
1

Efficient Program Scheduling for Heterogeneous
Multi-core Processors

Jian Chen and Lizy K. John

ECE Department, University of Texas at Austin

Austin, TX 78712, USA

chenjian@mail.utexas.edu, ljohn@ece.utexas.edu

ABSTRACT
Heterogeneous multicore processors promise high execution

efficiency under diverse workloads, and program scheduling is

critical in exploiting this efficiency. This paper presents a novel

method to leverage the inherent characteristics of a program for

scheduling decisions in heterogeneous multicore processors. The

proposed method projects the core’s configuration and the program’s

resource demand to a unified multi-dimensional space, and uses

weighted Euclidean distance between these two to guide the

program scheduling. The experimental results show that on average,

this distance based scheduling heuristic achieves 24.5% reduction in

energy delay product, 6.1% reduction in energy, and 9.1%

improvement in throughput when compared with traditional

hardware oblivious scheduling algorithm.

Categories and Subject Descriptors: C.1.3 [Processor

Architectures]: Other Architecture Styles – Hybrid Systems

General Terms: Design, Performance

Key Words: Heterogeneous Multi-core, Energy-Delay Product,

Program Scheduling

1. INTRODUCTION
Heterogeneous multicore processors (HMP) have been demonstrated

to be an attractive design alternative to its homogeneous counterpart,

as it has a unique advantage in improving both system throughput

and execution efficiency. Although most of the existing multicore

processors are homogeneous, this design paradigm leads to an

inevitable dilemma. That is, replicating smaller cores compromises

the throughput of the high-complexity single-threaded applications;

whereas replicating larger cores sacrifices the execution efficiency

of the low-complexity low-priority threads. The HMP, however,

integrates cores of different types or complexities in a single chip,

and hence is able to address both throughput and efficiency for

various workloads by matching execution resources to each

application's needs. As a result, HMP is gaining preference in both

industry (e.g. IBM's CELL [12]) and academia (e.g. Core Fusion [9],

TFlex [7]).

While HMP is capable of addressing diverse workload demands,

it relies on an appropriate program scheduling scheme to unleash its

architectural potential for energy efficient computing. The successful

program scheduler must be able to find the match between programs

and cores with minimum cost in performance and power, which is

nontrivial and remains challenging. A straightforward scheduling

policy proposed by Kumar et.al uses trial-and-error approach to find

the match between programs and cores [3]. The problem with this

method is that it incurs significant energy overhead in context

switching [15]. Becchi et al extends Kumar’s work by measuring

IPC ratios between two different cores to migrate applications [17].

Essentially, this method uses pair-wise program swapping to reduce

the number of tentative runs.

These existing methods rely on monitoring the exhibited

performance metric during tentative runs to identify the matching

program-core pair. This paper, however, attempts to leverage the

fundamental relationship between the inherent program

characteristics and the corresponding resource demands for program

scheduling. This paper, for the first time, presents a framework that

addresses three aspects of a program scheduler in the HMP context:

understanding the physical configurations of the core supply,

estimating the resource demands of the running applications, and

identifying the program-core matching for a given criteria [1]. The

proposed method projects the core configurations and the program’s

resource demands into a unified multi-dimensional space, where the

program-core matching can be easily identified with Weighted

Euclidean Distances (WED). We demonstrate that the WED is

strongly correlated with EDP, hence can be used to guide program

scheduling in HMPs. Compared with traditional hardware oblivious

scheduling, the distance based scheduling heuristic achieves an

average of 24.5% reduction in EDP, and 6.1% reduction in energy,

and improves the throughput by 9.1%.

The rest of the paper is organized as follows: Section 2

summarizes the related work. Section 3 describes the framework for

multidimensional program-core matching. Section 4 shows the

projection functions used in the proposed framework. Section 5

presents the scheduling heuristics. Section 6 gives the setup of the

experimental environment. Section 7 discusses the experimental

results and Section 8 concludes the paper.

2. RELATED WORK
Prior research on program scheduling in heterogeneous systems

mainly focuses on optimizing the scheduling of subtasks. The

widely adopted approach is to decompose the application into

several dependent subtasks, formulate the constraint graph based on

the inter-subtask dependencies, and partition the graph to minimize

the overall execution time [13] or the data transfer on buses [18][19].

This scheduling approach requires the performance/power of a

workload be known a priori or easy to predict, which fundamentally

limits its applicability. Our method, on the contrary, does not need

the microarchitecture dependent performance/power data as a priori

information for scheduling.

Recently, Kumar et al. [3] propose a dynamic program scheduling

approach based on the sampled EDP during tentative runs. Becchi et

al. [17] extend this method by using the measured IPC ratios

between two programs for program migrations. Gulati et al. [8] uses

efficiency threshold to dynamically allocate processor for the given

task. All of these methods exploit intra-program diversity, and could

adapt to program phase changes. Our scheduling scheme exploits

inter-program diversity and statically allocates programs to cores by

analyzing inherent program characteristics.

Chen and John [6] employ fuzzy logic to calculate the

program-core suitability, and use that to guide the program

scheduling. However, their method is not scalable since the

complexity of fuzzy logic increases exponentially as the number of

characteristics increases. Our method, however, is scalable and can

be easily extended to the case where the number of characteristics is

four or beyond.

2

3. FRAMEWORK
The idea of multi-dimensional program-core matching stems from

the observation that both programs and cores can be described with

a set of orthogonal characteristics. By projecting these

characteristics from both program side and core side to a unified

multi-dimensional space, we are able to visualize the correlation

between the program and the core, and simplify the program-core

matching.

Fig 1. Framework for multidimensional program-core matching

Figure 1 shows the proposed framework for multidimensional

program-core matching. The programs are first compiled and

profiled to obtain K sets of inherent program characteristics:

�������, �������, … , �������� , where�	����
 ���, ��, ��, … , ��� is the vector that

describes program characteristic i (i=1..K). Define � as the

projection function that transforms characteristic �	���� to the program’s

desired resource demand ��, i.e. ��
 ���	�����
 ����, ��, ��, …,
��� .We have the program’s desired resource vector: ��������

����, ���,… , ����
 ������������, �����������,… , �������������.This vector points to

the program’s desired configuration node in the K-dimensional

space, as shown in Figure 1 (c). On the other hand, each processor

core has a configuration vector ���, ��, … , ���with element �
correspondent to the program characteristic �	���� (i=1..K). Similarly,

this vector can also be transformed by a set of projection functions

to a scaled configuration vector �������
 ����, ���, … , ���� in the

K-dimensional space. Once the desired resource vector �������� and the

configuration vector ������� have been projected to the same space, the

distance between these two becomes the natural measurement for

the degree of match between the program and the core. Specifically,

larger distance leads to less compatibility between the program and

the core, and hence less execution efficiency. Note that not every

dimension of the vector contributes equally to the degree of match.

Therefore, we use WED in the K-dimensional space as the metric

for the program-core matching, as shown in equation (1):

��
 ∑ !��� " �����
#� (1)

where ! is the weight coefficient for the $-th dimension (i=1..K),

and D is the weighted Euclidean distance. This distance could guide

the program scheduler to identify the matching program-core pair.

4. PROJECTION FUNCTIONS
The projection functions are used to map program characteristics

and core configurations to the unified K-dimensional space. On one

hand, the projection functions need to interpret and quantify the

implications of program’s inherent characteristics on its hardware

resource demand. On the other hand, the projection functions need

to scale the raw hardware configurations in accordance to the

diminishing return effect. This section gives the detailed description

of the projection functions in this study.

4.1 Projection Functions for Core Configurations
Generally speaking, hardware resources suffer from the diminishing

return effect, that is, the additional hardware resource yields less

than proportional increase in the marginal benefit. This diminishing

return effect has its implication on the core configuration projection:

the spacing between adjacent configurations decreases as the value

of the configuration increases. To capture this effect, we use the

reciprocal function to scale the inter-configuration distance, which is

formulated as follows:

�%�$�
 & � �
%'()

" �
%(
� (2)

where �*� is the minimum value of the configuration � among

the cores, � is the value of configuration � of core i (i=1..n), and

c is a normalizing factor. While the proposed framework supports K

(K≥3) different hardware configurations, this paper only examines

three configurations, i.e., issue width, branch predictor size and L1

data cache size.

4.2 Projection Functions for Programs Characteristics
In accordance with the hardware configurations, this paper

investigates three important program characteristics: instruction

level parallelism (ILP), branch predictability, and data locality. The

projection functions for these characteristics are used to identify the

desired issue width, branch predictor size, and data cache size.

4.2.1. Desired Issue Width
The desired issue width represents the pipeline width that a

processor core needs to efficiently exploit the amount of ILP in the

program. We use the instruction dependency distance [5] to capture

the program’s ILP. Typically, for a given dependency distance

distribution, the more instructions with long dependency distance,

the more ILP the program has, and hence the desired issue width is

larger. Therefore, to obtain the desired issue width, we cluster the

instructions into four groups with respect to their dependency

distances, i.e., group 1 with distance of 1, group 2 with distance of

2-3, group 3 with distance of 4-7, and group 4 with distance of 8 and

beyond. Let�+,�, represent the percentage of instructions whose

dependency distance falls in group i (i=1..4). We have the program’s

dependency distance vector ��+,�,�, �+,�,�, �+,�,-, �+,�,.�. Each

element in this vector has its most suitable issue width, that is,

1-way issue for �+,�,�, 2-way for �+,�,�, and so on. Therefore, the

mass center (or the weighted average) of the distribution indicates

on average the issue width demand of the program, hence:

�//0,

∑ %123,(45(6
(78
∑ %123,(6
(78

 (3)

where Wi, i=1..4, are the projected coordinates in the issue width

dimension of the space, representing the issue width from 1 to 8.

4.2.2. Desired Branch Predictor Size
The desired branch predictor size represents the branch predictor

size that a processor core needs to efficiently exploit branch

predictability in the program. We use branch transition rate [14] to

capture the branch predictability of the program. Generally speaking,

the branch instructions with extremely low or extremely high

transition rate are easy to predict, and as the transition rate

approaches 50%, branches become harder to predict. Based on this

observation, we evenly divide the transition rates into 10 buckets: [0,

0.1], [0.1, 0.2],..,[0.9, 1.0]. Let �9:, be the amount of branch

instructions whose transition rate falls in the bucket i (i=1..10). We

have the branch transition rate vector (�9:,�, �9:,�, … , �9:,��). Since

the branch instructions in the buckets [0.4, 0.5] and [0.5, 0.6] are the

hardest to predict, they are associated with the largest branch

predictor. The branch instructions in the buckets [0.3, 0.4] and [0.6,

0.7] are relatively easier to predict, and hence are associated with a

smaller branch predictor. Same applies in buckets [0.2, 0.3] and [0.7,

0.8], and buckets [0.1, 0.2] and [0.8, 0.9]. Therefore, the mass center

3

of the transition rate distribution indicates on average the demand of

branch predictor size, hence:

�9:;��<

�=84�%>?,@A%>?,B�A=@4�%>?,CA%>?,D�A=C4�%>?,6A%>?,E�A=64F4�%>?,GA%>?,H��

∑ %>?,(A∑ %>?,(B
(7E

6
(7@ AF4∑ %>?,(H

(7G
 (4)

where Bi, i=1..4, are the coordinates in the branch predictor

dimension of the space (I� J I� J I- J I.�. Buckets [0, 0.1] and

[0.9, 1] are not considered because branch instructions in this range

are very easy to predict, and even the smallest branch predictor in

this study would be more than enough for them. The parameter w is

employed to tune the weight of the largest branch predictor, and is

set to α×K�L�+. The parameter α is an empirically determined value,

and is in proportional to the instruction issue width. It is used to

keep track of the fact that as the issue width gets wider the branch

misprediction penalty also increases, and hence a larger branch

predictor with higher prediction accuracy is more desirable. K�L�+

is the percentage of the conditional branches in the instruction mix.

A large K�L�+ may lead to a large number of hard-to-predict

branches; hence the weight of large branch predictor should be high.

4.2.3. Desired L1 Data Cache

Similarly, the desire L1 data cache is the data cache size that a

processor core needs to efficiently exploit the data locality of the

program. This paper uses Mattson's stack distance distribution [16]

to measure the program’s data locality. Let M �$
 1. .4) be the

possible L1 data cache sizes with M� J M� J M- J M. , and

let�/P�, �$
 1. .4) be the number of accesses whose stack distance

is within the range of Q0, M�S , (M�, M�S , (M�, M-S , (M-, M.S
respectively. Note that �/P�,� can be most efficiently hold by the

cache with size M�, and �/P�,� can be most efficiently hold by the

cache with size M�, and so on. Similarly, the desired L1data cache

size of the program can be calculated as:

��;�<,

∑ %TUV,(4W(X6
(78
∑ %TUV,(6
(78

 (5)

where MY represents the scaled coordinates for the data cache size

M , $
 1. .4.

Since the issue width has the highest impact on the program-core

matching, followed by cache size and branch predictor size, the

highest weight is assigned to the issue width dimension, with the

second highest to the cache size dimension, and the lowest to the

branch predictor dimension. In this paper, we empirically assign the

weights to be 0.8, 0.2, and 0.1 to demonstrate the concept.

5. SCHEDULING HEURISTICS
The WED represents the match between the program’s desired

resource demand and the core’s hardware resource supply. The

smaller the distance is, the better the match is, and hence the higher

the execution efficiency would be. Therefore, the distance can be

treated as a proxy of the program’s execution efficiency on a certain

core. Given that, the optimum scheduler shall minimize the total

distance of the scheduled program-core pairs. However, such

scheme is NP-complete (O(n!) with a naïve implementation), and

becomes impractical for large number of programs.

Let Pj be the j-th program in the program queue (j=1..M).

Let Ci be the processor core i. (i=1..N)

for j (1 .. M)

for i (1.. N)

if (Ci is available && min_dist > distance(Pj,Ci))

min_dist = distance(Pj,Ci);

k=i;

 end if

 end for
 schedule Pj to Ck;

 mark Ck as unavailable;

end for

Fig 2.Pseudo code of the distance based scheduling heuristic.

This section presents a scalable scheduling heuristic based on the

distance. As shown in Figure 2, this heuristic schedules the program

on a first-come, first-served (FCFS) basis, and for each program, it

allocates the available core with the minimum distance to that

program. The complexity of this scheme is the same as the

complexity of finding the minimum distance, which is O(n). In

addition, this paper also examines the following scheduling

algorithms for comparison:

Hardware Oblivious Scheduling (baseline): This scheduling

scheme is unaware of the hardware substrate, and schedules the

program on a FCFS basis. Specifically, the first in program queue is

schedule to core 1, the second to core 2, and so on.

Min EDP Scheduling: This scheduling method attempts to schedule

the programs such that the overall EDP is minimized. It assumes that

the EDP of each program-core pair is known a priori, and hence sets

the best case scenario the overall EDP.

Max EDP Scheduling: This scheduling method attempts to

maximize the overall EDP. It also assumes the EDP of each

program-core pair is known a priori, and provides the worst case

scenario in the overall EDP for comparison.

6. EXPERIMENTAL SETUP
To validate the WED model, we vary the instruction issue width, L1

data cache size and branch predictor size of an out-of-order

superscalar processor. The configuration options of these parameters

are shown in Table I. To evaluate the proposed scheduling heuristics,

we create a hypothetical heterogeneous single-ISA quad-core

processor. The detailed configurations of these cores are listed in

Table II. Like Cortex-A9 multicore processor [2], each core is an

out-of-order processor, and there is no on-chip L2 cache. Other

parameters not shown in the table are chosen in a way that the

design of the core is balanced.

Table I. Configuration Options

Items Configuration Options

Issue Width single-issue, 2-issue, 4-issue, 8-issue

L1 D-Cache

8KB, 4-way, block size 64byte,

16KB, 4-way, block size 64byte,

32KB, 4-way, block size 64byte,

64KB, 4-way, block size 64byte

Branch Predictor 1K Gshare, 2K Gshare, 4K Gshare, 8K Gshare

Table II. Configurations of Each Core

Items Configurations

Core 1
Out-of-order, single-issue, Gshare(1k), 8KB 4-way

L1d-cache 64byte, 16k 2-way i-cache 64byte

Core 2
Out-of-order, 2-issue, Gshare(2k), 8 KB 4-way

L1 d-cache 64byte, 16k 2-way i-cache 64byte

Core 3
Out-of-order, 2-issue, Ghsare(2k), 64 KB 4-way

L1 d-cache 64byte, 16k 2-way i-cache 64byte

Core 4
Out-of-order, 4-issue, Gshare(4k), 16 KB 4-way

L1 d-cache 64byte, 16k 2-way i-cache 64byte

The workload of the experiment is composed of benchmark

programs from Mibench, MediaBench and SPEC CPU2000. Each

program is compiled to Alpha-ISA with peak configurations. In

order to count in the effect of different input datasets, we use the

test/training input datasets to profile the programs, and use the

profiled characteristics to schedule the programs with other input

datasets. In this study, we assume the workloads are independent

with each other, and we do not consider the hardware mechanisms

for core-level communication because these mechanisms are

symmetric and have similar impact on independent workloads.

We use extensively modified SimProfile from Simplescalar tools

[10] to profile programs and collect the aforementioned program

characteristics. We employ Wattch [11] to obtain the performance

and power data for each benchmark program. To demonstrate the

effectiveness of the framework, we evaluate three aspects of the

4

 (a) (b) (c) (d)

Fig3. EDP, energy and makespan comparison between different scheduling heuristics. The asterisk stands for the sample average.

proposed scheduling scheme: EDP, energy, and makespan. EDP

takes into account both energy and speed, and is widely adopted as a

metric for the execution efficiency. Makespan is the time between

the start and finish of a group of programs, and is used as the metric

for throughput [8].

7. RESULTS & ANALYSIS
To demonstrate that the WED is the appropriate proxy for the

program’s execution efficiency on a certain core, we need to show

the correlation between EDP and WED. To do that, we measure the

EDPs of each program on each of the 64 processor cores, and

calculate the distance of every program-core pair according to the

proposed framework. Table III shows the Pearson’s correlation

coefficient for each benchmark program included in this study. Note

that for each program, we use one set of input for EDP measurement

and a different set of input for program profiling. Therefore, the

coefficients in Table III not only demonstrate that the WED is

strongly correlated with EDP, but also show that the input set has

negligible influence on the program’s inherent characteristics.

Table III. Correlation Coefficient between EDP and Distance

Benchmarks Coeff. Benchmarks Coeff.

susan 0.91544 ghostscript 0.95708

qsort 0.94244 epic 0.94086

fft 0.81584 g271encode 0.89022

rawdaudio 0.83496 mcf 0.87527

blowfish 0.93837 gcc-166 0.80145

bitcnts 0.81135 gcc-expr 0.88296

mpeg2decode 0.95841 gcc-scilab 0.80598

cjpeg 0.94807 twolf 0.81261

To evaluate the proposed program scheduling schemes, we select

programs with different characteristics from the benchmarks in table

III to compose 150 diverse program combinations, with each one

containing 4 programs. Figure 3 shows the boxplots [4] of the

scheduling results of these workloads. According to these boxplots,

the proposed distance based scheduling has statistically significant

improvement over the baseline scheduling with an average of 24.5%

reduction in EDP, 6.1% reduction in energy, and 9.1% reduction in

makespan. Compared with min EDP scheduling, the distance based

scheduling achieves higher reduction in energy (6.1% vs 3.9%), but

less reduction in makespan (9.1% vs 13.8%). However, the

difference in makespan reduction is not statistically significant

because the notches of the two boxplots overlap, as shown in figure

3 (d). Overall, the distance based scheduling achieves a good

balance between throughput and energy.

8. CONCLUSION
This paper presents a framework of multidimensional program-core

matching for program scheduling in heterogeneous multiprocessors.

The proposed method projects the core’s configuration and the

program’s desired resource demand to a unified multi-dimensional

space, and uses weighted Euclidean distance between these two to

guide the program scheduling. The experimental results show that

the distance based scheduling heuristic achieves an average of

24.5% reduction in EDP, 6.1% reduction in energy, and 9.1%

improvement in throughput when compared with traditional

hardware oblivious scheduling algorithm.

References
[1] F. A. Bower, et al. "The Impact of Dynamically Heterogeneous

Multicore Processors on Thread Scheduling", IEEE Micro, pp 17-25,

May 2008.

[2] The ARM Cortex-A9 Processor, the ARM white paper.

http://www.arm.com/pdfs/ARMCortexA-9Processors.pdf

[3] R. Kumar, et al, “Single-ISA heterogeneous multi-core architectures:

the potential for processor power reduction”, Micro-36, pp 81-92, Dec.

2003.

[4] Yoav Benjamini. "Opening the Box of a Boxplot". The American

Statistician. Vol 42 (4), pp257–262, Nov. 1988.

[5] A. Phansalkar, et al, “Measuring Program Similarity: Experiments with

SPEC CPU Benchmark Suites,” ISPASS’05, pp 10-20, Mar.2005

[6] J. Chen and L. K. John,“Energy aware program scheduling in a

heterogeneous multicore system”, IISWC’08, pp.1-9, Sept. 2008.

[7] Changkyu Kim, et.al., "Composable Lightweight Processors,"

Micro-40, pp.381-394, Dec. 2007

[8] D.P.Gulati et al., “Multitasking Workload Scheduling on Flexible Core

Chip Multiprocessors”, PACT’08, pp187-196, Oct. 2008.

[9] E. İpek, et al., “Core Fusion: Accommodating software diversity in

chip multiprocessors”. ISCA-34, pp 186-197, June 2007.

[10] D. Burger and T. M. Austin, “The simplescalar tool set version 3.02” ,

http://www.simplescalar.com/

[11] David Brooks, et al. “Wattch: A Framework for Architectural-Level

Power Analysis and Optimizations”, ISCA-27, pp 83-94, June, 2000

[12] H.P Hofstee, "Power efficient processor architecture and the CELL

processor", HPCA-11. pp. 258-262, Feb. 2005

[13] M.Maheswaran and H.J.Siegel, “A Dynamic Matching and Scheduling

Algorithm for Heterogeneous Computing Systems”, Proc.

Heterogeneous Computing Workshop, pp. 57-69, 1998

[14] M.Haungs, et.al, "Branch transition rate: a new metric for improved

branch classification analysis", HPCA-6, pp.241-250, Feb.2000

[15] C. S. Ballapuram, A. Sharif and H. S. Lee, “Exploiting Access

Semantics and Program Behavior to Reduce Snoop Power in Chip

Multiprocessors”, ASPLOS XIII, pp 60-69, Mar 2008

[16] R.L.M. et al. “Evaluation Techniques for Storage Hierarchies”. IBM

Systems Journal, pp 78-117. 1970

[17] M. Becchi, Patrick Crowley, “Dynamic thread Assignment on

Heterogeneous Multi-processor Architectures”, Computing Frontiers

2006, pp 29-40, May 2006

[18] J. Liu, et al., “Power-aware scheduling under timing constraints for

mission-critical embedded systems”, DAC-38, pp840-845, July, 2001.

[19] M. Ruggiero, et al. “Communication aware system-on-chip allocation

and scheduling framework for stream-oriented multi-processor”, DATE,

pp3-8, Apr.2006.

