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ABSTRACT 
Heterogeneous multicore processors promise high execution 

efficiency under diverse workloads, and program scheduling is 

critical in exploiting this efficiency. This paper presents a novel 

method to leverage the inherent characteristics of a program for 

scheduling decisions in heterogeneous multicore processors. The 

proposed method projects the core’s configuration and the program’s 

resource demand to a unified multi-dimensional space, and uses 

weighted Euclidean distance between these two to guide the 

program scheduling. The experimental results show that on average, 

this distance based scheduling heuristic achieves 24.5% reduction in 

energy delay product, 6.1% reduction in energy, and 9.1% 

improvement in throughput when compared with traditional 

hardware oblivious scheduling algorithm. 

Categories and Subject Descriptors: C.1.3 [Processor 

Architectures]: Other Architecture Styles – Hybrid Systems 

General Terms: Design, Performance 

Key Words: Heterogeneous Multi-core, Energy-Delay Product, 

Program Scheduling 

1.  INTRODUCTION 
Heterogeneous multicore processors (HMP) have been demonstrated 

to be an attractive design alternative to its homogeneous counterpart, 

as it has a unique advantage in improving both system throughput 

and execution efficiency. Although most of the existing multicore 

processors are homogeneous, this design paradigm leads to an 

inevitable dilemma. That is, replicating smaller cores compromises 

the throughput of the high-complexity single-threaded applications; 

whereas replicating larger cores sacrifices the execution efficiency 

of the low-complexity low-priority threads. The HMP, however, 

integrates cores of different types or complexities in a single chip, 

and hence is able to address both throughput and efficiency for 

various workloads by matching execution resources to each 

application's needs. As a result, HMP is gaining preference in both 

industry (e.g. IBM's CELL [12]) and academia (e.g. Core Fusion [9], 

TFlex [7]).  

While HMP is capable of addressing diverse workload demands, 

it relies on an appropriate program scheduling scheme to unleash its 

architectural potential for energy efficient computing. The successful 

program scheduler must be able to find the match between programs 

and cores with minimum cost in performance and power, which is 

nontrivial and remains challenging. A straightforward scheduling 

policy proposed by Kumar et.al uses trial-and-error approach to find 

the match between programs and cores [3]. The problem with this 

method is that it incurs significant energy overhead in context 

switching [15]. Becchi et al extends Kumar’s work by measuring 

IPC ratios between two different cores to migrate applications [17]. 

Essentially, this method uses pair-wise program swapping to reduce  

 

the number of tentative runs.  

These existing methods rely on monitoring the exhibited 

performance metric during tentative runs to identify the matching 

program-core pair. This paper, however, attempts to leverage the 

fundamental relationship between the inherent program 

characteristics and the corresponding resource demands for program 

scheduling. This paper, for the first time, presents a framework that 

addresses three aspects of a program scheduler in the HMP context: 

understanding the physical configurations of the core supply, 

estimating the resource demands of the running applications, and 

identifying the program-core matching for a given criteria [1]. The 

proposed method projects the core configurations and the program’s 

resource demands into a unified multi-dimensional space, where the 

program-core matching can be easily identified with Weighted 

Euclidean Distances (WED). We demonstrate that the WED is 

strongly correlated with EDP, hence can be used to guide program 

scheduling in HMPs. Compared with traditional hardware oblivious 

scheduling, the distance based scheduling heuristic achieves an 

average of 24.5% reduction in EDP, and 6.1% reduction in energy, 

and improves the throughput by 9.1%. 

The rest of the paper is organized as follows: Section 2 

summarizes the related work. Section 3 describes the framework for 

multidimensional program-core matching. Section 4 shows the 

projection functions used in the proposed framework. Section 5 

presents the scheduling heuristics. Section 6 gives the setup of the 

experimental environment. Section 7 discusses the experimental 

results and Section 8 concludes the paper.  

2. RELATED WORK 
Prior research on program scheduling in heterogeneous systems 

mainly focuses on optimizing the scheduling of subtasks. The 

widely adopted approach is to decompose the application into 

several dependent subtasks, formulate the constraint graph based on 

the inter-subtask dependencies, and partition the graph to minimize 

the overall execution time [13] or the data transfer on buses [18][19]. 

This scheduling approach requires the performance/power of a 

workload be known a priori or easy to predict, which fundamentally 

limits its applicability. Our method, on the contrary, does not need 

the microarchitecture dependent performance/power data as a priori 

information for scheduling.   

Recently, Kumar et al. [3] propose a dynamic program scheduling 

approach based on the sampled EDP during tentative runs. Becchi et 

al. [17] extend this method by using the measured IPC ratios 

between two programs for program migrations. Gulati et al. [8] uses 

efficiency threshold to dynamically allocate processor for the given 

task. All of these methods exploit intra-program diversity, and could 

adapt to program phase changes. Our scheduling scheme exploits 

inter-program diversity and statically allocates programs to cores by 

analyzing inherent program characteristics.   

Chen and John [6] employ fuzzy logic to calculate the 

program-core suitability, and use that to guide the program 

scheduling. However, their method is not scalable since the 

complexity of fuzzy logic increases exponentially as the number of 

characteristics increases. Our method, however, is scalable and can 

be easily extended to the case where the number of characteristics is 

four or beyond.  
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3. FRAMEWORK 
The idea of multi-dimensional program-core matching stems from 

the observation that both programs and cores can be described with 

a set of orthogonal characteristics. By projecting these 

characteristics from both program side and core side to a unified 

multi-dimensional space, we are able to visualize the correlation 

between the program and the core, and simplify the program-core 

matching.  

 
Fig 1. Framework for multidimensional program-core matching 

Figure 1 shows the proposed framework for multidimensional 

program-core matching. The programs are first compiled and 

profiled to obtain K sets of inherent program characteristics: 

�������, �������, … , �������� , where�	���� 
 ���, ��, ��, … , ���  is the vector that 

describes program characteristic i (i=1..K). Define �  as the 

projection function that transforms characteristic �	���� to the program’s 

desired resource demand ��, i.e.  �� 
 ���	����� 
 ����, ��, ��, …, 
��� .We have the program’s desired resource vector:  �������� 

����, ���,… , ���� 
 ������������, �����������,… , �������������.This vector points to 

the program’s desired configuration node in the K-dimensional 

space, as shown in Figure 1 (c). On the other hand, each processor 

core has a configuration vector ���, ��, … , ���with element � 
correspondent to the program characteristic �	���� (i=1..K). Similarly, 

this vector can also be transformed by a set of projection functions 

to a scaled configuration vector ������� 
 ����, ���, … , ����  in the 

K-dimensional space. Once the desired resource vector �������� and the 

configuration vector ������� have been projected to the same space, the 

distance between these two becomes the natural measurement for 

the degree of match between the program and the core. Specifically, 

larger distance leads to less compatibility between the program and 

the core, and hence less execution efficiency. Note that not every 

dimension of the vector contributes equally to the degree of match. 

Therefore, we use WED in the K-dimensional space as the metric 

for the program-core matching, as shown in equation (1): 
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where ! is the weight coefficient for the $-th dimension (i=1..K), 

and D is the weighted Euclidean distance. This distance could guide 

the program scheduler to identify the matching program-core pair.     

4. PROJECTION FUNCTIONS 
The projection functions are used to map program characteristics 

and core configurations to the unified K-dimensional space. On one 

hand, the projection functions need to interpret and quantify the 

implications of program’s inherent characteristics on its hardware 

resource demand. On the other hand, the projection functions need 

to scale the raw hardware configurations in accordance to the 

diminishing return effect. This section gives the detailed description 

of the projection functions in this study.   

4.1 Projection Functions for Core Configurations 
Generally speaking, hardware resources suffer from the diminishing 

return effect, that is, the additional hardware resource yields less 

than proportional increase in the marginal benefit. This diminishing 

return effect has its implication on the core configuration projection: 

the spacing between adjacent configurations decreases as the value 

of the configuration increases. To capture this effect, we use the 

reciprocal function to scale the inter-configuration distance, which is 

formulated as follows:  
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where �*� is the minimum value of the configuration � among 

the cores, � is the value of configuration � of core i (i=1..n), and 

c is a normalizing factor. While the proposed framework supports K 

(K≥3) different hardware configurations, this paper only examines 

three configurations, i.e., issue width, branch predictor size and L1 

data cache size.  

4.2 Projection Functions for Programs Characteristics 
In accordance with the hardware configurations, this paper 

investigates three important program characteristics: instruction 

level parallelism (ILP), branch predictability, and data locality. The 

projection functions for these characteristics are used to identify the 

desired issue width, branch predictor size, and data cache size.  

4.2.1. Desired Issue Width  
The desired issue width represents the pipeline width that a 

processor core needs to efficiently exploit the amount of ILP in the 

program. We use the instruction dependency distance [5] to capture 

the program’s ILP. Typically, for a given dependency distance 

distribution, the more instructions with long dependency distance, 

the more ILP the program has, and hence the desired issue width is 

larger. Therefore, to obtain the desired issue width, we cluster the 

instructions into four groups with respect to their dependency 

distances, i.e., group 1 with distance of 1, group 2 with distance of 

2-3, group 3 with distance of 4-7, and group 4 with distance of 8 and 

beyond. Let�+,�, represent the percentage of instructions whose 

dependency distance falls in group i (i=1..4). We have the program’s 

dependency distance vector ��+,�,�, �+,�,�, �+,�,-, �+,�,.�. Each 

element in this vector has its most suitable issue width, that is, 

1-way issue for �+,�,�, 2-way for �+,�,�, and so on. Therefore, the 

mass center (or the weighted average) of the distribution indicates 

on average the issue width demand of the program, hence:  

�//0, 
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               (3) 

where Wi, i=1..4, are the projected coordinates in the issue width 

dimension of the space, representing the issue width from 1 to 8.  

4.2.2. Desired Branch Predictor Size 
The desired branch predictor size represents the branch predictor 

size that a processor core needs to efficiently exploit branch 

predictability in the program. We use branch transition rate [14] to 

capture the branch predictability of the program. Generally speaking, 

the branch instructions with extremely low or extremely high 

transition rate are easy to predict, and as the transition rate 

approaches 50%, branches become harder to predict. Based on this 

observation, we evenly divide the transition rates into 10 buckets: [0, 

0.1], [0.1, 0.2],..,[0.9, 1.0]. Let �9:,  be the amount of branch 

instructions whose transition rate falls in the bucket i (i=1..10). We 

have the branch transition rate vector (�9:,�, �9:,�, … , �9:,��). Since 

the branch instructions in the buckets [0.4, 0.5] and [0.5, 0.6] are the 

hardest to predict, they are associated with the largest branch 

predictor. The branch instructions in the buckets [0.3, 0.4] and [0.6, 

0.7] are relatively easier to predict, and hence are associated with a 

smaller branch predictor. Same applies in buckets [0.2, 0.3] and [0.7, 

0.8], and buckets [0.1, 0.2] and [0.8, 0.9]. Therefore, the mass center 
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of the transition rate distribution indicates on average the demand of 

branch predictor size, hence:  

�9:;��< 
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where Bi, i=1..4, are the coordinates in the branch predictor 

dimension of the space (I� J I� J I- J I.�. Buckets [0, 0.1] and 

[0.9, 1] are not considered because branch instructions in this range 

are very easy to predict, and even the smallest branch predictor in 

this study would be more than enough for them. The parameter w is 

employed to tune the weight of the largest branch predictor, and is 

set to α×K�L�+. The parameter α is an empirically determined value, 

and is in proportional to the instruction issue width. It is used to 

keep track of the fact that as the issue width gets wider the branch 

misprediction penalty also increases, and hence a larger branch 

predictor with higher prediction accuracy is more desirable. K�L�+ 

is the percentage of the conditional branches in the instruction mix. 

A large K�L�+  may lead to a large number of hard-to-predict 

branches; hence the weight of large branch predictor should be high.  

4.2.3. Desired L1 Data Cache 

Similarly, the desire L1 data cache is the data cache size that a 

processor core needs to efficiently exploit the data locality of the 

program. This paper uses Mattson's stack distance distribution [16] 

to measure the program’s data locality. Let M  �$ 
 1. .4) be the 

possible L1 data cache sizes with  M� J M� J M- J M. , and 

let�/P�,  �$ 
 1. .4) be the number of accesses whose stack distance 

is within the range of Q0, M�S , (M�, M�S , (M�, M-S , (M-, M.S 
respectively. Note that �/P�,� can be most efficiently hold by the 

cache with size M�, and �/P�,� can be most efficiently hold by the 

cache with size M�, and so on. Similarly, the desired L1data cache 

size of the program can be calculated as:  

��;�<, 
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where MY represents the scaled coordinates for the data cache size 

M , $ 
 1. .4.  

Since the issue width has the highest impact on the program-core 

matching, followed by cache size and branch predictor size, the 

highest weight is assigned to the issue width dimension, with the 

second highest to the cache size dimension, and the lowest to the 

branch predictor dimension. In this paper, we empirically assign the 

weights to be 0.8, 0.2, and 0.1 to demonstrate the concept.  

5. SCHEDULING HEURISTICS 
The WED represents the match between the program’s desired 

resource demand and the core’s hardware resource supply. The 

smaller the distance is, the better the match is, and hence the higher 

the execution efficiency would be. Therefore, the distance can be 

treated as a proxy of the program’s execution efficiency on a certain 

core. Given that, the optimum scheduler shall minimize the total 

distance of the scheduled program-core pairs. However, such 

scheme is NP-complete (O(n!) with a naïve implementation), and 

becomes impractical for large number of programs.  

Let Pj be the j-th program in the program queue (j=1..M). 

Let Ci be the processor core i. (i=1..N)  

for j ( 1 .. M) 

for i ( 1.. N)   

if (Ci is available && min_dist > distance(Pj,Ci)) 

min_dist = distance(Pj,Ci); 

k=i;   

      end if 

   end for 
   schedule Pj to Ck; 

   mark Ck as unavailable;   

end for  

Fig 2.Pseudo code of the distance based scheduling heuristic. 

This section presents a scalable scheduling heuristic based on the 

distance. As shown in Figure 2, this heuristic schedules the program 

on a first-come, first-served (FCFS) basis, and for each program, it 

allocates the available core with the minimum distance to that 

program. The complexity of this scheme is the same as the 

complexity of finding the minimum distance, which is O(n). In 

addition, this paper also examines the following scheduling 

algorithms for comparison:  

Hardware Oblivious Scheduling (baseline): This scheduling 

scheme is unaware of the hardware substrate, and schedules the 

program on a FCFS basis. Specifically, the first in program queue is 

schedule to core 1, the second to core 2, and so on.  

Min EDP Scheduling: This scheduling method attempts to schedule 

the programs such that the overall EDP is minimized. It assumes that 

the EDP of each program-core pair is known a priori, and hence sets 

the best case scenario the overall EDP.  

Max EDP Scheduling: This scheduling method attempts to 

maximize the overall EDP. It also assumes the EDP of each 

program-core pair is known a priori, and provides the worst case 

scenario in the overall EDP for comparison. 

6. EXPERIMENTAL SETUP 
To validate the WED model, we vary the instruction issue width, L1 

data cache size and branch predictor size of an out-of-order 

superscalar processor. The configuration options of these parameters 

are shown in Table I. To evaluate the proposed scheduling heuristics, 

we create a hypothetical heterogeneous single-ISA quad-core 

processor. The detailed configurations of these cores are listed in 

Table II. Like Cortex-A9 multicore processor [2], each core is an 

out-of-order processor, and there is no on-chip L2 cache. Other 

parameters not shown in the table are chosen in a way that the 

design of the core is balanced.  

Table I.  Configuration Options 

Items Configuration Options 

Issue Width single-issue, 2-issue, 4-issue, 8-issue 

L1 D-Cache  

8KB, 4-way, block size 64byte,  

16KB, 4-way, block size 64byte, 

32KB, 4-way, block size 64byte, 

64KB, 4-way, block size 64byte 

Branch Predictor 1K Gshare, 2K Gshare, 4K Gshare, 8K Gshare 

Table II.  Configurations of Each Core 

Items Configurations 

Core 1 
Out-of-order, single-issue, Gshare(1k), 8KB 4-way  

L1d-cache 64byte, 16k 2-way i-cache 64byte 

Core 2 
Out-of-order, 2-issue, Gshare(2k), 8 KB 4-way  

L1 d-cache 64byte, 16k 2-way i-cache 64byte 

Core 3 
Out-of-order, 2-issue, Ghsare(2k), 64 KB 4-way  

L1 d-cache 64byte, 16k 2-way i-cache 64byte 

Core 4 
Out-of-order, 4-issue, Gshare(4k), 16 KB 4-way  

L1 d-cache 64byte, 16k 2-way i-cache 64byte 

The workload of the experiment is composed of benchmark 

programs from Mibench, MediaBench and SPEC CPU2000. Each 

program is compiled to Alpha-ISA with peak configurations. In 

order to count in the effect of different input datasets, we use the 

test/training input datasets to profile the programs, and use the 

profiled characteristics to schedule the programs with other input 

datasets. In this study, we assume the workloads are independent 

with each other, and we do not consider the hardware mechanisms 

for core-level communication because these mechanisms are 

symmetric and have similar impact on independent workloads. 

We use extensively modified SimProfile from Simplescalar tools 

[10] to profile programs and collect the aforementioned program 

characteristics. We employ Wattch [11] to obtain the performance 

and power data for each benchmark program. To demonstrate the 

effectiveness of the framework, we evaluate three aspects of the  
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Fig3. EDP, energy and makespan comparison between different scheduling heuristics. The asterisk stands for the sample average.  

proposed scheduling scheme: EDP, energy, and makespan. EDP 

takes into account both energy and speed, and is widely adopted as a 

metric for the execution efficiency. Makespan is the time between 

the start and finish of a group of programs, and is used as the metric 

for throughput [8]. 

7. RESULTS & ANALYSIS  
To demonstrate that the WED is the appropriate proxy for the 

program’s execution efficiency on a certain core, we need to show 

the correlation between EDP and WED. To do that, we measure the 

EDPs of each program on each of the 64 processor cores, and 

calculate the distance of every program-core pair according to the 

proposed framework. Table III shows the Pearson’s correlation 

coefficient for each benchmark program included in this study. Note 

that for each program, we use one set of input for EDP measurement 

and a different set of input for program profiling. Therefore, the 

coefficients in Table III not only demonstrate that the WED is 

strongly correlated with EDP, but also show that the input set has 

negligible influence on the program’s inherent characteristics.  

Table III. Correlation Coefficient between EDP and Distance   

Benchmarks Coeff. Benchmarks Coeff. 

susan 0.91544 ghostscript 0.95708 

qsort 0.94244 epic 0.94086 

fft 0.81584 g271encode 0.89022 

rawdaudio 0.83496 mcf 0.87527 

blowfish 0.93837 gcc-166 0.80145 

bitcnts 0.81135 gcc-expr 0.88296 

mpeg2decode 0.95841 gcc-scilab 0.80598 

cjpeg 0.94807 twolf 0.81261 

To evaluate the proposed program scheduling schemes, we select 

programs with different characteristics from the benchmarks in table 

III to compose 150 diverse program combinations, with each one 

containing 4 programs. Figure 3 shows the boxplots [4] of the 

scheduling results of these workloads. According to these boxplots, 

the proposed distance based scheduling has statistically significant 

improvement over the baseline scheduling with an average of 24.5% 

reduction in EDP, 6.1% reduction in energy, and 9.1% reduction in 

makespan. Compared with min EDP scheduling, the distance based 

scheduling achieves higher reduction in energy (6.1% vs 3.9%), but 

less reduction in makespan (9.1% vs 13.8%). However, the 

difference in makespan reduction is not statistically significant 

because the notches of the two boxplots overlap, as shown in figure 

3 (d). Overall, the distance based scheduling achieves a good 

balance between throughput and energy.    

8. CONCLUSION 
This paper presents a framework of multidimensional program-core 

matching for program scheduling in heterogeneous multiprocessors. 

The proposed method projects the core’s configuration and the 

program’s desired resource demand to a unified multi-dimensional 

space, and uses weighted Euclidean distance between these two to 

guide the program scheduling. The experimental results show that 

the distance based scheduling heuristic achieves an average of 

24.5% reduction in EDP, 6.1% reduction in energy, and 9.1% 

improvement in throughput when compared with traditional 

hardware oblivious scheduling algorithm.  
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