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Abstract—Wave simulations are an important task in high-
performance computing across various fields. Wave problems
represented as partial differential equations (PDEs) are mas-
sively parallel and thus well-suited for acceleration. FPGAs are
an attractive solution due to their reconfigurability, allowing
application-specific optimizations of various wave equations.
However, memory bandwidth eventually becomes a bottleneck,
where effective utilization of High-Bandwidth-Memory (HBM) or
similar technology is essential in achieving scalable performance.
GPUs rely on significant hardware resources to manage memory
traffic. By contrast, FPGAs can specialize memory systems and
optimize access patterns to achieve higher utilization on a lower
power budget, but this requires careful design optimizations.

This work introduces HighWave, a scalable FPGA-based
spatial architecture that efficiently leverages HBM in acceleration
of wave simulations. We focus on wave solvers that use discontinu-
ous Galerkin schemes with Gauss-Lobatto-Legendre quadrature
points, characterized by low arithmetic intensity and complex
access patterns. HighWave integrates configurable processing
cores and applies memory optimizations that maximize data
reuse, minimize access irregularities, and ensure load balancing,
thereby achieving high HBM bandwidth utilization. Unlike prior
works for acceleration of wave simulations on FPGAs that
lack HBM integration, HighWave provides better scalability for
cluster-level deployment and supports a wide range of problems.

We evaluate HighWave on the simulation of elastic and acous-
tic wave equations using an Intel Stratix 10 MX FPGA. Despite
the high irregularity of data access patterns, HighWave achieves
up to 72.2% utilization of peak HBM bandwidth. When normaliz-
ing for equivalent peak bandwidth, it delivers up to 48% higher
performance than state-of-the-art GPU implementations on an
Nvidia V100, with up to 2.84× higher energy efficiency.

I. INTRODUCTION

Wave simulations are an integral component of important
applications, such as hydrocarbon exploration [1], finding
safe spaces for CO2 sequestration [2], seismic hazard miti-
gation [3], acoustic modeling [4], aerospace engineering [5]
and the defense sector [6], [7]. Increased interest to improve
reliability and account for uncertainty in such applications
necessitate simulations on finer grids and at larger scales,
calling for significantly more computational resources. Wave
problems belong to the broader class of hyperbolic partial
differential equations (PDEs), characterized by their local
communication patterns. While most such simulations rely
on finite difference or sometimes spectral element methods
(FDMs or SEMs) for wave discretization, there is considerable
interest in exploring discontinuous Galerkin (dG) methods [8],
due to their lower communication requirements and higher ac-
curacy when sharp interfaces are present, e.g., when modeling

fluid-solid interface at the seafloor in offshore hydrocarbon ex-
ploration applications. In particular, dG-based schemes using
structured hexahedral elements and Gauss-Lobatto-Legendre
(GLL) quadrature points limit computations to vector opera-
tions (Level-1 BLAS). This choice reduces overall wallclock
time, making such dG schemes competitive with FDM, but it
also increases the communication-to-computation ratio.

Such applications are characterized by low arithmetic in-
tensity and complex memory access patterns, thus quickly
becoming memory-bound. GPUs have been shown to outper-
form CPUs by orders of magnitude [9], due to their ability
to extract available ample parallelism coupled with utilization
of HBM. However, effective utilization of memory parallelism
and bandwidth is non-trivial. GPUs incur significant hardware
overhead that greatly increases power consumption without
ensuring optimal HBM utilization. Hardware specialization
can overcome these limitations, making FPGAs a promising
alternative, but to the best of our knowledge, no prior work has
designed FPGA accelerators for dG solvers utilizing HBM.

In this paper, we propose HighWave, the first HBM-
enabled FPGA accelerator for large-scale wave simulations
using a dG-based numerical solver. HighWave is a spatial
architecture consisting of an array of configurable, highly-
efficient processing cores referred to as element processors
(EPs). It leverages a custom memory hierarchy and employs
data movement and locality optimizations that maximize at-
tainable HBM bandwidth. Our architecture is general and
configurable to support a wide range of dG problems. With
reasonable modifications, it can also support FDM and SEM,
tackling a wider range of solvers for hyperbolic PDEs. We
showcase our architecture on two case studies, the elastic
and acoustic wave equations, which have important practical
applications, such as exploration geophysics [10], [11], and
seismic hazard mitigation [3], [12].

Our main contributions are summarized below:

• We propose HighWave as a scalable HBM-enabled
architecture targeting wave simulations. HighWave con-
sists of a spatial array of reconfigurable EPs combined
with a specialized on-chip memory hierarchy and custom
load/store (LS) memory access units.

• HighWave employs a range of data movement and local-
ity optimizations that minimize irregular HBM accesses
and achieve efficient load balancing across all HBM
channels in order to maximize HBM bandwidth with
minimum hardware overhead.



Element e Neighbor e’

a
b

c

d

Variables

Volume Flux

Integrate

AuxiliariesContributions

Other neighbors’

Variables

Volume

Other neighbors’

Variables

Integrate

Variables

AuxiliariesContributions

Flux

Flux

𝒄𝒗𝒐𝒍
𝒆

 
𝒄𝒇
𝒆,𝒇 ∈  𝟎𝟓  

а𝒆
 

𝒖𝒆 

𝒄𝒆 

Fig. 1: (a) The 3D space is discretized into a structured mesh of straight-faced hexahedral elements that consist of N×N×N nodes (b),
where the unknown wave variables are computed. Flux computations resolve discontinuities of variables between neighboring elements.
Using dG, Flux only requires information on the direct face of neighbors. Volume computations (c) are local and, when using GLL, require
dot-products involving nodes along all three dimensions. Finally, (d) shows the dataflow graph of a wave simulation.

• We evaluate HighWave on elastic and acoustic wave
equations using a Stratix 10 MX FPGA. When normaliz-
ing for equivalent peak HBM bandwidth, it outperforms
state-of-the-art GPU implementations on an Nvidia V100
by up to 48%, with up to 2.84× higher energy efficiency.

II. RELATED WORK

Wave simulations using dG are traditionally executed on
HPC clusters, leveraging many-core CPU nodes to handle
large-scale problems [13]. However, despite the high com-
plexity of rewriting legacy scientific code for alternative archi-
tectures, recent GPU implementations have shown significant
performance gains over CPUs [14]–[16]. To the best of our
knowledge, GAPS [9] is the state-of-the-art GPU implementa-
tion targeting our setup of dG+GLL-based wave simulations. It
outperforms CPU implementations by up to 84× on an Nvidia
V100, achieving throughput up to ∼1 TFLOPs.

Several FPGA accelerators for dG-based wave simulations
have been proposed. For example, the work in [17] accelerates
a dG solver for Maxwell’s equations, outperforming CPUs by
2×. The authors in [18]–[20] implement dG-based shallow-
water models using triangular elements. These works target
different applications on unstructured meshes and follow non-
GLL solutions with high arithmetic intensity. None of these
works leverage HBM. Within the scope of existing studies,
FAWS [21] is the closest FPGA implementation to our work
targeting dG-based wave simulations with GLL quadrature
points on structured meshes, but it also does not use HBM
and scales poorly with peak memory bandwidth.

HBM integration with FPGAs has shown significant per-
formance gains in various applications, outperforming both
GPUs and traditional FPGA designs without HBM. These
applications span domains such as machine learning [22]–
[25], quantum chemistry [26] and HPC [27]–[32]. While some
works have employed HBM-equipped FPGAs for memory-
bound PDE solvers, they focus on different methodologies.
For example, NERO [33] accelerates compound stencil com-
putations essential to weather prediction models, and FP-
AMG [34] targets algebraic multigrid solvers. However, no
work has leveraged HBM for dG-based solvers. This paper
introduces the first scalable FPGA+HBM accelerator for dG-
based large-scale wave simulations. Our architecture is highly

Algorithm 1: Runge-Kutta time stepping

1 for all time steps do
2 for all elements e do
3 ce =

∑
e′ F(ue,ue′

) + V(ue)
4 ae = α ae + β M−1ce

5 ue = ue + γ ae

efficient and general to allow adaptation over a wide range of
hyperbolic PDE problems, including the acoustic and elastic
wave equations demonstrated in this paper.

III. BACKGROUND

This section briefly outlines necessary background on dG-
based wave simulations and the HBM architecture of Stratix.

A. Discontinuous Galerkin and Wave Simulations
Hyperbolic PDEs are typically solved through discretization

in space and time. In this work, we discretize the 3D spatial
domain using a structured mesh with straight-faced hexahedral
elements (Fig. 1a), with N×N×N nodes each (e.g. N=3 in
Fig. 1b). Higher N means higher discretization order, which
reduces dispersion errors in wave simulations. Additionally,
a higher N is advantageous from a hardware perspective [9].
While our approach supports any N , we focus on N=8 in our
evaluation (Sec. V), similar to prior works [9], [21] that focus
on practical real-world applications. The goal is to compute the
vector of 3D tensors ue for each element e, which represents
the PDE’s unknown variables on the element’s N3 nodes.

Temporal discretization iteratively updates the solution vec-
tors ue of each element for the simulation period. For integra-
tion, we use a Runge-Kutta time-stepping scheme (Alg. 1),
which updates ue using an auxiliary vector ae. Two key
computational kernels, Volume (V) and Flux (F), contribute
to calculating ue and ae by producing the intermediate contri-
bution vector ce. In our case, we focus on the Gauss-Lobatto-
Legendre (GLL) quadrature integration method, which greatly
reduces the amount of computations of Volume and Flux, but
increases the communication-to-computation ratio [35].

Fig. 1d illustrates the dataflow graph of Alg. 1 when using
dG. In each time step and for each element, the Volume kernel
performs local computations that require only the element’s
own nodes. To calculate the cevol contribution vectors, the
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derivatives of each variable across all three spatial dimensions
are computed (Fig. 1c) for each node. In the case of GLL,
these derivatives are reduced to simple dot-product operations
between a subset of variables and constant differentiation
vectors. By contrast, Flux computations are non-local and
resolve discontinuities between faces of neighboring elements.
Unlike FDM solvers, which also require deeper neighbor
data, in dG, Flux operations are limited to the face nodes of
adjacent elements (Fig. 1b). For each element face, when using
GLL, the Flux kernel performs lightweight scalar operations
using variables on the N2 face nodes of e and neighbor e′,
calculating the cef contributions on these nodes. Finally, an
Integrate kernel updates ue and ae in each step, using the
contributions ce and the element’s mass inverse matrix M−1.

There are several ways of implementing this dataflow. As
in prior works [9], [21], we employ kernel fusion to improve
data locality and reduce traffic to main memory. With this
approach, each element is fully processed before proceeding
to the next. To do so, we load the element’s data from main
memory, along with the necessary neighbors’ face variables,
and then execute the three kernels for that element. Afterwards,
we store the element’s updated variables/auxiliaries in main
memory and move to the next. Note that kernel fusion intro-
duces a data hazard between variable updates of neighboring
elements. Specifically, if Flux runs on a face shared with an
already processed neighbor, it will read that neighbor’s up-
dated variables, causing a write-after-read hazard. To address
this, Flux computes the contributions both for its own and each
neighbor’s face. We then use a flag mechanism to indicate that
any neighbor that is processed afterwards does not need to re-
run Flux for that face. Moreover, this dataflow allows multiple
elements to be processed in parallel. However, processing
two neighboring elements concurrently can introduce race
conditions on the calculation of Flux contributions between
shared face nodes. This can be resolved via synchronization
of faces or scheduling of elements in a way that guarantees
no neighbors are processed in parallel.

B. High Bandwidth Memory on the Stratix 10 MX
HBM is a 3D-stacked DRAM technology. Specifically, in

the HBM2 standard, each HBM stack consists of a number
of dies, with two independent memory channels per die. Each

channel is further split into two pseudochannels (PCs), each
with their own controller and address space, but shared com-
mand buses. The Stratix 10 MX FPGA has two HBM2 stacks,
one at the top and one at the bottom of the device, with four
dies per stack, for a total of 16 channels or 32 PCs. FPGA logic
communicates with the memory controller of each PC via 256-
bit AXI or Avalon interfaces. While the maximum theoretical
frequency of these interfaces is 500 MHz, Intel recommends
limiting it to 405 MHz [36], dropping the theoretical peak
bandwidth from 512 GB/s to 414.72 GB/s.

IV. HIGHWAVE SYSTEM DESIGN

In this section, we first propose memory layout and mapping
techniques that maximize memory performance and then we
delineate our system architecture. We showcase our approach
for the elastic equation, which involves six stress and three
velocity variables, amounting to nine variables. Consequently,
the elastic wave solver uses nine contributions, nine auxiliaries
and one mass inverse value per element node. Collectively,
we refer to a node’s distinct values as quantities, yielding a
total of 28 (=3·9+1) quantities per node. Our approach can
be applied in straightforward fashion to other wave equations,
such as acoustic (Sec.V), electromagnetic etc.

A. Memory Layout and Mapping

HighWave assumes that element data is stored in DRAM.
As with other accelerators, it fetches data from HBM DRAM
into local on-chip memory and then operates on this data via
a custom array of Element Processors (EPs) that execute out
of local memory. Fig. 2 shows an overview of the mapping of
data onto local memories and HBM channels.

Element batching: Prior FPGA accelerators [21] for wave
simulations scale poorly with the number of memory channels,
as they fetch and process single elements at a time from
DRAM. As the number of channels increases, this reduces the
consecutive transaction size to each channel, degrading band-
width. To address this, we propose fetching and processing a
large, contiguous 3D block of elements at a time (Fig. 2(a)),
maintaining large, consecutive per-channel transactions. This
enables scalability, while improving locality by reducing off-
chip accesses for neighbor data, as most neighbors of elements
within a block are stored on-chip. Note that processing of



elements at the border of a block also requires accesses to data
of external neighbors. We will call such accesses irregular, in
contrast to regular accesses for fetching the block itself.

Each block can then be treated as a larger element that
requires special computation and follows the dataflow from
Sec. III-A. Fig. 2(b) shows all the element data that gets
fetched on-chip (marked in red borders) to process each block,
comprising all elements in the block and faces of elements on
neighboring blocks. As mentioned, when processing a block,
Flux updates the contributions on each neighboring block’s
face, where a flag is used to indicate that a shared face has
already been processed. As such, the number of neighboring
block faces fetched from HBM ranges from zero to six, with
an average of three, when using hexahedral elements.

For a given block size, the shape that minimizes irregular
accesses and maximizes locality is cubic (A×A×A). An
A×A×A cube reduces irregular accesses by a factor of A.
For example, in a 4×4×4 block, irregular transactions are
proportional to the number of external neighboring faces,
which totals 6×16=96 (6 faces per block, 16 element faces
per block face). In contrast, loading and processing elements
individually requires 6×64=384 neighboring faces (6 faces
per element, 64 elements in the block). This equals a 4×
reduction in irregular transfers. Without loss of generality,
for the rest of this paper, we will use 4×4×4 blocks, the
largest size that fits in on-chip memory for our FPGA when
N=8 in the elastic wave. Nonetheless, the proposed method is
adaptable to different block dimensions (e.g. 2×4×4, 8×4×4
etc.), based on the value of N and on-chip memory capacity.

Data mapping to EPs and HBM channels: To achieve
load balancing of a block’s data across HBM channels and
parallel EPs, we divide the 3D block into four groups, as
illustrated in Fig. 2b. Each group, represented by a distinct
color, corresponds to a specific 1×4×4 slice of elements
along the x-axis within a block, mapped to a different set
of HBM channels and processed by a different EP. EPs are
physically placed near their respective channels (Fig. 2(d)).
During processing, elements within a slice exchange face
variables and contributions with: (i) other elements in the same
slice, (ii) elements in adjacent slices within the block, and (iii)
elements in neighboring blocks (external neighbors). To ensure
that each slice’s external neighbors belong to the same set
of PCs, the group order within each block is flipped in each
subsequent block along the x-axis (Fig. 2(b)). This flipping
simplifies control logic and does not require long data paths
to move external neighbor data between EPs and distant PCs.

Each slice contains 16 elements and is mapped to a set
of four HBM channels, enabling utilization of all 16 channels
across four groups. The 28 element quantities of each slice are
divided into four sets of seven quantities each, with each set
mapped to a different channel. Since channels consist of two
PCs, each quantity set is further partitioned into two banks,
where each bank holds data of 8 out of the 16 elements and
is assigned to a different PC of the corresponding channel
(Fig. 2(c)). This enables a large, consecutive access (128kB in
our case, when N=8) for each PC during regular transactions,

TABLE I: Mapping of group 0’s quantities to all eight PCs.

PC Quantities PC Quantities
0 mass inv, var0–5 (Bank 0) 4 contr4–8, aux0–1 (Bank 0)
1 mass inv, var0–5 (Bank 1) 5 contr4–8, aux0–1 (Bank 1)
2 var6–8, contr0–3 (Bank 0) 6 aux2–8 (Bank 0)
3 var6–8, contr0–3 (Bank 1) 7 aux2–8 (Bank 1)

which leads to very efficient bandwidth utilization. Bandwidth
utilization is lower when fetching neighboring block faces, due
to the high irregularity in their access patterns. Table I shows
an example mapping of quantities to PCs for Group 0, with
other groups following similar patterns. This mapping uses all
32 PCs available on the MX device. The 256-bit interface of
each PC can fit eight 32-bit floating-point quantities per word,
resulting in one zero-padded 32-bit value per 256-bit word
when assigning seven quantities per PC.

The grouping of elements into slices shown in Fig. 2(b) does
not evenly distribute the external neighbors of a block’s left
and right faces across all PCs, causing only eight PCs to be
used when fetching these faces, which degrades performance.
To address this, we propose two optimizations. First, we
schedule blocks to traverse each row along the x-axis with
a stride of 2, accessing even-indexed blocks first, then odd-
indexed ones This ensures that either both or none of a
block’s left/right faces need to be fetched. When fetched, they
are handled concurrently, using 16 PCs in total. Second, the
element grouping can be modified, as shown in Fig. 2(e), to
evenly split the left and right face between groups 0-1 and
2-3, respectively. This grouping, referred to as balanced, fully
utilizes all PCs for all block faces, improving performance
by up to 3% (Sec. V). However, it requires a slightly more
complex design and scheduling to preserve data dependencies,
not illustrated here for brevity.

B. System Architecture

Fig. 3 shows our proposed spatial architecture, comprising a
configurable number of EPs and custom, dedicated load/store
(LS) units that move each group’s data between HBM PCs
and the corresponding EP’s on-chip buffers. The number of
EPs is determined by the number of PCs (and, thus, peak
bandwidth) and available on-chip resources. Before execution
begins, initial data is offloaded to HBM from the host via the
PCIe bus. Upon completion, the host reads back the results.

EP kernels: The EP microarchitecture, Fig. 3 (right), is
designed to saturate HBM bandwidth with minimum resource
overhead. It consists of three compute kernels, Volume, Flux
and Integrate, utilizing kernel fusion. The Volume is the most
computationally intensive kernel. It calculates the cevol vector
with the volume contributions of each element’s nodes. To
do so, it iterates over each node and computes dot products
between a subset of variable vectors and constant differentia-
tion vectors of length N across all three dimensions. Parallel
multipliers and adder trees are used for the dot-products. We
implement the Volume loop with an initiation interval (II) of
1, thus requiring one clock cycle per node for a total of N3

cycles per element. To enable an II of 1, a large number of
memory accesses are needed to each variable vector per clock
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Fig. 3: System Architecture (middle), including the internal architecture of LS units (left) and EPs (right).

cycle (up to 22 when N=8) to feed all the dot-product engines.
This requires replication of variables in on-chip buffers.

The Flux kernel calculates the 2D cef and ce
′

f flux contri-
bution vectors on the shared face f of elements e and e′. For
each face, it iterates over all N2 nodes and performs vector
addition and scaling as a function of the variables on the face
nodes of both elements. This loop is also pipelined with an II
of 1. For a given element, this process is repeated for each face
not already processed by a neighbor. The maximum number
of cycles needed to compute Flux for one element is 6×N2.
Finally, the Integrate kernel consists of a single pipelined loop
(II=1) that iterates over all N3 nodes of an element and updates
the variable and auxiliary tensors ue and ae based on the
Volume and Flux contributions, using scalar operations.

Memory architecture: Internally, EPs incorporate two
memory hierarchy levels, L1 and L2, as in Fig. 3 (right). A
Data Mover operating in parallel with the compute kernels
manages data movement from L2 to L1. L2 is connected to
the LS units and stores quantities of all 16 elements in a
group, as well as face data of the group’s external neighbors.
For the group’s internal elements, we use one buffer per
quantity, holding 16·N3 values and partitioned to two banks
(Sec. IV-A). For the external neighbor data, we need one buffer
for each variable and contribution. In the balanced grouping,
each group has 24 external neighboring faces, so each of these
buffers stores 24·N2 values. All these memories are double-
buffered to overlap communication and computation.

As mentioned above, the Volume kernel performs simultane-
ous memory accesses to the variable tensor (up to 22 in elastic
when N=8), requiring significant replication of the variables
to feed all of its dot-product engines. However, replicating the
entire slice’s variables at this scale is infeasible due to memory
constraints. To resolve this, we use L1 memory to act as a
cache holding the replicated variables of the current element
that the EP processes. L1 is also double-buffered to overlap
computation with prefetching of the next element’s variables
from L2. Each EP also includes small buffers in L1 to hold
Volume and Flux contributions that will be used by Integrate.

Intra-EP communication: Next, we outline the connec-
tions between an EP’s compute kernels and its buffers (Fig. 3
right). Volume reads from L1 and writes to the Volume con-

tributions. It also reads contributions from L2 to accumulate
any contributions on face nodes already calculated by external
neighbors. Flux reads the variables of the external neighbors
and updates their contributions in L2. It does the same for
neighbors inside the EP’s slice, hence its Slice Quantities con-
nection. It also reads the variables of the current element di-
rectly from L1. Integrate reads the current element’s variables
from L1, as well as calculated Volume/Flux contributions. It
writes updated auxiliaries and variables back to L2.

Inter-EP communication: EPs that process neighboring
slices need to exchange variables and contributions on their
shared face. Since EPs are placed on distinct regions of the
programmable fabric, we aim to minimize the wire length
required for cross-EP communication. This will alleviate
congestion on the routing fabric and maximize operating
frequency. To do so, we instantiate only one additional copy
of the variables in L1, placed at the border of adjacent EPs. A
similar dedicated buffer is used for exchange of contributions.
These two buffers, labeled as EP-shared, facilitate inter-EP
communication. During Flux, using the mapping in Fig. 2(b),
we use a convention that faces shared by adjacent EPs are
processed by the EP with the higher index. For example, to
process the face shared between slices belonging to groups
1 and 2, EP2 reads the face variables and writes back the
calculated contributions from/to EP1’s EP-shared buffer. EP1
then reads these contributions during its Integrate stage. The
same process occurs between EP0–EP1, and EP2–EP3, as
indicated by blue and red arrows in Fig. 3. The balanced
grouping in Fig. 2(e) requires one additional set of EP-shared
buffers for EP0–EP3 communication, not shown for simplicity.

Clock domains and LS units: To maximize bandwidth,
HBM controllers must run at maximum frequency (405 MHz
in Stratix). However, EPs may not need such a high frequency
to saturate the bandwidth. In such cases, using the same clock
domain for the HBM controllers and the EPs will lead to worse
energy efficiency and make timing closure more challenging.
As a result, our architecture operates on two different clock
domains, one for the EPs and one for the HBM controllers.

The LS units are responsible for moving data between HBM
PCs and the EP L2 buffers. Fig. 3 (left) shows the LS archi-
tecture, consisting of control and address generation logic, as
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well as clock-crossing FIFOs to move data between the two
clock domains. LS units dynamically decide which neighbors
need to be fetched and follow a static scheduling of blocks that
eliminates race conditions. For clock crossing, we can use one
or two dual-clock FIFOs (DCFIFOs) in each direction. Using a
single DCFIFO can degrade Store performance if the EP clock
is slower. It also requires a large enough Load FIFO depth
to maintain bandwidth during Load. Depending on the FIFO
implementation, such high depth can be expensive resource-
wise. Conversely, using two DCFIFOs per direction (Fig. 3)
and alternating between them from the HBM side doubles the
data rate from the EP side, eliminating Load/Store bandwidth
degradation under minimum FIFO depth requirements.

C. System Scheduling
Fig. 4 illustrates the system’s execution schedule. As men-

tioned, L2s are double-buffered, allowing processing to be
overlapped with load/store of next/previous blocks. We show
kernels of one EP, but all EPs are launched simultaneously
and operate in parallel. LS operations are divided into regular
and irregular categories: regular operations handle fetching
and storing data for the current block being processed, while
irregular operations manage data for neighboring blocks. Only
one of these four operations can access the HBM PCs at a time,
ensuring that memory bandwidth is used without contention.

Connections marked by red and green arrows indicate
dependencies between load-compute and compute-store, re-
spectively. Dependencies between the EP’s internal kernels are
marked in black. The Data Mover begins fetching element 0
from L2 to L1 once the regular load completes. The Volume
and Flux kernels are scheduled to start in parallel once the
Data Mover has transferred element 0. Since Flux requires
neighbor data, it also waits until irregular load operations are
completed. Integrate begins after element 0 has been processed
by both Volume and Flux. Lastly, the irregular store can start
when Flux finishes the final element, and the regular store after
Integrate has processed the last element in a block. Within each
slice, elements are processed in an order that guarantees no
memory bank conflicts between memory accesses of different
kernels. This eliminates arbitration when accessing the L2 and
L1 buffers, thus optimizing the system’s interconnects. EPs of
neighboring slices follow the same element order to guarantee
correct exchange of data through the EP-shared buffers.

V. EVALUATION

We evaluated HighWave on an Intel Stratix 10 MX 2100,
targeting elastic and acoustic wave simulations on proxy

TABLE II: Hardware platform specifications.
Stratix 10 MX 2100 P100 V100

On-chip memory 16.73 MB 22.81 MB 35.56 MB
Peak FLOPs 6.3 TFLOPs 9.3 TFLOPs 14.1 TFLOPs

Peak HBM BW 414.7 GB/s 734 GB/s 900 GB/s
Technology node Intel 14nm TSMC 16nm TSMC 12nm

TABLE III: Mapping of group quantities using 7 out of 8 PCs.
PC Quantities PC Quantities
0 mass inv, var0–6 (Bank 0) 4 contr6–8, aux0–4 (Bank 0)
1 mass inv, var0–6 (Bank 1) 5 contr6–8, aux0–4 (Bank 1)
2 var7–8, contr0–5 (Bank 0) 6 aux5–8 (Banks 0, 1)
3 var7–8, contr0–5 (Bank 1) 7 Unused

problems representative of real-world applications, such as
full-wavefield inversion in hydrocarbon exploration. N=8
and FP32 precision has been used throughout. We used Intel
High-Level-Synthesis (HLS) to design the Volume, Flux and
Integrate kernels, while the rest of the system (LS units,
memory architecture, control logic etc.) is implemented in
Verilog. For elastic, we use 4 EPs operating on a 4×4×4
block (Sec. IV). The acoustic equation involves four unknowns
(13 quantities total). This leads to less memory size per
element, supporting 8 EPs operating on an 8×4×4 block.

We compare against GAPS [9] running on an Nvidia P100
and V100 GPU. All devices incorporate 16GB of HBM2 and
their key specifications are shown in Table II. Measurements
correspond to 32×32×32 grids (32,768 elements, ∼1.75 GiB
total size), the largest representative problem size that fits in
HBM, with similar results obtained for smaller sizes. Both
the GPU and FPGA run fully independently once launched.
Results exclude overheads for mesh generation and initial/final
data transfer between the host CPU and the device’s HBM, as
they were less than 0.5% of total runtime.

A. Implementation Results

We describe several important, device-specific implemen-
tation choices needed to maximize performance on Stratix.
First, as also identified in [22], timing closure is particularly
challenging near the device’s bottom-left PCs (PC16 and
PC17), due to their proximity to the secure device manager. To
address this in the elastic case, instead of zero-padding each
PC of EP3, we exclude PC16 and re-distribute its quantities
to fill the zero-padded slots of the other seven PCs (Table III).
We do the same for all EPs, maintaining the performance of
the original configuration, while enabling timing closure and
reducing HBM power usage, as four of the 32 PCs are inactive.
We apply similar optimizations for acoustic, using 26 PCs in
total, but this requires some PCs to contain quantities of two
neighboring groups. Overall, 32 mod K PCs are unused with
this scheme, where K is the number of quantities. To further
reduce routing congestion, we connect the PCIe interface only
to channels that require initialization or read-back.

Second, choosing how the LS DCFIFOs are implemented is
a key design decision. On Stratix, they can be implemented us-
ing either M20K blocks or MLABs (soft logic) [37]. The first
choice requires at least seven M20Ks per 256-bit FIFO, which
offer a FIFO depth of 512 words [38]. Depending on the EP
frequency, this depth may not suffice and lead to performance



TABLE IV: Resource usage breakdown of one elastic EP.
Components DSPs M20Ks ALMs

Volume 172 (4.3%) 1 (0%) 4300 (0.6%)
Flux 61 (1.5%) 3 (0%) 3570 (0.5%)

Integrate 37 (0.9%) 1 (0%) 1760 (0.2%)
Data Mover 0 (0%) 0 (0%) 40 (0%)

L2 0 (0%) 1040 (15.2%) 0 (0%)
L1 0 (0%) 360 (5.3%) 0 (0%)

EP-shared 0 (0%) 36 (0.5%) 0 (0%)
IC/Pipelining 0 (0%) 0 (0%) 22718 (3.2%)

Total 270 (6.8%) 1441 (21.0%) 32348 (4.6%)

TABLE V: Total resource usage of HighWave.
Components DSPs M20Ks ALMs
1 EP (elastic) 270 (6.8%) 1441 (21.0%) 32348 (4.6%)

1 EP (acoustic) 97 (2.4%) 620 (9.1%) 12618 (1.8%)
1 LS Unit (average) 0 (0%) 0.4 (0%) 1033 (0.1%)

Other (PCIe, HBM, IC) 0 (0%) 175 (2.6%) 71466 (10.2%)
Total (4EPs, Elastic) 1080 (27.3%) 5951 (86.8%) 229775 (32.7%)

Total (8EPs, Acoustic) 776 (19.6%) 5153 (75.3%) 211641 (30.1%)

degradation when using a single FIFO for Load (Sec. IV-B).
As a result, Load may need a higher depth, or to use two
DCFIFOs as in Fig. 3, doubling M20K usage in both cases.
Simultaneously, Store requires 2 FIFOs to maintain bandwidth.
This adds up to 896 M20Ks (13.1% of total) for the LS units
of all PCs. However, the M20K blocks on the MX device are
limited and to exploit locality, HighWave prioritizes use of
on-chip SRAM for block buffering. As such, and since the
ALM requirements of HighWave are much lower, we chose
to use two DCFIFOs per direction implemented using MLABs.
The minimum FIFO depth requirements of this scheme led to
only 4.1% total ALM utilization for all LS units.

Table IV shows the resource breakdown of an elastic wave
EP, including the compute kernels, the Data Mover, the L1, L2
and EP-shared buffers, as well as resources for interconnect
(IC) logic and pipeline stages on paths to L1/L2 buffers.
Overall, M20Ks are the most critical resource, while ALM and
DSP utilization is small, due to the low arithmetic intensity.
Table V also shows the resources of an acoustic EP, and for the
full system, including LS units and system-level components
(e.g. PCIe, HBM controllers and interconnects/pipelines on
data paths to HBM channels). The acoustic wave has even
lower arithmetic intensity, requiring fewer resources.

Fig. 5 shows the floorplan for the elastic wave implementa-
tion, indicating the location of the HBM PCs and the EPs, as
well as the routing heatmap. Overall, congestion was highest
along paths between PCs and L2 buffers. Using small EP-
shared buffers on the border between neighboring EPs greatly
reduced routing congestion and contributed to timing closure.

Synthesized EPs were able to reach a maximum frequency
of 370 MHz. Using deep pipelining to the PCs, we managed
to meet timing at 400 MHz for the HBM controllers, which
nears the 405 MHz maximum that Intel recommends.

B. Performance Analysis

Memory performance: Our design supports a peak theo-
retical bandwidth of 409.6 GB/s when utilizing all 32 PCs.
To determine the maximum attainable memory bandwidth,
we tested the system running the elastic wave with only the
LS units active, isolating memory performance from potential

PCs 24-31PCs 16-23

PCs 8-15PCs 0-7

EP0 EP1

EP3 EP2

Fig. 5: Architecture floorplan with routing heatmap.

computation stalls. Regular HBM accesses, characterized by
large consecutive transactions, achieved ∼90% per-channel
utilization, which translates to 78% of peak BW when ex-
cluding 4 PCs. Next, introducing irregular transactions drops
effective bandwidth to 287.3 GB/s (70.1% of peak). The
balanced element grouping (Sec. IV-A), which evenly dis-
tributes left and right face data across all PCs, increased
bandwidth to 295.6 GB/s (72.2% of peak), yielding a modest
3% speedup. This limited improvement reflects the small size
of left and right neighbor data compared to the total data,
compounded by a 4× reduction in irregular transactions. For
acoustic, bandwidth was lower at 66.2%, due to using two less
PCs. Prior works for the same elastic problem setup achieved
significantly less utilization. GAPS [9] reached only about 56%
efficiency on an Nvidia V100 GPU, while the FPGA-based
approach in [21] achieved 55% on single-channel DDR4 and
dropped further to 34.5% when scaled to four DDR4 channels.

System performance: As communication and computa-
tion are overlapped, we need just enough compute power
to fully saturate the attainable memory bandwidth. A faster
computation is wasteful in power consumption, while a slower
computation introduces stalls that degrade performance. For
a given number of EPs, we can calculate the clock cycles
needed to process a block, when using the schedule from
Sec. IV-C. The EP clock frequency can then be set to match
the communication speed. However, the load/store time of
a block varies based on how many neighboring blocks need
to be read from and written to HBM, ranging between zero
and six. Any time computation is slower, bubbles are added.
The shortest communication time appears in cases when no
neighbors need to be fetched, which is very rare. Overall, a
355 MHz EP frequency was enough to eliminate most stalls
and saturate HBM bandwidth for both applications.

Fig. 6 (left) shows the performance of the elastic system at
different EP operating frequencies for the two system variants
(original vs. balanced element grouping). As expected, the bal-
anced grouping leads to better bandwidth utilization and, thus,
throughput. We observe a relatively small throughput decrease
(6.4%) when frequency drops from 360 MHz to 320 MHz
(11.1% frequency drop), showcasing a weak dependence of



Fig. 6: Elastic wave performance (left) and energy efficiency (right)
vs. EP frequency of original and balanced element grouping.

performance on a wide frequency range. This is because the
aforementioned compute stalls only appear in cases where a
few neighboring blocks need to be fetched. Communication
of more neighbors leads to fewer bubbles as computation is
faster than communication. Performance degrades faster for
frequencies below 320 MHz, due to the addition of bubbles
in more cases. Both variants achieve the same throughput at
low frequencies, as they are both compute-bound.

Fig. 7 shows the roofline plot of HighWave and GAPS,
denoting the low arithmetic intensity of the two applica-
tions. Our 4× reduction of irregular HBM accesses slightly
increases the arithmetic intensity over GAPS. Fig. 8 (left)
illustrates a throughput comparison against GAPS running
on an Nvidia P100 and V100. The acoustic wave exhibits
lower arithmetic intensity than the elastic wave, hence its
lower overall GFLOPs. The P100 is constrained by small L1
cache size (7.7× smaller than V100), thus its much smaller
performance than V100 and Stratix. The V100 does not suffer
from this bottleneck and it achieves higher throughput than
Stratix, due to its much higher peak bandwidth (Table II).
As the bottleneck in all cases is attainable HBM bandwidth,
we enable a fair comparison by normalizing V100 throughput
to match the peak bandwidth of Stratix (409.6 GB/s). When
doing so, HighWave is 36% and 48% faster than V100
for elastic and acoustic, respectively. This showcases better
bandwidth utilization, attributed to our proposed memory
optimizations that improve locality and access patterns, while
consistently issuing sufficiently large transfer bursts to all PCs.

C. Power Analysis

To measure power for Stratix, we used the Intel Board Test
System’s power monitor under standard room temperature.
We configure HighWave to run elastic and acoustic waves
for tens of thousands of time steps, recording average power
over several minutes. Total power consumption for the elastic
wave ranged from 48.1–53.9W depending on EP frequency.
Up to 14.8W (27% of total) was consumed by HBM. Max-
imum power for the acoustic wave was 46W. Fig. 6 (right)
shows the energy efficiency (in GFLOPs/Watt) of the elastic
system at different EP frequencies. The balanced grouping
at 350 MHz yielded maximum energy efficiency. However,
efficiency varied by less than 2% across the frequency range.
Similar trends were observed for the acoustic wave.

To measure GPU power, we used nvidia-smi. Fig. 8 (right)
compares the energy efficiency of HighWave with P100
and V100. Similarly to throughput, we observe lower energy

Fig. 7: Roofline models for Stratix 10 MX and Nvidia V100.

Fig. 8: Throughput (left) and energy efficiency (right) comparison of
HighWave vs. GAPS running on the P100 and the V100.

efficiency for the acoustic wave, due to its lower arithmetic
intensity, which increases the ratio of energy spent for com-
munication rather than computation. Overall, HighWave on
Stratix is 4.64× and 2.71× more energy efficient than P100
and V100, respectively, for the elastic wave. For the acoustic
wave, it is 4.68× and 2.84× more energy efficient. This is at-
tributed to our custom, low-area LS units, which provide high
memory performance, complemented by efficient EPs that
saturate bandwidth under minimum resource requirements.

VI. SUMMARY AND CONCLUSIONS

In this work, we presented HighWave, the first HBM-
enabled FPGA accelerator targeting memory-bound, dG-based
wave simulations. Our design features a scalable spatial ar-
chitecture composed of highly efficient EPs and employs a
wide range of optimizations to maximize data reuse and HBM
bandwidth. We evaluate HighWave on the acoustic and elastic
wave equations, achieving up to 72.2% bandwidth utilization,
despite the high irregularity in access patterns. When nor-
malizing for equivalent HBM bandwidth, HighWave is 36%
and 48% faster than an Nvidia V100 on elastic and acoustic,
respectively, with 2.71× and 2.84× higher energy efficiency.
These results highlight the potential of HBM-enabled FPGAs,
when optimized for dataflow and memory efficiency, to rival
GPUs in highly memory-bound workloads, a domain where
GPUs traditionally excel. In future work, we plan to extend
HighWave to multi-FPGA solutions for larger problem sizes
and develop a design generator to automatically configure and
instantiate HighWave for diverse applications and platforms.
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