
 1

A Case Study of 3 Internet Benchmarks
on 3 Superscalar Machines

Yue Luo+, Pattabi Seshadri*, Juan Rubio+, Lizy Kurian John+ and Alex Mericas*

+Laboratory for Computer Architecture

The University of Texas at Austin
Austin, TX 78712

{luo,jrubio,ljohn}@ece.utexas.edu

*IBM Corporation
11400 Burnet Road
Austin, TX 78758

mericas@us.ibm.com

 The phenomenal growth of the World Wide Web has resulted in the emergence and popularity

of several information technology related computer applications. These applications are typically

executed on computer systems that contain state-of-the-art superscalar microprocessors.

Superscalar microprocessors can fetch, decode, and execute multiple instructions in each clock

cycle. They contain multiple functional units and generally employ large caches. Most of these

superscalar processors execute instructions in an order different from the instruction sequence

that is fed to them. In order to finish the job as soon as possible, they look further down into the

instruction stream and execute instructions from places where sequential execution flow has not

reached yet. With the aid of sophisticated branch predictors, they identify the potential path of

program flow in order to find instructions to execute in advance. At times, the predictions are

wrong and the processor nullifies the extra work that it speculatively performed.

 Most of the microprocessors that are executing today’s internet workloads were designed

before the advent of these emerging workloads. The SPEC CPU benchmarks (See sidebar on

SPEC CPU benchmarks) have been used widely in performance evaluation during the last 12

years, but they are different in functionality from the emerging commercial applications. Whether

the difference in functionality results in key differences in the exploitation of architectural and

microarchitectural features of the processor, is the subject of this article. In order to answer this

question one has to identify appropriate workloads and obtain performance metrics that indicate

the execution characteristics.

 Emerging workloads contain several software packages, interfaces and standards that were

triggered by the proliferation of web servers and the arrival of electronic commerce. An end-to-

end e-business transaction typically involves a dozen or more different software layers, including

the front end/portal, shopping carts, network communication, credit card or electronic check

transaction, security software layers, etc. Literally all enterprises including airlines, banks, stock

brokerage firms, and most consumer product vendors nowadays use their web servers to deal with

 2

a significant part of their business. Many of these applications involve a web based interface to

an underlying database that stores the data relating to the user enquiry or transaction. Modern

servers use a 3-tier approach in which the backend tier handles the database accessing and the

front end and the middle tiers implement much of the user interface and portals. Some

researchers have studied large database applications, which are usually used as the backend of

Internet servers [1, 2, 5, 12]. While these studies have revealed much about the behavior of

backend applications, the behavior of the front and middle tiers of server side workloads is still

not fully understood.

 We attempt with this study to fill some of that knowledge gap by characterizing the impact of

the front and middle tier of web servers and Java servers on modern processor microarchitectures.

We also compare server benchmarks with CPU intensive benchmarks such as SPECint2000 to get

a perspective on their behavior in comparison to more “ traditional” and better understood

workloads.

Platforms
 We gathered data on three drastically different platforms: the IBM RS64-III (an in-order

superscalar RISC machine), the IBM POWER3-II (an out-of-order superscalar RISC machine),

and the Intel Pentium III (an out-of-order superscalar CISC machine). They are all current

microarchitectures, but they differ in many significant ways.

 The RS64-I I I [4] is a 64-bit, superscalar, in order, speculative execution processor and is

targeted specifically for commercial applications. It has one single cycle integer unit, one

multiple cycle integer unit, one four stage pipelined floating point unit, one branch unit, and one

load/store unit. The RS64-III can fetch, dispatch, and retire up to four instructions per cycle and

has a five stage pipeline. It does not predict branches dynamically like the POWER3-II, but rather

prefetches up to eight instructions from the branch target into a branch target buffer during

normal execution, predicts the branch not taken, continues to fetch from the instruction stream

and then, once the branch is resolved in the dispatch stage, either continues fetching from the

current instruction stream with no penalty or flushes the instructions after the branch and begins

fetching from the branch target buffer, with a penalty of at most one and often zero cycles. The

RS64-III has a 128KB, two way set associative L1 instruction cache, a 128KB, two way set

associative data cache, and a 4MB, four way set associative unified L2. It also has a 512 entry

four way set associative unified TLB and a 64 entry instruction effective to real address

translation buffer (IERAT) that allows fast address translation without the use of the TLB. . The

RS64-III system we use is the IBM M80, configured as a uniprocessor system. The system has

 3

2 GB of main memory.

 The POWER3-I I [9] is a 64-bit, superscalar, out of order, speculative execution processor. It

has two single cycle integer units, one multiple cycle integer unit, one branch/condition register

unit, two load/store units, and two three stage pipelined floating point units. It can fetch, dispatch,

and retire up to four instructions in the same cycle. It has a 256-entry branch target address cache

(BTAC), which works like a branch target buffer, and a 2048 entry, 2 bits per entry branch

history table for dynamic branch prediction. The POWER3-II has a 64KB, 128-way set

associative, four way interleaved L1 instruction cache, a 64KB, 128 way set associative, four way

interleaved L1 data cache, and a 8MB, four way set associative unified off-chip L2. It also has a

256-entry two way set associative instruction TLB and two 256 entry two way set associative

data TLBs. The POWER3-II is designed with separate buses to memory and L2 for greater

memory bandwidth. The POWER3-II also employs a data prefetching mechanism that detects

sequential data access patterns and prefetches cache lines to match these patterns. . For our

experiments, we use the IBM 44p-170, which contains the POWER3-II processor and 2 GB of

main memory.

The Pentium I I I processor is an out-of-order superscalar CISC processor. It first

converts the CISC-style instructions into simple RISC style operations called uops. The Pentium

III is capable of issuing up to 5 uops and retiring up to 3 uops in one cycle. The processor has a

40 entry reorder buffer to facilitate retirement of instructions in order. The processor employs

speculative execution using a two level branch predictor and a 512-entry branch target buffer

(BTB). The processor has a separate L1 data cache and L1 instruction cache. Each cache is 16

Kbytes in size, 4-way set associative with a 32-byte block size and employs an LRU replacement

algorithm. The data cache is write-allocate, non-blocking and dual-ported. The processor also

has a unified 512KB 4-way set associative non-blocking L2 cache with a 32-byte block size. In

our study, we use a Dell Precision 410 PC with one Pentium III processor and 1 GB of physical

memory.

Experimental Environment
 The IBM systems run AIX 4.3.3 and the IBM JDK version 1.18. We use Apache 1.3.23 as our

web server. Admittedly, it is not the highest performance web server, but it is very popular.

According to a Netcraft survey (http://www.netcraft.com), about 55% of all web sites on the Internet

are using Apache. The operating system on the Pentium III system under measurement is

Windows NT Workstation 4.0 with Service Pack 6a. We use the Sun JDK 1.3.0 with Hotspot

 4

Server (build 2.0fcs-E, mixed mode) as the Java virtual machine. The Web server is Apache

1.3.23 for Windows with mod_perl and ActivePerl 5.6.1.

 Three server benchmarks: SPECweb99, VolanoMark 2.1.2 and SPECjbb2000, which represent

various front end and middle-tier Internet services are run on the 3 platforms described above.

These benchmarks are described in detail in the sidebar on Internet benchmarks. To compare

these benchmarks to “ traditional” and better understood applications, we also experiment with the

integer programs in the SPEC CPU2000 suite. (See sidebar on SPEC CPU2000). We use the

hardware performance monitors built into the microprocessors under study to make performance

measurements. (See sidebar for a description on performance measurement using on-chip

counters.) The Pentium III processor has two performance monitoring counters, and the IBM

PowerPC processors have eight performance counters that can be programmed to count a variety

of events. Events in unprivileged user code (user mode) and privileged operating system code

(OS mode) can be counted separately on all 3 machines. The list of countable events differs

between the two IBM machines, but many important events can be counted on both. We interface

with the PowerPC performance monitors using the IBM-supplied performance monitor API and

IBM’s pmcount (a utility that allows the user to interface with the performance monitor), both of

which are AIX kernel extensions. On the Intel processor, we use PMON [10] to access these

counters. PMON consists of two parts, a device driver and a control program. The driver reads

the performance counters of the Pentium III processor while the control program controls the

measurement process and logs the results. Since we developed the whole tool ourselves, we have

better control over it than any other performance counter tools like Intel’s P6Perf. The overhead

of PMON is extremely small because it does not have GUI displays and does not write results to

disks during measurements. Thus the tool incurs no disk I/O activity given enough memory. The

low overhead associated with the tool allows us to perform the measurements in a non-invasive

fashion. The operation of the tool was verified by several test cases and by comparing it with

VTune and P6Perf.

 Though it is desirable to have quick starting and shutdown processes, the most important

aspect of server performance is how the server responds to client requests. Therefore, in all our

measurements we skip the starting and shutdown period and measure the server only when it is

busy handling client requests. For this purpose, two timers are setup in the monitoring program

to measure SPECweb. Since the SPECweb client is controlled by the warmup time, test time, etc.

specified in the configure file, the first timer is used to skip the warmup time and the second timer

to stop the measurement just before the client closes connections. However, VolanoMark is not

controlled by a time parameter. Therefore, to synchronize our measurements with the client

 5

connections in the VolanoMark test, we add a wrapper to the client program. The wrapper sets up

an extra connection to the server to trigger the monitoring program immediately before it starts

the actual client. The monitoring program ends the measurement as soon as the wrapper closes

the extra connection, which signals the end of the client program. Since SPECjbb2000 does not

have a separate client program, it is impossible to isolate the server transaction activity from data

initialization and report generation without instrumentation of the benchmark itself. The

benchmark program has the ability to measure itself for reporting benchmark scores. We modify

Company.java file to send signals to the monitoring program so that our measurement is

synchronized with the benchmark’s own measurement interval. To minimize the effect of

instrumentation we only recompile Company.java and leave all other class files untouched. As

can be seen from our measurement method, the JIT compiling part should be negligible in the

results because we skipped the starting of the program, where most compilation is done, and if

any compilation slipped into our measurement, it would only account for a very small part of the

long running of the benchmarks.

 For VolanoMark and SPECweb99 the servers are run on machines with high-speed network

connections to the client machines. Only events on the server machines are counted. Apache on

Windows is a multithreaded application, while on AIX it creates multiple processes to handle

concurrent client connections. Apache’s Perl module (mod_perl) is used to speedup the

generation of dynamic web pages. But because the script provided by SPEC could not perform

CAD Gets correctly using mod_perl, the CAD Get is implemented through traditional CGI

resulting in some perl processes being created dynamically. Therefore, the number of

processes/threads changes with time on all platforms. For VolanoMark, we use the default 20

users per room configuration. We vary the number of chat rooms from 1 to 30 resulting in a

connection number range of 20 to 600. SPECjbb2000 is a data intensive application with 25M

bytes data for each warehouse/thread. The maximum number of threads that our systems can

afford without significant memory swapping is 25. Therefore, we increase the number of

warehouses from 1 to 25 in our experiments.

Comparison
 In this section, we present data comparing the three server benchmarks with SPECint on our

three different microarchitectures. We present results from VolanoMark runs with 10 and 30 chat

rooms (indicated as volano10 and volano30 in the graphs and tables) and SPECjbb runs with 10

and 25 warehouses (indicated as SPECjbb10 and SPECjbb25). The metrics collected are similar

to those collected by Bhandarkar et.al. [3]. We have made the best effort to make the metrics

 6

common across all three platforms. However, not all events are available on all platforms.

Therefore, some related metrics are compared where the exact same metrics cannot be collected

on all platforms. We focus on the difference between the server and SPEC integer (SPECint)

benchmarks.

Operating System Component

Modern desktop and server processors have at least two modes: unprivileged user mode and

privileged operating system (OS) or kernel mode. To ensure security, some instructions can only

be executed in the OS mode. The processor enters the OS mode when the user application

invokes a system call requesting the operating system to perform some task on its behalf (e.g.

create another process, request synchronization with another kernel-level thread, or send a packet

to the network). The processor also switches to OS mode when it responds to a hardware

interrupt. For example, when the network adaptor receives a packet it will raise an interrupt to

inform the operating system, which will, in turn, read the packet into a buffer in main memory.

Switches to OS mode can also be caused by software exceptions during execution (e.g. page fault,

divided by zero). We measure the operating system activity caused by the different applications

under study. Table 1 compares the server benchmarks (SPECweb, VolanoMark and SPECjbb) to

the SPECint benchmarks on the three different machines.

Table1. Percentage of OS mode cycles

Benchmar k RS64-
I I I

POWER3-
I I

Pentium
I I I

SPECweb 36.50% 32.87% 31.21%
volano30 47.06% 54.11% 65.32%
volano10 64.47% 59.83% 58.25%

SPECjbb25 0.37% 0.33% 0.67% Se
rv

er
s

SPECjbb10 0.41% 0.39% 0.63%
vortex 0.41% 0.29% 1.06%
twolf 0.17% 0.18% 0.37%
gcc 0.87% 0.86% 1.04%
eon 0.15% 0.29% 0.24%

crafty 0.16% 0.18% 0.27%
perlbmk 0.39% 0.40% 0.81%
parser 0.22% 0.15% 0.41%
gap 0.32% 0.35% 0.47%

bzip2 0.69% 1.11% 0.44%
vpr 0.28% 0.19% 0.38%
mcf 0.43% 0.32% 0.34%

SP
E

C
in

t 2
00

0

gzip 0.74% 0.78% 0.48%

 As the table indicates, SPECweb and VolanoMark spend a high proportion of their execution

cycles in operating system mode. In contrast, most programs in the SPECint2000 suite spend

negligible time in the kernel mode. VolanoMark spends most of its time in receiving and sending

network messages, which is mainly the task of the operating system. The number of threads in

VolanoMark is large. To handle simultaneous client connections, a server usually spawns

 7

multiple threads or processes. The studied server creates two threads to manage each client

connection. Thus scheduling and synchronizing these threads constitutes a major task of the

operating system. Adding to this is the relatively simple operation of distributing messages in

user code. Consequently, more than half of the execution time of VolanoMark is in OS mode.

Network communication is also a major part of SPECweb. In addition, its execution has a large

portion of disk accesses. Therefore 30% of the time is spent in OS mode. SPECjbb, on the other

hand, spends less than 0.7% of the total execution time in OS mode, which is not very different

from SPECint. In this respect, SPECjbb is not representative of server applications because it

lacks the network communications and disk accesses common in all servers. Servers have been

reported to have a higher percentage of execution time in kernel mode than technical workloads

[8].

Instruction Level Parallelism profile
 All three processors investigated in this study are superscalar processors capable of extracting

instruction level parallelism (ILP). Both the RS64-III and the POWER3-II can dispatch up to

four instructions per cycle (dispatch for these machines meaning the stage in which the

instruction is sent to the reservation station of the execution unit). From Figure 4 it is clear that

the machines have more difficulty in exploiting ILP in the server benchmarks than in the SPECint

benchmarks. For all of the server benchmarks on the RS64-III, zero instructions are dispatched

for over 50% of the execution cycles. Only three SPECint benchmarks has zero instructions

dispatched for over 50% of the execution cycles. On the POWER3-II, the dispatch profile is

similar (we show only the percentage of cycles with zero instructions dispatched because the

other counts were not available on this machine). All of the server benchmarks on the POWER3-

II have zero instructions dispatched for more than 60% of the execution cycles, while only twolf ,

vpr and mcf cross this threshold among the SPECint workloads. The profile is almost identical for

the percentage of zero instructions-retired cycles on the POWER3-II, which is reasonable given

that stalls are being created in the dispatch stage.

 The same phenomenon is observed on the Pentium III processor. In the Pentium III, most

instructions are first converted into simpler RISC-type operations called uops. Some are decoded

into two to four uops, and the more complex instructions require microcode. The processor has 3

decoders that can handle up to 3 instructions every cycle. Up to 5 uops can be issued every clock

cycle to the various execution units and up to 3 uops can be retired every cycle. But in the server

applications, instruction level parallelism is seen to be limited: most of the time (more than 60%),

the decoders are idle when executing the server benchmarks (Figure 4a) and no uops can be

 8

retired in more than 60% of the execution cycles (Figure 4b). Only gcc and twolf in SPECint2000

shows a similarly poor decode and retirement profile. (Mcf is considered to be an exception. Its

poor performance is solely due to its extraordinarily high data cache misses, which makes it

somewhat easier to understand than the server applications.)

The difficulty in exploiting the instruction level parallelism also influences the average

cycles per instruction (CPI) of the applications. Server applications generally exhibit a higher CPI

than most SPECint programs as shown in Table 2.

Figure 4A Instruction dispatch profile
on RS64-III

Figure 4B Instruction
dispatch/completion profile on

POWER3-III

Figure 4C Instruction decode profile on
Pentium III

Figure 4D Instruction retirement profile
on Pentium III

0% 20% 40% 60% 80% 100%

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex

SPECjbb10
SPECjbb25

volano10
volano30

SPECweb

0 instr_decoded 1 instr_decoded
2 instr_decoded 3 instr_decoded

0% 20% 40% 60% 80% 100%

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex

SPECjbb10
SPECjbb25

volano10
volano30

SPECweb

0 uops retired 1 uops retired

2 uops retired 3 uops retired

0% 20% 40% 60% 80% 100%

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc
twolf

vortex

SPECjbb10
SPECjbb25

volano10
volano30

SPECweb

0 inst_cmpl 0 inst_disp

0% 20% 40% 60% 80% 100%

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex

SPECjbb10
SPECjbb25

volano10
volano30

SPECweb

0 instr_disp 1 instr_disp
2 instr_disp 3 instr_disp
4 instr_disp

 9

Table2. Cycle Per Instruction (CPI)

Cache and TLB performance
 Modern processors spend a significant part of their real estate on on-chip caches. These caches

capture the instruction and data working sets and thus reduce the average memory access time.

This section provides a comparison of the instruction and data cache behavior of the web server

workloads and SPECint2000 on the 3 machines.

L1 instruction cache: Figure 5 and Figure 6 show the L1 instruction cache misses and

instruction TLB misses per 1000 instructions. The server applications exhibit poorer instruction

cache and TLB performance than SPECint programs on all three machines. This indicates poor

instruction locality at both the cache-line size level and page-size level. Comparing results on the

POWER3-II and RS64-III, we can see that the instruction cache miss rates are higher on the

POWER3-II for most of the workloads (since its instruction cache is 64KB as opposed to 128KB

for the RS64- III), but for vortex and crafty the instruction cache miss rates are higher on the

RS64-III. This indicates that, for the server workloads and the other SPECint benchmarks, size is

more important than associativity for instruction cache performance, while for vortex and crafty

associativity (2 for the RS64-III and 128 for the POWER3-II) is more important than size for

performance.

Benchmar k RS64-
I I I

POWER3-
I I

Pentium
I I I

SPECweb 1.45 1.19 2.10
volano30 1.76 1.44 3.03
volano10 2.17 1.59 3.72

SPECjbb25 1.52 1.27 2.31 Se
rv

er
s

SPECjbb10 1.45 1.25 2.29
vortex 1.45 0.64 1.27
twolf 1.41 1.23 2.25
gcc 1.07 0.78 2.25
eon 1.27 1.04 1.36

crafty 0.77 0.63 1.22
perlbmk 1.16 0.85 1.13
parser 1.04 0.93 1.64
gap 1.19 0.82 1.32

bzip2 0.98 0.97 1.36
vpr 1.32 1.29 1.79
mcf 4.66 3.08 6.65

SP
E

C
in

t 2
00

0

gzip 0.80 0.68 1.24

 10

 To help understand the difference in the instruction access behavior, Table 3 compares the

memory map for the code segments of various modules (user mode only) involved in the

execution of gcc from the SPECint suite and the Apache web server running SPECweb

benchmark. A noticeable difference between Gcc and Apache is that the web server invokes

many more Dynamically Linked Libraries (DLLs). Real-world server applications are complex

pieces of software. To streamline software development, nowadays, developers adhere to the

principle of modularity at both source code level and binary level. Most functions in the web

server are implemented as modules, which are DLLs on the Windows platform. The main

executable of Apache server (apache.exe) is only about 20KB, while its core functions

implemented in the DLL ApacheCore.dll is 320KB. One heavily used DLL is mod_perl.so,

which handles the cgi perl scripts. Mod_perl in turn calls perl56.dll, a library from ActivePerl

package to actually interprets and executes the perl script. To complete its job, perl56.dll needs

Figure 5A Icache misses per 1000
instructions on RS64-III

Figure 5B Icache misses per 1000
instructions on POWER3-II

Figure 5C Icache misses per 1000
instructions on Pentium III

Figure 6A ITLB misses per 1000
instructions on RS64-III

Figure 6B ITLB misses per 1000
instructions on Pentium III

0 20 40 60 80

gzip

mcf
vpr

bzip2

gap
parser

perlbmk

crafty

eon

gcc
twolf

vortex

SPECjbb10

SPECjbb25

volano10
volano30

SPECweb

0 1 2 3 4

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex

SPECjbb10
SPECjbb25

volano10
volano30

SPECweb

0 4 8 12 16 20

gzip

mcf

vpr

bzip2

gap

parser

perlbmk

crafty

eon

gcc

twolf

vortex

SPECjbb10

SPECjbb25

volano10

volano30

SPECweb

0 3 6 9 12 15

gzip

mcf

vpr

bzip2

gap

parser

perlbmk

crafty

eon

gcc

twolf

vortex

SPECjbb10

SPECjbb25

volano10

volano30

SPECweb

0 0.1 0.2 0.3 0.4 0.5

gzip

mcf

vpr

bzip2

gap

parser

perlbmk

crafty

eon

gcc

twolf

vortex

SPECjbb10

SPECjbb25

volano10

volano30

SPECweb

 11

services from other modules in the perl package, such as fcntl.dll. Besides, server programs

usually require more services from the OS. For example, to communicate through the network,

the winsock library is called. To access the Windows Registry, functions in advapi32.dll are

invoked. SPECint programs, on the other hand, are compiled into self-contained stand-alone

programs. Libraries are usually statically linked, resulting in compact executables. In addition,

they seldom request services from OS or other applications except reading some input files at the

beginning and printing the results at the end. As a result, few DLLs are involved in the execution

of SPECint programs.

 The dynamic invocation and loading of the libraries affect the instruction footprint and the

instruction access nature of the server program. Since each shared library is loaded to a different

memory page, calling a function in another library causes the control flow to transfer to another

memory page, resulting in poor instruction TLB performance. Similar behavior has also been

observed in Windows desktop applications by Lee et. al. [6]. In addition, many server

applications are written in Java and Just-In-Time (JIT) compilers compile Java code at runtime.

Dynamically compiled code for consecutively invoked methods may not be located in contiguous

address spaces [11]. All the aforementioned effects explain the difference in instruction access

behavior between server applications and the SPECint suite. Considering the significant OS

activity observed in the server execution also, the whole instruction stream of the Apache server

is definitely much more complex and larger than Gcc. It might be noted that high instruction

cache miss rates have been observed in traditional database server applications also [1, 2].

Table 3A. Memory map of code segments
of gcc from the SPECint2000 suite

Starting
address
(hex)

code segment
size (decimal)

module

00401000 958464 cc1_base
77f01000 241664 kernel32.dll
77f61000 245760 Ntdll.dll

Table 3B. Memory map of code segments of
Apache web server

Starting
address
(hex)

code segment
size (decimal)

module

00401000 4096 apache.exe
0d861000 8192 fcntl.dll
10001000 163840 mod_perl.so
1c0f1000 4096 Win9xConHook.dll
28001000 516096 perl56.dll
6ff61000 217088 ApacheCore.dll
77661000 36864 msafd.dll
77691000 12288 wshtcpip.dll
776a1000 8192 ws2help.dll
776b1000 49152 ws2_32.dll
776d1000 4096 wsock32.dll
77dc1000 172032 advapi32.dll
77e11000 286720 rpcrt4.dll
77e71000 266240 user32.dll
77ed1000 147456 gdi32.dll
77f01000 241664 kernel32.dll
77f61000 245760 ntdll.dll
78001000 204800 msvcrt.dll

 12

 L1 data cache: The trends of the data cache miss rates in the level one data cache are not very

different between the server and the SPECint applications and hence are not shown in detail. The

SPECint applications have miss rates in a wide range, with mcf miss rates being very high. The

miss rates of the server applications fall within the range exhibited by the SPECint applications.

On the Pentium III, the number of L1 data misses per instruction in the SPECint applications

range from 0.03 to 0.10, while the range for the server applications is 0.012 to 0.024. The number

of misses per instruction is slightly lower on PowerPC machines: 0 to 0.094 for SPECint, and

.005 to 0.016 for the server benchmarks. The SPEC program mcf has the highest miss rate on all

the 3 platforms.

 L2 cache: L2 cache misses per 1000 instructions are shown in Figure 7. The mcf program is

exceptional on all platforms because of its high L2 cache miss rate. On Pentium III, which has a

512K byte L2 cache, the L2 cache miss rates of the server applications are comparable to those of

SPECint. On the PowerPC machines, which have much larger L2 caches, the L2 cache miss rates

of the servers are higher than those of SPECint. Comparing the L2 performance of the

POWER3-II and RS64-III shows that when the cache size increases from 4M bytes to 8M bytes,

the miss rates for the servers change very little, while the miss rates for SPECint are almost

halved. This indicates that the data footprint of server applications is usually harder to capture

with ordinarily large caches. Servers usually manage large data sets, as in the case of SPECjbb,

in which each warehouse is 25MB of data. Since each client thread accesses a different

warehouse, a large number of clients create a large and scattered data footprint.

Figure 7A L2 cache misses per
1000 instructions on RS64-III

Figure 7B L2 cache misses per
1000 instructions on POWER3-

II

Figure 7C L2 cache misses per
1000 instructions Pentium III

0 5 10 15

gzip

mcf

vpr

bzip2

gap

parser

perlbmk

crafty

eon

gcc

twolf

vortex

SPECjbb10

SPECjbb25

volano10

volano30

SPECweb

78.

0 1 2 3 4

gzip

mcf

vpr

bzip2

gap

parser

perlbmk

crafty

eon

gcc

twolf

vortex

SPECjbb10

SPECjbb25

volano10

volano30

SPECweb

6.1

0 2 4 6 8

gzip

mcf

vpr

bzip2

gap

parser

perlbmk

crafty

eon

gcc

twolf

vortex

SPECjbb10

SPECjbb25

volano10

volano30

SPECweb

19.4

 13

Branch behavior
 State-of-the-art high performance microprocessors employ speculative execution as a means of

enhancing performance. Control path prediction is the most common form of speculation

implemented on modern superscalar processors. As shown in Figure 8A, the two-level adaptive

branch prediction scheme of Pentium III does a fairly good job in terms of misprediction rate, but

the BTB miss rates for the server applications are higher compared to SPECint2000. If a BTB

miss occurs, the static branch predictor will be used, which is generally not as accurate as the 2-

level dynamic predictor. Even if the static predictor makes correct predictions, the processor may

still suffer from the latency because the static predictor is rendered much deeper in the pipeline

than the dynamic one. While we do not isolate the causes of the BTB misses and mispredictions,

it is clear that the current BTB architecture on the Pentium III does not work very satisfactorily

for server code.

 Figure 8B indicates that the POWER3-II’s branch direction predictor works as well for the

server applications as for the SPECint benchmarks. However, the server benchmarks (with the

exception of vol30) exhibit, on the average, worse BTAC (Branch Target Address Cache)

performance than all SPECint programs but eon, crafty, and gap. This could indicate that the

BTAC of the POWER3-II, which caches branch target addresses and does not store any target

instructions, does not work very well for server code, though the difference between SPECint and

server BTAC performance is not as pronounced as on the Pentium III. Further, eon, which shows

BTAC performance similar to the server benchmarks, is written in C++ and makes heavy use of

virtual functions, which are also widely used in Java. Java programs are known to have poor

branch target predictability due to indirect branches resulting from virtual function calls and code

interpretation [11]. Branch prediction numbers for RS64-III are not shown because it does not

employ dynamic branch prediction.

Figure 8B. Branch behavior on
POWER3-II

Figure 8A. Branch behavior on
Pentium III

0.0 0.1 0.2 0.3 0.4 0.5

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex

SPECjbb10
SPECjbb25

volano10
volano30

SPECweb

BTAC Miss Ratio

Branch Mispred
Ratio

0 0.2 0.4 0.6 0.8

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex

SPECjbb10
SPECjbb25

volano10
volano30

SPECweb

BTB Miss
Ratio

Branch
Mispred ratio

 14

Understanding components of CPI
 It is very beneficial and interesting to find out the various components of the CPI and their

individual contributions. There are some performance counters that shed some light on this

aspect. On Pentium III two major types of stalls can be counted: I-stream stalls and resource

stalls, measured in terms of the cycles in which the stall conditions occur. I-stream stalls are

caused mainly by instruction cache misses and ITLB misses. Resource stalls show the number of

cycles in which resources such as reorder buffer entries, memory buffer entries, or execution units

are not available [3]. Figure 9A and 9B show the I-stream stalls and resource stalls per

instruction respectively. Clearly, the resource stalls of the servers are within the range of

SPECint while the I-stream stalls of the former are much higher than those of the latter. To

determine the contribution of each stall component to the CPI is hard, especially on an out-of-

order superscalar processor like the Pentium III, which is good at tolerating latencies by

overlapping them. Therefore, we conducted a linear regression analysis in a top down fashion to

determine statistically the importance of each stall factor. (See sidebar on regression analysis).

The top linear model is

CPI=b2*RS+b1* IS+b0 …………………….……………(1)

where

 RS is the number of resource stalls per instruction, and

 IS is the number of I-stream stalls per instruction.

The regression analysis gives the following results:

 b2=1.00 with 95% confidence interval of [0.947, 1.06]

 b1=1.23 with 95% confidence interval of [1.10, 1.36]

 b0=0.785 with 95% confidence interval of [0.680, 0.891]

The coefficient of determination R2 is 0.991. This means that this regression model explains

99.1% of the CPI variation, indicating high goodness of the linear model. The correlation

between resource stalls and I-stream stalls is small (-0.156). Therefore, the regression model

does not suffer from the problem of multicollinearity. Neither the confidence interval of b2 nor

that of b1 includes 0. Thus both resource stalls and I-stream stalls are statistically important

factors in determining the CPI. Based on this regression model, the contributions of resource and

I-stream stalls to the CPI are shown in Table 4. For server applications, I-stream stalls contribute

33% to 62% to the CPI while the contributions of I-stream stalls for SPECint are all below 33%

 15

and are negligible (less than 1%) for half of the suite. In all cases, the I-stream stalls make much

larger absolute contribution to CPI for server applications than for SPECint.

Table 4. Contr ibutions of resource stalls and I -stream stalls to CPI

Absolute contr ibution

Benchmar ks
Resource

stalls
I -stream

stalls

Relative
contr ibution
of I -stream
stalls to CPI

(as %)
SPECweb 0.35068 0.93785 45.22%
volano30 0.97476 1.30841 42.64%
volano10 0.89170 1.86214 52.61%
volano01 0.59106 2.22142 61.74%

SPECjbb25 0.86600 0.81121 32.94%
SPECjbb10 0.80074 0.89546 36.08%

Se
rv

er

SPECjbb01 0.74111 0.94555 38.25%
vortex 0.36342 0.20713 15.28%
twolf 1.37280 0.00713 0.33%
gcc 0.89576 0.32962 16.39%
eon 0.29467 0.17404 13.88%

crafty 0.13662 0.45766 33.17%
perlbmk 0.12145 0.26453 22.58%
parser 0.69689 0.00643 0.43%
gap 0.45838 0.01048 0.84%

bzip2 0.52759 0.00197 0.15%
vpr 0.95453 0.00358 0.21%
mcf 5.88349 0.00830 0.12%

SP
E

C
in

t 2
00

0

gzip 0.57135 0.00214 0.16%

 Resource stalls encompass the conditions where register renaming buffer entries, reorder buffer

entries, memory buffer entries, or execution units are full. In addition, serializing instructions

(e.g., CPUID), interrupts, and privilege level changes may spend considerable cycles in

Figure 9A I-stream stalls per
instruction on Pentium III

Figure 9B Resource stalls per
instruction on Pentium III

0 0.5 1 1.5 2

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex

SPECjbb10
SPECjbb25

volano10
volano30

SPECweb

0 2 4 6

gzip

mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon

gcc
twolf

vortex

SPECjbb10
SPECjbb25

volano10
volano30

SPECweb

 16

execution, forcing the decoder to wait and incrementing the resource stalls counter. Stalls due to

data cache misses are not explicitly included in resource stalls; however, if some other resource

becomes oversubscribed due to a long data cache miss, the resource stall counter will be

incremented [5]. Though resource stalls consist of various stall events, the linear regression

analysis shows that the major component of resource stalls is caused by data cache misses, as in

equation 2.

Resource stalls=54.10*(L2 cache misses)+14.12*(L1 data cache misses)+0.0443…….(2)

The coefficient of determination R2 is 0.991. The single large resource stalls of mcf may result in

unduly good R2. Therefore, another analysis was performed without mcf. R2 drops to 0.867,

which still indicates strong correlation between resource stalls and data cache misses.

 I-stream stalls count the number of cycles that instruction fetch is stalled for any reason,

including L1 instruction cache misses, ITLB misses, ITLB faults, and other minor stalls. The

influence of instruction cache misses on I-stream stalls can be understood using the following

linear regression model:

IS=b1*L1+b0 ……………………………………………(3)

where

 IS = I-stream stalls per instruction, and

 L1 = L1 instruction cache misses per instruction.

Regression analysis yields that

 b1 = 18.1 with 95% confidence interval [16.9,19.4]

 b0 = -0.0330 with 95% confidence interval [-0.0822, 0.0161]

The coefficient of determination R2=0.986, which means that L1 instruction cache misses alone

statistically account for 98.6% of the variation in I-stream stalls.

 In summary, CPI is statistically determined by resource stalls and I-stream stalls on the Pentium

III processor. The I-stream stalls make larger contributions to the CPI for the server applications

than for the SPECint suite. The high I-stream stalls of the servers can be attributed to their high

L1 instruction cache misses.

 Next, we explore the CPI components of the IBM platforms. Stall related events are not

countable on the POWER3-II, and hence the analysis is limited to the RS64-III. Figure 10

compares CPI components of the server benchmarks to the SPECint benchmarks on the RS64-III.

With good performance counter support and in-order-issue, the CPI stack of RS64-III is a good

 17

indication of the relative importance of various stalls. The stalls in the figure do not comprise a

comprehensive list, but they are the most significant storage related stalls on the machine. “ Ideal

CPI” refers to (total execution cycles – storage latency)/instructions executed. “Storage latency”

is a single countable event on the RS64-III performance monitor that indicates the

(nonoverlapped) total amount of storage related stalls (i.e. multiple storage related stalls in one

cycle are counted as one stall). Thus “ Ideal CPI” is an approximation of CPI in the absence of all

storage related stalls. “ Isync” and “Other sync” stalls are caused by various synchronizing

PowerPC instructions. It is clear that the server benchmarks incur significantly more instruction

cache stalls, data cache stalls, data TLB stalls, and L2 cache stalls than the SPECint benchmarks,

and further, that these stalls dominate the memory related stall components of CPI. (In contrast,

the SPECint benchmarks suffer from very little, if any, of the storage related stalls included in the

figure. However, despite the large number of storage stall cycles for the server benchmarks, the

CPIs of the benchmarks are lower than the sum total of the CPI components, which indicates the

effectiveness of the RS64-III’s pipelined architecture in hiding some of the storage latency.

 Data cache stalls and L2 stalls are the most significant storage stalls for the server applications.

Figure 11 shows that the vast majority of the L2 misses on the RS64-III are due to loads as

opposed to instructions, and Figure 10 shows that the data cache stall components of the server

applications are nearly equal to the L2 stall components, indicating that most of the data cache

stalls are in fact L2 stalls (L2 stalls are, of course, included in instruction and data cache stall

times.). Therefore, L2 performance, not data cache performance, is the real performance

bottleneck with these server applications. The high proportion of L2 stalls agrees with our earlier

speculation that the large data sets, characteristic of server applications, cause poor L2 behavior

in comparison to SPECint. Though instruction cache behavior also has a significant impact on

server performance, the poor L2 performance overshadows the poor instruction cache

performance. Observing Figure 10 and 11 instruction cache stalls on the RS64-III do not seem to

adversely affect performance to the same degree that Istream stalls do on the Pentium III. This is

most likely because the RS64-III has an instruction cache eight times as large (128 KB vs. 16

KB). Further, the high ITLB miss rates of the server applications combined with the fact,

illustrated by Figure 11, that hardly any L2 misses arise from instruction accesses suggest that

most of the instruction cache misses on the RS64-III are due to a widely scattered instruction

footprint rather than one large and contiguous footprint, which agrees with the earlier discussion

in Section 4.3 about function call addresses and dynamically compiled JIT code and their affect

on instruction stream behavior. The contrast in instruction steam stalls between the RS64-III and

the Pentium III shows that a larger instruction cache can improve server performance, despite the

 18

scattered nature of the instruction footprint. Still, instruction cache stalls do adversely affect

server performance on the RS64-III.

Summary
 Detailed characterization of three Internet server benchmarks, SPECweb99, VolanoMark and

SPECjbb2000, and their comparison with SPECint2000 on three different architectures, i.e. IBM

RS64-III, IBM POWER3-II and Intel Pentium III, demonstrate that the server applications differ

from SPECint in several ways:

1. Server benchmarks show worse instruction stream behavior than SPECint2000. Higher

instruction cache miss rates, higher ITLB miss rates, higher BTB miss rates and

consequently, higher I-stream stall cycles are observed on all three machines for the server

applications in comparison to the SPECint suite. The linear regression model shows that

statistically, the instruction cache misses make a larger contribution to CPI for the server

applications than for SPECint on the Pentium III. On the PowerPC architectures, which have

much larger instruction caches than the Pentium III, instruction cache stalls still make up a

significant component of the CPIs of server workloads, while they are near negligible in the

SPECint workloads. Nevertheless, with the RS64-III instruction cache being four times as

large (128 KB vs. 16 KB) as that of the Pentium III, instruction stream behavior degrades

performance to a lesser degree on the former than on the latter, demonstrating the advantage

that large instruction caches can provide for these server applications.

2. Due to the large data set and network I/O the servers manage, the data footprint of servers is

harder to capture than that of SPECint even with large L2 caches as in the PowerPC

machines. L2 cache misses per instruction are significantly higher than those for

Figure 10 CPI stack for RS64-III
Figure 11 Breakdown of L2
Misses per Instruction on

RS64-III

0 0.005 0.01 0.015 0.02

gzip
mcf
vpr

bzip2
gap

parser
perlbmk

crafty
eon
gcc

twolf
vortex

SPECjbb10
SPECjbb25

volano10
volano30

SPECweb

load

store

instr

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

gz
ip

m
cf vp

r

bz
ip2 ga

p

pa
rs

er

pe
rlb

m
k

cr
afty eo

n
gc

c
tw

olf

vo
rte

x

SPECjbb
10

SPECjbb
25

vo
lan

o1
0

vo
lan

o3
0

SPECweb

Ideal CPI L2 Miss DC Miss IC Miss

IERAT Miss ITLB Miss DTLB Miss ISYNC
Other Sync CPI

 19

SPECint2000 (except for mcf), and L2 cache miss stalls constitute the major stall component

of CPI on the RS64-III. Poor L2 performance is another major factor in overall performance

for the server workloads.

3. In general, the server workloads have a higher percentage of cycles in which no instructions

are decoded/dispatched/retired, suggesting that it is somewhat difficult to exploit ILP in these

workloads.

It is interesting to note that the observations generally hold on all the three architectures

irrespective of them being drastically different, the RS64-II being an in-order execution RISC

machine, the POWER3-II being a highly aggressive out-of-order execution RISC machine,

and the Pentium III being an out-of-order execution CISC machine, all with varying cache

and TLB sizes and branch prediction schemes. There is no doubt that, to maximize

performance on Internet server applications, modern processor architectures need further

design enhancements and optimizations, particularly in instruction stream and L2 cache

performance.

References

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill and D. A. Wood. DBMSs on a Modern Processor: Where Does the Time

Go? In Proceedings of the 25th VLDB Conference, Edinburgh, Scotland, 1999, pp. 15-26
[2] L. A. Barroso, K. Gharachorloo and E. Bugnion. Memory System Characterization of Commercial Workloads. In

Proceedings of the 25th International Symposium on Computer Architecture, 1998, pp. 3-14
[3] D. Bhandarkar and J. Ding. Performance Characterization of the Pentium Pro Processor. In Proceedings of The

third International Symposium on High-Performance Computer Architecture, 1997, pp. 288-297
[4] J.M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S.R. Kunkel. A Multithreaded PowerPC Processor for

Commercial Servers. IBM Journal of Research and Development, Vol. 44, No. 6, 2000, pp. 885-894.
[5] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker. Performance Characterization of a Quad

Pentium Pro SMP Using OLTP Workloads. In Proceedings of the 25th International Symposium on Computer
Architecture, Barcelona, Spain, June 1998, pp. 15-26

[6] D. C. Lee, P. J. Crowley, J. Baer, T. E. Anderson, and B. N. Bershad. Execution Characteristics of
Desktop Applications on Windows NT. In Proceedings of the 25th International Symposium on Computer
Architecture, Barcelona, Spain, June 1998, pp. 27-38

[7] T. Li, L. K. John, N.Vijaykrishnan, A. Sivasubramaniam, A.Murthy, and J. Sabarinathan, Using Complete System
Simulation to Characterize SPECjvm98 Benchmarks. In Proceedings of International Conference on
Supercomputing, 2000, pp. 22-33

[8] A. M. G. Maynard, C. M. Donnelly and B. R. Olszewski. Contrasting characteristics and cache performance of
technical and multi-user commercial workloads. In Proceedings of the 6th International Conference on
Architectural Support for Programming Languages and Operating Systems, San Jose, October 1994, 145-156.

[9] F.P. O’Connell and S.W. White. POWER3: the Next Generation of PowerPC Processors. IBM Journal of
Research and Development, Vol. 44, No. 6, 2000, pp. 873-884, 873-884.

[10] PMON webpage. http://www.ece.utexas.edu/projects/ece/lca/pmon.
[11] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, and A. Sivasubramaniam. Architectural Issues in Java Runtime

Systems. In Proceedings of the Sixth International Conference on High Performance Computer Architecture,
January 2000, pp. 387-398.

[12] P. Ranganathan, K. Gharachorloo, S. V. Adve and L. A. Barroso. Performance of Database Workloads on Shared-
Memory Systems with Out-of-Order Processors. In Proceedings of the 8th International Conference on
Architectural Support for Programming Languages and Operating Systems. October 1998, pp. 144-156.

 20

Sidebar 1
SPEC CPU Benchmarks The System Performance Evaluation Cooperative (SPEC) is one of the early
efforts in benchmark gathering and performance evaluation. SPEC was founded in 1988 by a small number
of workstation vendors who realized that the marketplace was in desperate need of realistic, standardized
performance tests. The basic SPEC methodology is to provide the benchmarker with a standardized suite of
source code based upon existing applications that has already been ported to a wide variety of platforms by
its membership. The benchmarker then takes this source code and compiles it for the system in question.

SPEC started its efforts by releasing the SPEC89 suite of CPU intensive benchmarks in 1989. This was
followed by SPEC92, SPEC95 and SPEC2000. The suites contain integer and floating point benchmarks.
SPEC creates its suites by gathering source code from real user applications. They give importance to
portability of code so that the benchmarks can be used across a wide range of hardware. These benchmarks
measure the performance of the processor, memory and compiler on the tested system. The current CPU
suite, SPEC2000 suite contains 14 floating point programs written in C/Fortran and 12 integer programs
(11 written in C and 1 in C++). The programs in the SPEC 2000 suite are listed in Table below.

 Programs in the SPEC Cint2000
Benchmark name Language Application details
Gzip C Compression
Vpr C FPGA Circuit Placement and Routing
Gcc C Programming Language Compiler
Mcf C Combinatorial Optimization
Crafty C Game Playing: Chess
Parser C Word Processing
Eon C++ Computer Visualization
Perlbmk C PERL Programming Language
Gap C Group Theory, Interpreter
Vortex C Object-oriented Database
Bzip C Compression
twolf C Place and Route Simulator

Programs in SPEC Cfp2000
wupwise Fortran 77 Physics / Quantum Chromodynamics
swim Fortran 77 Shallow Water Modeling
mgrid Fortran 77 Multi-grid Solver: 3D Potential Field
applu Fortran 77 Parabolic / Elliptic Partial Differential Equations
mesa C 3-D Graphics Library
galgel Fortran 90 Computational Fluid Dynamics
art C Image Recognition / Neural Networks
equake C Seismic Wave Propagation Simulation
facerec Fortran 90 Image Processing: Face Recognition
ammp C Computational Chemistry
lucas Fortran 90 Number Theory / Primality Testing
fma3d Fortran 90 Finite-element Crash Simulation
sixtrack Fortran 77 High Energy Nuclear Physics Accelerator Design
apsi Fortran 77 Meteorology: Pollutant Distribution

For more information, please see http://www.spec.org.

 21

Sidebar 2
Internet/Server Benchmarks

The phenomenal growth of the World Wide Web has resulted in the emergence and popularity of several
information technology applications. The proliferation of web servers and arrival of electronic commerce
has brought in several new software packages, interfaces and standards into the picture. Literally all
enterprises including airlines, banks, stock brokerage firms, and most consumer product vendors nowadays
use their web servers to deal with a significant part of their business. Many of these applications involve a
web based interface to an underlying database that stores the data relating to the user enquiry or transaction.
Driven by the business need for decision-support and powerful on-line transaction processing,
organizations are implementing high-volume databases with terabytes of data. Commercial workloads
include Enterprise Resource Planning (ERP) applications, on-line transaction processing (OLTP), decision
support systems (DSS), web-index search and many similar e-commerce workloads. ERP applications
integrate all aspects of an enterprise such as manufacturing, finance, sales, distribution, and human
resources. Business decisions can be made by DSS software running on top of the enterprise database.
Market research, customer buying patterns, etc can be studied using business intelligence and data mining
software. An end-to-end e-business transaction typically involves a dozen or more different software
layers, including the front end/portal, shopping carts, network communication, credit card or electronic
check transaction, security software layers, etc. These layers may be implemented using cgi-script, Java
servlets, Java Beans, XML, CORBA, JINI, etc. Thus e-commerce involves the integration of a variety of
software, protocols, and standards: GUIs, Java, cgi, perl, php, SQL, TCP/IP, HTTP, and HTML are just a
few of them.

Modern servers use a 3-tier approach in which the backend tier handles the database accessing and the front
end and the middle tiers implement much of the user interface and portals. Table 1 provides examples of
benchmarks in the different tiers. The Transaction Processing Council (TPC) benchmarks model the
backend. (See related article XXX for a description of the TPC Benchmarks.) Examples of the front and
middle tier benchmarks are SPECweb99, VolanoMark and SPECjbb2000. In the accompanying article, we
describe the characteristics of these 3 benchmarks on 3 different superscalar machines.

Table 1. Popular benchmarks for different internet/server workloads
On-Line Transaction Processing TPC-C, TPC-W Server Backend /Database
Decision Support Systems TPC-H, TPC-R
Web Server SPECweb99
Chat Server VolanoMark

Server front and middle tier

E-commerce server SPECjbb2000, TPC-W

SPECweb99 [1] is SPEC’s current benchmark for measuring the performance of web servers. The
SPECweb99 workload (Figure 1) simulates accesses to a web service provider, where the server supports
web pages for a number of different organizations. Each home page is a collection of files ranging in size
from small icons to large documents and images. The workload simulates dynamic operations such as
"rotating" advertisements on a web page and customized web page creation. The file accesses are made to
closely match today’s real-world web server access patterns. The benchmark supports HTTP1.0 and
HTTP1.1 protocols. The benchmark's metric is SPECweb99, which represents the number of simultaneous
connections the web server can support using the predefined workload.

VolanoMark [2] is a pure Java server benchmark with long-lasting network connections and high thread
counts. It can be divided into two parts: a server and a client, although they are provided in one package. It
is based on a commercial chat server application, the VolanoChat, which is used in several countries world-
wide. The server accepts connections from the chat client as in Figure 2. The chat client simulates many
chat rooms and many users in each chat room. The client continuously sends messages to the server and
waits for the server to broadcast the messages to the users in the same chat room. The VolanoMark server
creates two threads for each client connection. VolanoMark can be used to test both speed and scalability of
a system. In the speed test, it is run on a local loopback connection with the server and client on a single

 22

machine. In the scalability test, the server and client are run on separate machines with high speed network
connections.

 SPECjbb2000 [3,4] is SPEC's first e-business benchmark and the first benchmark for evaluating the
performance of server-side Java. JBB stands for Java Business Benchmark. The benchmark emulates an
electronic commerce workload in a 3-tier system (Figure 3). The benchmark contains business logic and
object manipulation, primarily representing the activities of the middle tier in an actual business server. It
models a wholesale company with warehouses serving a number of districts. Customers initiate a set of
operations such as placing new orders and checking the status of existing orders. Additional operations are
generated within the company, such as processing orders for delivery, entering customer payments, and
checking stock levels. It is written in Java, adapting a portable business oriented benchmark called pBOB
written by IBM. Although it is a benchmark that emulates business transactions, it is very different from
the Transaction Processing Council (TPC) benchmarks. There are no actual clients, but they are replaced
by driver threads. Similarly, there is no actual database access. Data is stored as binary trees of objects.
The whole benchmark is implemented within a single Java Virtual machine (JVM). The emulation of the
other tiers isolates the middle tier and simplifies the benchmark by not requiring user emulation or a
database. SPECjbb2000 assigns one active customer per warehouse, which is a 25MB data set stored in
binary trees (Btrees). The benchmark is memory resident without inherent disk I/O. One warehouse maps
directly to one Java thread. As the number of warehouses increases during the full benchmark run, so does
the number of threads.

References:

1. Standard Performance Evaluation Cooperative SPECweb99 Benchmark. http://www.spec.org/osg/web99/
(current July 2002).

2. Volano LLC. VolanoMark benchmark. http://www.volano.com/benchmarks.html (current July 2002).
3. Standard Performance Evaluation Corporation. SPECjbb2000 Benchmark.

http://www.spec.org/osg/jbb2000/ (current July 2002).
4. Standard Performance Evaluation Corporation. Architecture schematic of the SPEC JBB2000 benchmark

process. http://www.spec.org/osg/jbb2000/images/arch.jpg (current July 2002).

user1 user2 user3 user1 user2 user3

Server

M
es

sa
ge

 1

Chat r oom 1 Chat r oom 2

Client

business logic
engine

(primary focus of
measurement)

client
threads

object
trees

Figure 1 SPECweb99 Environment Figure 2 VolanoMark Environment

Prime Client (Controlling Program)

Client Client Client

HTTP Server
Fileset/
Logs

……

System Under Test (SUT)

Figure 3 SPECjbb2000 Environment

 23

Sidebar 3
Per formance Monitor ing Using Microprocessor On-chip Per formance Monitor ing Counters

All state-of-the-art high performance microprocessors including Intel's Pentium III and Pentium 4, IBM's
POWER 3 and POWER 4 processors, AMD's Athlon, Compaq's Alpha, and Sun's UltraSPARC processors
incorporate on-chip performance monitoring counters which can be used to understand the performance of
these microprocessors while they run complex, real-world workloads. Studies to understand workloads
used to use simulators and simulator based program profilers but they often could not execute complex
workloads. The inability to run complete workloads including their operating system component used to be
a major limitation. Now, complex run time systems involving multiple software applications can be
evaluated and monitored very closely. All microprocessor vendors nowadays release information on their
performance monitoring counters.

For illustration of on-chip performance monitoring, let us look at the Intel P6 family processors (Pentium
Pro, Pentium II and III). The microprocessors in the Intel P6 family contain two performance monitoring
counters. These counters can be read with special instructions (eg: RDPMC) on the processor. The counters
can be configured to measure user and kernel activity in combination or in isolation. A variety of
performance events can be measured using the counters [1]. For illustration of the nature of the events that
can be measured, Table 1 lists a small subset of the events that can be measured on the Pentium III. While
more than 200 distinct events can be measured on the Pentium III, only 2 events can be measured
simultaneously. For design simplicity, most microprocessors limit the number of events that can be
simultaneously measured to a small number. Table 2 lists the number of performance monitoring counters
on several processors. At times, certain events are restricted to be accessible only through a particular
counter. These steps are necessary to reduce the overhead associated with on-chip performance
monitoring. Performance counters do consume on-chip real estate. Unless carefully implemented, they can
detrimentally affect the processor cycle time.

Table 1. Examples of events that can be measured using per formance monitor ing counters
 on an Intel Pentium I I I processor

EVENT Description of Event Event Number in
Hex

DATA_MEM_REFS All loads and stores from/to memory 43H
DCU_LINES_IN Total lines allocated in the data cache unit 45H
IFU_IFETCH Number of instruction fetches (cacheable and

uncacheable)
80H

IFU_IFETCH_MISS Number of instruction fetch misses 81H
ITLB_MISS Number of Instruction TLB misses 85H
IFU_MEM_STALL Number of cycles instruction fetch is stalled for

any reason
86H

L2_IFETCH Number of L2 instruction fetches 28H
L2_LD Number of L2 data loads 29H
L2_ST Number of L2 data stores 2AH
L2_LINES_IN Number of lines allocated in the L2 24H

L2_RQSTS Total number of L2 requests 2EH
INST_RETIRED Number of instructions retired C0H
UOPS_RETIRED Number of micro-operations retired C2H
INST_DECODED Number of instructions decoded D0H
RESOURCE_STALLS Number of cycles in which there is a resource

related stall
A2H

MMX_INSTR_EXEC Number of MMX Instructions Executed B0H
BR_INST_RETIRED Number of branch instructions retired C4H
BR_MISS_PRED_RETIRED Number of mispredicted branches retired C5H

BR_TAKEN_RETIRED Number of taken branches retired C9H

BR_INST_DECODED Number of branch instructions decoded E0H

 24

BTB_MISSES

Number of branches for which BTB did not
predict

E2H

Table 2. Number of Per formance Monitor ing Counters on Microprocessors
Microprocessor Number

of
Counters

Intel Pentium II/III 2
Pentium 4 18
IBM Power3-II, IBM RS64-III 8
AMD Athlon 4
Compaq Alpha 21164 3
Compaq Alpha 21264 2
MIPS R10000 2
MIPS R12000 4
UltraSPARC I, II, III 2

There are several tools available to measure performance using performance monitoring counters. Table 3
lists some of the available tools. Intel's VTune software may be used to perform measurements using the
Intel processor performance counters [2]. The P6Perf utility is a plug in for Windows NT performance
monitoring [3]. The Compaq DIGITAL Continuous Profiling Infrastructure (DCPI) is a very powerful tool
to profile programs on the Alpha processors [4,5]. The performance monitor perf-mon uses the on-chip
counters on UltraSPARC-I/II processors to gather statistics [6]. Packages like VTune perform extensive
post-processing and present data in graphical forms. However, some times, extensive post-processing can
result in tools that are somewhat invasive. PMON [7] is a counter reading software developed at the
Laboratory for Computer Architecture at the University of Texas. It provides a mechanism to read specified
counters with minimal or no perceivable overhead. All these tools measure user and operating system
activity. Since everything on a processor is counted, effort should be made to have minimal or no other
undesired process running during experimentation. This type of performance measurement can be done on
binaries, and no source code is needed.

Table 3. Example software packages for per formance counter measurement
Tool Platform Reference
VTune IA-32 http://developer.intel.com/software/products/vtune/vtune60/vtune_oview.

htm.
P6Perf IA-32 http://developer.intel.com/vtune/p6perf/index.htm
PMON IA-32 http://www.ece.utexas.edu/projects/ece/lca/pmon
DCPI Alpha http://www.research.digital.com/SRC/dcpi/

http://www.research.compaq.com/SRC/dcpi/
Perf-mon UltraSPARC http://www.sics.se/~mch/perf-monitor/index.html

References:
[1] D. Bhandarkar and J. Ding, “Performance Characterization of the Pentium Pro Processor”, Proceedings
of the 3rd High Performance Computer Architecture (HPCA) Symposium, 1997, pp. 288-297.

[2] Vtune profiling software,
http://developer.intel.com/software/products/vtune/vtune60/vtune_oview.htm.

[3] P6perf utility, http://developer.intel.com/vtune/p6perf/index.htm
[4] DCPI Tool home page, http://www.research.compaq.com/SRC/dcpi/

[5] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos, “Profile Me: Hardware Support
for Instruction Level Profiling on Out of Order Processors” , Proceedings of the 1997 International
Symposium on Microarchitecture (MICRO-30), 1997, pp. 292-302.

[6] Perf-monitor for UltraSparc, http://www.sics.se/~mch/perf-monitor/index.html
[7] PMON http://www.ece.utexas.edu/projects/ece/lca/pmon

 25

Sidebar 4

L inear Regression
Given a set of related measures, the term "regression" is used to characterize the manner in which
one of the measures changes as the other measures change. Thus one estimates or predicts one
variable as a function of several other variables. The estimated variable is called the response
var iable, and the variables used to predict the response are called predictor var iables,
predictors, or factors. In order to construct a regression model, the information on response
variables and predictor variables are obtained from a sample of objects, events, or individuals.
Although regression techniques can be used to develop a variety of linear and nonlinear models,
their most common use in linear models. Such models are called linear regression models. A
simple linear regression model has only one predictor variable as in

xbby 10ˆ +=

where x is the predictor variable, y is the response variable, and the parameters b0 and b1 are fixed
regression parameters to be determined from the data. Given n observation pairs { (x1, y1), … ,
(xn, yn)} , the estimated response iŷ for the ith observation is

ii xbby 10ˆ +=

The error between the predicted value and the actual value for the ith observation is

iii yye ˆ−=

If one sums up the errors to find the goodness of the regression, positive and negative errors can
cancel each other yielding a deceiving metric. Hence goodness is judged based on a Least
Squares Criterion, the Sum of Squared Errors (SSE) given by

��

==
−−=

n

i
ii

n

i
i xbbye

1

2
10

1

2)(

with the constraint that the mean error is zero.

The regression parameters that produce minimum error can be calculated as

�

�

=

=

−

−
= n

i
i

n

i
ii

xnx

yxnyx
b

1

22

1
1

)(
 xbyb 10 −=

where x is the mean of the predictor variable and y is the mean response.

If there was no regression model and one used the mean value of y as the estimated value for all
values of the predictor variable, then the sum of squared errors would be

�

=
−

n

i
i yy

1

2)(,

 which is defined as Total Sum of Squares (SST).

The difference between SST (no regression) and SSE (with regression) is called SSR or the sum
of squares explained by regression. Thus SSR indicates the variation that can be explained by the
regression, and SST is the total variation. SSE indicates the variation that cannot be explained by
the regression.

 26

The fraction of the variation that is explained by the regression determines the goodness of the
regression and is called the coefficient of determination, R2:

SST

SSE

SST

SSESST

SST

SSR
R −=−== 12

A perfect regression model has a value of 1 for R2.

The basic idea of simple linear regression can be extended to multiple linear regression model,
in which more than one predictor variable is used. When doing multiple linear regression, a
predictor variable that has linear dependence on other predictor variables should not be used.
Otherwise, various significance tests may show contradictory results, known as the problem of
multicollinear ity. For a detailed treatment of regression models, the reader is referred to [1].

Reference:

[1] Raj Jain, The Art of Computer Systems Performance Analysis, John Wiley & Sons, Inc. 1991

 27

Sidebar 5 – TPC Benchmarks
We can write a Sidebar on TPC Benchmarks if no other article is describing TPC Benchmarks

Glossary:

We can prepare a glossary of terms if required.

