due
to quantization and dequantization overhead. QLoRA with mixed
precision FP32/FP16 (FP32 adapter) is observed to be faster than
BF16 (BF16 adapter). The reason will be discussed in Section 4.3.2.

4.2.2 Fine-tuning Performance for Large-Size Models. The right
part of Figure 7 shows the time needed to fine-tune large-size mod-
els (i.e., Llama-65B, Llama2-70B, Falcon-40B, WizardLM-70B). For
a model this size, single GPU is no longer sufficient to fine-tune con-
ventionally; instead, multiple GPUs are needed by utilizing either
HuggingFace Accelerate or DeepSpeed ZeRO. DeepSpeed ZeRO-2
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could not handle large-size models since it replicates the model
parameters to each GPU instead of partitioning them across GPUs,
leaving us with HuggingFace Accelerate. For H100 and A100, using
eight GPUs yields slightly faster fine-tuning performance. Only
Falcon-40B can be fine-tuned using four GPUs on L40. Next, LoRA
is no longer sufficient for fine-tuning models this size using single
GPU. Things become more interesting when models become larger,
that is when QLoRA shines. QLoRA allows single GPU to fine-tune
large-size models. Special mention goes into L40 where only QLoRA
with BF16 can fit Llama-65B, Llama2-70B, and WizardLM-70B.

4.2.3 Memory Utilization. Figure 8 shows the aggregate GPUmem-
ory utilization for fine-tuning various models using various meth-
ods on various GPUs. In small-size models, LoRA gives an average
GPU memory utilization of around 20 GB across all four models,
which is a significant reduction from conventional fine-tuning. The
memory utilization is further reduced by QLoRA with an average
usage of 11.69 GB across all four models and GPU configurations.
Although single GPU can no longer handle large-size models, QLoRA
allows fine-tuning them with an average memory usage of 50 GB.

One may wonder about the advantage of choosing BF16 over
FP16 in QLoRA, which gives slightly worse performance as discussed
in Sections 4.2.1 and 4.2.2. QLoRA with BF16 (BF16 adapter) has an
average GPU memory utilization of around 10.3 GB to fine-tune
all small-size models. In contrast, QLoRA with FP16 (FP32 adapter)
has an average GPU memory utilization of around 12.7 GB. This
means that QLoRA with BF16 has almost 20% less memory demand
than QLoRAwith FP16, which will come into handy for larger model
sizes. This is why only QLoRA with BF16 works on L40 when fine-
tuning large-size models. Finally, CPU memory is highly utilized
when Paged Optimizer is being used. For example, when running
conventional fine-tuning on small-size models using L40, the CPU
memory utilization reached 57 GB compared to 7 GB in H100 and
A100. The highest CPU memory utilization is achieved when run-
ning conventional fine-tuning using HuggingFace Accelerate on
large-size models: 526 GB and 499 GB utilization for four GPUs and
eight GPUs run.

4.3 Model Quality Evaluation
While LoRA and QLoRA give promising advantages over conven-
tional fine-tuning of LLMs in terms of memory requirements, in-
frastructure costs, and energy consumption, there is one puzzle
left to complete the experiments: whether the fine-tuned model
obtained using LoRA and QLoRA can compete with the conventional
fine-tuning (std). To finish the puzzle, we use the Massive Multitask
Language Understanding (MMLU) [34] benchmark to compare the
quality of fine-tuned models on 57 subjects across STEM, social sci-
ences, humanities, andmore. Due to limited space, we only show the
result of the MMLU benchmark for Llama2-7B and WizardLM-7B
on Table 3 while other models follow the same pattern. Reviewing
each subject on the MMLU benchmark would take too long, so we
use the average MMLU accuracy score instead.

We also perform exhaustive experiments to determine the impact
of data formats on model quality, fine-tuning runtime on A100, and
GPU memory consumption. Regarding computation data format on
std, LoRA, and QLoRA, we investigate both mixed-precision on FP16
or BF16. Specifically for QLoRA, we investigate the impact of 4-bit

floating-point quantization using either FP4 or NF4. In addition,
we also investigate the effect of using single quantization (SQ) and
double quantization (DQ) as discussed in Section 2.5.2.

4.3.1 Average Accuracy Comparison. For Llama2-7B, the achieved
accuracy score for conventional fine-tuning (std) is 0.24 for both
FP16 and BF16. Both LoRA and QLoRA achieved an accuracy of 0.42
to 0.49, which is double what conventional fine-tuning can achieve.
Without freezing the pre-trained weights, conventional fine-tuning
on Llama2-7B may cause the model to lose some of its general-
ization and regularization, causing a drop in model accuracy after
fine-tuning. On the other hand, conventional fine-tuning (std),
LoRA, and QLoRA achieved on-par accuracy in WizardLM-7B.

4.3.2 Mixed-Precision using FP16 or BF16. The BF16 data format
is supposed to give better performance than mixed-precision fine-
tuning using FP32/FP16 for reasons: 1) BF16 already provides the
same dynamic range as FP32, and thus there is no need to use larger
data formats, reducing the memory and bandwidth demands and
2) matrix units (i.e., Tensor Cores on NVIDIA GPUs) inside the
GPUs support BF16, which should give tremendous speed-up over
FP32. However, we observe the opposite way: the mixed-precision
fine-tuning using FP32/FP16 is slightly faster than BF16 for con-
ventional (std), LoRA, and QLoRA fine-tuning. One reason is the
automatic demotion of FP32 to TensorFloat32 (TF32) [15] by the
CUDA libraries under the hood to take advantage of the matrix
units, giving comparable performance to BF16 without the over-
head of type-casting. Regarding memory usage, using BF16 does
not lower the memory usage on conventional fine-tuning. On the
other hand, on LoRA and QLoRA, we see lower memory usage when
using BF16 by as much as 5% and 15%, respectively. This is the
reason why single L40 can run QLoRA fine-tuning for Llama-65B,
Llama2-70B, and WizardLM-70B models (Section 4.2).

4.3.3 FP4 and NF4 Comparison on QLoRA. In terms of quality, the
NF4 achieves a slightly better average score than FP4: less than 4%
average score for Llama2-7B and on-par on WizardLM-7B. However,
NF4 has more computation overhead due to the quantization based
on empirical distribution, resulting in roughly 4%-5% longer time
for fine-tuning the model. There are no differences in memory
usage between these formats.

4.3.4 Single and Double Quantization Comparison on QLoRA. In
terms of quality, both single (SQ) and double (DQ) give roughly the
same score on the MMLU benchmark. Double quantization saves
memory usage by up to 5%, which is very useful when handling
larger models. However, double quantization involves more com-
putation overhead, resulting in around 2%-4% longer time.

4.4 Preliminary Evaluation on MI300X
This section discusses the preliminary evaluation of MI300X, where,
in this case, the libraries are ported using the provided compiler, and
no optimization is given (Section 3.1). The MI300X is anticipated to
be more popular for handling large language models, so having a
look at the early availability of software libraries is important.

4.4.1 Fine-tuning Small-Size Models. As shown in Figure 9 (a),
DeepSpeed ZeRO-2 performed better than HuggingFace Accelerate
in MI300X. Porting HuggingFace Accelerate [27] using the compiler
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Table 3: MMLU Accuracy Score for Llama2-7B and WizardLM-7B
Llama2-7B WizardLM-7B

QLoRA QLoRA
Std LoRA NF4 Quantization FP4 Quantization Std LoRA NF4 Quantization FP4 Quantization

FP16 BF16 FP16 BF16 FP16 BF16 FP16 BF16
Measurements

FP16 BF16 FP16 BF16 SQ DQ SQ DQ SQ DQ SQ DQ FP16 BF16 FP16 BF16 SQ DQ SQ DQ SQ DQ SQ DQ

Fine-tuning Time (H:MM) 2:12 2:15 2:37 2:39 5:19 5:25 5:35 5:39 5:03 5:11 5:17 5:22 2:11 2:14 2:31 2:34 5:02 5:08 5:16 5:21 4:48 4:54 4:58 5:03
GPU Memory (GB) 78.1 78.7 19.4 18.5 14.6 14.3 12.5 12.3 14.6 14.3 12.5 12.3 78 78.6 16.7 15.8 8.9 8.5 7.3 7.1 8.9 8.4 7.3 7.1

Average MMLU Accuracy Scores 0.24 0.24 0.49 0.47 0.47 0.46 0.46 0.45 0.42 0.44 0.44 0.46 0.26 0.26 0.26 0.27 0.26 0.26 0.27 0.27 0.26 0.26 0.27 0.27
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Figure 9: Preliminary fine-tuning performance (a) and GPU
memory utilization (b) of MI300X.

may not yield optimized code to run on MI300X. Next, QLoRA with
BF16 cannot run since the BitsandBytes [17] could not detect BF16
hardware support even though MI300X has native support for it.

4.4.2 Fine-tuning Large-Size Models. The chart for large-size mod-
els is not shown since only QLoRAwith FP16 can run for fine-tuning
large-size models. The QLoRA with BF16 cannot run for the same
reason as Small-Size models. The HuggingFace Accelerate fails to
run on MI300Xwhen fine-tuning large-size models due to undesired
behavior. Instead of splitting and distributing model parameters
across the GPUs, it replicates them. The replication results in signifi-
cantly higher aggregate memory utilization. This is why Accelerate
faces out-of-memory errors when handling large-size models.

This undesired behavior with Accelerate can also be observed
in small-size models, as shown in Figure 9 (b). Compared to single
GPU (orange), the quad GPUs with Accelerate (light blue) and the
octal GPUs with Accelerate (light green) consume four and eight
times the memory. The desired behavior of Accelerate is shown in
Figure 8, where the quad GPUs (light blue) and octal GPUs (light
green) aggregate memory utilization are not significantly different.
The small differences are due to the additional memory required
for communication buffers between GPUs.

4.4.3 Discussion on Optimized Libraries. The MI300X provides im-
mense computing power and memory, as shown in Table 1. Since it

is still new to the market, many libraries may have not been fully
optimized for newer hardware. Relying on the compiler alone to
port the codes is not sufficient. It takes time for the libraries to
catch up with new hardware architecture and become more mature
which is essential to unleash the performance potential. As more
people have access to MI300X, many developers will have their
libraries optimized for it, such as the VLLM project [49], SGLang
[106], and Lamini [51]. Not only does it help to get the performance
out of the hardware, but it also eliminates the undesired behavior
of the libraries when they are used in newer computing hardware.

5 Conclusion
With the increasing size of state-of-the-art models, the cost of
fine-tuning the models skyrockets as they require large computing
infrastructures and high energy usage. It is necessary to find so-
lutions to efficiently fine-tune large models, allowing lower costs
of adopting such models for organizations and reducing the im-
pact on the environment. LoRA is one of the proposed solutions
to efficiently fine-tune large models by leveraging the fact that the
model has a low intrinsic dimension during fine-tuning. Even with
LoRA, the required memory may still be out of reach for resource-
constrained computing infrastructure. QLoRA improves LoRA with
three primary innovations: four-bit quantization of the pre-trained
models, double quantization, and paged optimizers. These three
innovations allow QLoRA to reduce memory requirements by as
much as 75% compared to LoRA, allowing single GPU with 48 GB
and 80 GB of memory to fine-tune 70 billion parameter models. In
addition, QLoRA delivers model quality that is on par with or ex-
ceeds the quality of the model obtained from standard fine-tuning.
Although QLoRA is still in its infancy at the time of writing, it will
see significant adoption from the community. The integration with
the popular HuggingFace software stack facilitates the easy use of
QLoRA to existing fine-tuning flow. Finally, while AMD MI300X
GPUs provide the largest memory capacity and compute power, a
lot of efforts need to be made to optimize software and libraries to
get the most out of the hardware.
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