Analyzing and Improving Clustering Based Sampling for
Microprocessor Simulation

Yue Luo, Ajay Joshi, Aashish Phansalkar, Lizy John, and Joydeep Ghosh
{luo, ajoshi, aashish, ljohn, ghosh}@ece.utexas.edu
Department of Electrical and Computer Engineering

University of Texas at Austin

Abstract

The time required to simulate a complete benchmark program usngytle-accurate
model of a microprocessor can be prohibitively high. One of the prdpowthodologies,
representative sampling, addresses this problem by simutatipga group of unique phases in
a program called simulation points. The methodology selects siamufatints by characterizing
each fixed chunk of instructions in the program using a featllezld@asic Block Vector (BBV),
clusters them into groups of similar chunks of instructions, and sleéects a representative
chunk of instructions from each cluster. The accuracy of ¢aisnique is highly dependent on
the choice of the feature, clustering technique, and the distagasurement used for clustering.
Previous research does not completely address all these aspects.

In this paper, we propose a set of statistical metriceniking a comprehensive and fair
evaluation of features, clustering algorithms, and distancesurgaents in representative
sampling. These metrics give more insight into the samplindtr&ge use them to evaluate two
different clustering algorithms, three distance measurements,aaneéw micro-architecture
independent feature that we propose for representative sampling.

We compared a k-medoid clustering algorithm, CLARANS, with the popuimeans
algorithm for different distance measurements (projectedidaan, Euclidean, and cosine). Our
results show that for the eight programs we used from tleCSPPU2000 benchmark suite,
CLARANS clustering algorithm results in better quality ¢dus in the feature space as compared
to the k-means algorithm. CLARANS also produces phases that agehamogeneous for CPI.
We propose a new micro-architecture independent data lotalitgd feature, Reuse Distance
Distribution (RDD), for finding phases in programs. We show tmatRDD feature consistently
results in more homogeneous phases than Basic Block Vector (®BYWany SPEC CPU2000

benchmark programs simulated on three different processor configurations.

1. I ntroduction

Cycle-accurate microarchitecture simulation is one of thet nmportant tools in
computer architecture research. However, simulating standachiearks in a cycle-accurate
simulator is often prohibitively time-consuming. For examplES CPU2000 [1] is a widely
used CPU-intensive benchmark suite for evaluating processimgnde Simulating one program
from this suite takes days to weeks in a cycle-accuraidel in SmpleScalar[2], the most
popular simulator today among academic researchers. Quiteresiarchers can only run a few
billion instructions, which may not be representative of ttaa benchmark program and could
result in large errors. Many techniques have been proposectthatersimulation time, while
retaining good accuracy. One class of such techniques takastagly of the phase behavior in
program execution.

It has been well observed that programs show phase behaypbasécan be defined as
a portion of dynamic execution of a program most of the performaat&csisuch as Cycle Per
Instruction (CPI), show very little variance. As per this migfin, parts of a program that are
disjoint in time may belong to the same phase as long as dhey similar values for
performance metrics. Since the performance metrics remable $n a phase, simulating only
one chunk of instructions in the phase can give fairly accesibamation of the performance for
the entire phase. If one chunk of instructions from every phaseléstively simulated, the
simulation time can be greatly reduced with little losssiofiulation information in the whole
program. Since the instruction chunks are carefully seldgotedpresent the execution of the
whole program, we call this type of techniqpbase based representative sampling, or
representative sampling hereafter. Three recently proposed schemes fall into daiegory
[3][4][5]. These techniques estimate sotaeget metric (e.g. CPI, energy per instruction, or
cache miss rate) by taking advantage of the phase behawadeiitify phases, they divide the
dynamic instruction stream into chunks of instructions, and fdn eaunk, measure the feature
that is distinguishable between phases. We refer to suchtaefess aphase classification
feature, or simply afeature as it is often referred to in the data mining community. Thleisfer
analysis is performed to group the chunks into clusters. Easterclcorresponds to a phase
because the chunks in the same cluster exhibit very similaseplfieature. The major
characteristics of the three representative sampling itpeds are summarized in Table 1.
Readers are referred to section 3 for a detailed descripgbanhof the three techniques, SimPoint
[3] is the most popular. SimPoint uses Basic Block Vect®\{Bas the phase classification

feature. BBV is a vector built with frequencies of dynamiecaition of static basic blocks in a

code. Unlike performance counters in SPECIite [4], BBV israoairchitecture-independent.
Thus, the phases identified from BBV are valid acrossreifiemicroarchitecture configurations.
In addition, SimPoint uses only a few chunks of a relativelyelaige (100 million instructions),
which makes it very easy to implement and does not need explicit-w@ Because of its

advantage and popularity, we base our study mainly on the approach of SimPoint

Technique Target Phase Clustering Chunk size
Metric classification algorithm (million
feature instructions)
SimPoint IPC BBV k-means 100
SPECIite 29 Performance k-means 1
Performance | Counter Data
Metrics
Lafage and Data Cache Data Reuse Hierarchical 1
Seznec [5] Miss-Rate Distance

Table 1. Recently proposed phase based representative sampling techniques

Although representative sampling is becoming popular for microprocessatation, the
design space has not been well explored and many questions amastiiivered. This research
addresses some of the important questions. In the next sectidaserée three such problems.
After reviewing the related work in Section 3, we addresb @ these problems in subsequent
sections. Our evaluation methodology is proposed in Sectiobifferent clustering algorithms
and distance measure are evaluated in Section 5. In Sectiop&pese our new phase feature,

RDD, and compare it with BBV. In Section 7, we draw conclusions from this study.

2. Problem Statement

In this section, we describe the problems we address in this pagespecify our
contributions.
2.1 Choiceof clustering algorithms and distance measures

It is well known in the data mining community that no singlestring algorithm is well
suited for all applications. Various algorithms have been pespdsr different applications.

There has been no study to search for the best clusteronittaig for representative sampling. It

! variance SimPoint and Early SimPoint are extersstorthe original SimPoint. These methods use many
small chunks of instructions making it impractieald difficult to use. So, these methods are ngioasilar

as the original SimPoint. In this paper we focus the original SimPoint, but our methodology is
applicable to all representative sampling techrsque

is not known whether the choice of algorithm affects the accwhcjustering. The k-means
clustering method [6] used in SimPoint is simple and fast. However, k-rok&stering performs
well only on clusters that are spherical and have the sananee. Phase classification features
such as BBV are characteristics of benchmark programs. e $oagrams show very regular
execution patterns whereas others show unpredictable behaviounlikisly that the features
from benchmark simulation will satisfy the requirements afidans algorithm. In addition, k-
means algorithm is very sensitive to outliers, which may sévelistort the clustering result.
Hierarchical clustering, used in [5], does not have a provisiorefocating data points that have
been incorrectly grouped at an early stage in the clusteringgwocAnother problem with the
two clustering algorithms lies in finding a data point to regmesa cluster. The representative for
a cluster should correspond to a real data point. In k-meariastarcs represented by the
centroid of the cluster, which is very unlikely to coincide witteal data point. In hierarchical
clustering, there is no inherent representative data pointdioister. We therefore feel that other
clustering techniques could give better quality clusters ang inekelecting a better cluster
representative. In this study, we choose a k-medoid method and catnpitinek-means. Our
reason for choosing this method and the evaluation result is detailedion$ect

All three proposed representative sampling techniques useddé&artlidistance to
measure the dissimilarity of chunks of instructions in tlobiistering analysis. Just like the
choice of the best clustering algorithm, it is well known that no singlandistmeasure is the best
for all types of data. Other distance measures such as the tidantiiatance and cosine distance
have been applied in different applications. However, no previoaaragdshas aimed at finding
the best distance measure for identifying simulation pointshisnpaper, we study a carefully
selected distance measure, the cosine distance and evilduatfectiveness in representative

sampling.

2.2 Evaluation methodology

How to fairly evaluate the effectiveness of new clustemdigprithms, new distance
measures, and new phase features in representative sampliraghisr question that has not been
studied previously. Of course, the final error in targetrim can be used to compare different
approaches. However, as we will show in Section 4 this is rediadle method because chance
can often play a big role in the sampling error. We propose laodwbgy for comprehensive
evaluation by including statistically sound metrics such asdhealized standard deviation, and

we examine them in both the phase classification and targeic mptice. Our methodology,

unlike the final sampling error, can not only enable a favatuation but also provide a deeper

understanding of representative sampling.

2.3 Choice of phase classification feature

The third question we study is what phase classificatiomrfedbd use in representative
sampling. A microarchitecture independent feature, such as BBMVm®dt, is preferable
because it gives the user more confidence that the chgstesult will be correct across different
microarchitectures. A good feature should be strongly codedtl the target metric (e.g. CPI).

For modern microprocessors, the data access latency isf dhe most important factors that

determine the performance. Data access latency is adnmuftidata locality. Therefore, we

focus on microarchitecture independent phase features based docdéitg. In this paper, we
propose a new data locality based phase classification fetitar&euse Distance Distribution

(RDD). We show that it results in more homogeneous phases tharidsByany benchmarks.

More importantly, we show that for these benchmarks, this aalyanholds on different

microarchitecture configurations.

The contribution of the paper is three-fold:

1. We propose a systematic method to fairly evaluate new mhgsedgorithms, new distance
measures, and a new phase classification features for epf@ge sampling. Our
methodology also helps the user to gain better understanding of the sampling method.

2. We investigate the effectiveness of using different etig} algorithms and different
distance metrics. We show that the effectiveness varteebe the phase feature space and
the target metric (CPI) space.

3. We propose a new microarchitecture-independent data locakiyd bReuse Distance
Distribution for identifying phases in a program. We show tbat set of benchmarks it

consistently produces more homogenous phases than BBV.

3. Related Work

In this section, we survey recently proposed research usingratgsbased sampling of
intervals to reduce simulation time of benchmarks.
Sherwood et.al. [15] proposed a methodology called Basic Blog¢ktdison Analysis to
find a single simulation point in benchmarks. Basic block is aeseguof instructions in a
program with a single entry point, single exit point, and no intdsrenches. Basic Block
Vector (BBV) is a vector of length equal to the number ofstadisic blocks in the code. Each

interval (a chunk of 100 million dynamic instructions in sequenceh#&acterized by a BBV

with each element of the vector showing the frequency of ocmeref a particular static basic
block. A BBV is derived for the whole program, called the taBBY, and each entry in the

BBV is normalized to total basic blocks, so that sum oftedlentries in a BBV is one. Similarly,

BBVs are derived for each interval of 100 million instructiansl then compared with the target
BBV. The comparison is directly made by subtracting one BBV filwrother and adding up the
absolute values of the difference of each element. The numbebdiesen 0 and 2. The

difference of 0 indicates perfect match and 2 indicatesrfeg miss-match. A single simulation
point is selected by finding the interval with the lowest difference.

Sherwood et.al [3] proposed tif@mPoint methodology. In this method, instead of
selecting one simulation point to represent the whole program [h&Y $elect multiple
simulation points to cover all possible phases in the program.cgitédso uses BBV for phase
classification. BBV is usually high dimensional (thousands to hdisdréthousands), and hence
random projection is performed on the data to reduce the dimehtsido 15 before using k-
means clustering to form interval clusters with similarM8BThe clustering algorithm forms
clusters for different values of k and picks the best smiutdetermined by BIC (Bayes
Information Criterion) [16][17]. The simulation point that is @esto the centroid of a cluster is
selected as the cluster representative. The clugiegsentatives (intervals) together form the
simulation points of the programs. After selecting the simulagiomts, the CPI of whole
program can be calculated as a weighted average of CPkVatue each of the representative
intervals weighted by the cluster size.

. Perelman et.al [14] proposed a method, Early SimPoint, teefingl simulation points
to reduce the time required for fast-forwarding where check-poirgtingt possible. This method
tries to find simulation points early in the program’s executigthamt compromising the
accuracy. Perelman et.al [14] also proposed Variance SintBaise statistical analysis to guide
the choice of number of clusters for a user specified confideter/al and probabilistic error
bound for CPI. Although Variance SimPoint improves accuracymbi® difficult to use. One
of the main issues is that it uses a sample size of fomilistructions and assumes a perfect
warm-up, which is impractical.

Lau et.al [7] explored various other microarchitecture-indepanidatures (structures)
that can be used for phase classification with SimPoint. They aisedighted average of
Coefficient of Variation (CoV) of all clusters in each ph&seompare these structures. This is
similar to our NS metric. They experiment with various fezduthat profile memory strides for

phase classification. They conclude that BBV is more accthratethe memory stride profiles.

All these metrics are based on the memory access signdiutesinlike our RDD feature, are
weakly correlated to data locality.

Lafage and Seznec [5] proposed an approach to select reptiesenlices of program
execution based on a microarchitecture-independent feature distesee expressed in terms of
instructions executed between two accesses to the same sadihey used hierarchical
clustering to classify program slices of 1 million instrmes. Their results show an average
relative error of 1.52% in data cache miss-rate for the SPEC95 suite

Todi [4] proposes a method for selecting and executing représentatervals, for
SPEC2000 benchmarks, which reduces the simulation time and mairttairscduracy of
simulated result. The approach in this methodology is based owtewi@erformance metrics
using the performance monitoring counters for every interval wiillion instructions and then
using clustering to find representative intervals for phaBles main drawback of this technique
is that since the measured phase classification featurdsraaeparticular machine, the clusters

may not be valid for other microarchitecture configurations.

4, Evaluation M ethodol ogy

We need a good methodology to compare various representative sataphingues.
The error in the sampled simulation is the final result thatppabably cares most. However, it
is the result of several factors lumped together, and provitlies insight into the relative
advantages and disadvantages of each technique. Moreover, bibeaesmr is the result of
several factors that may exhibit different trends, thierezurves cross each other and make it
difficult to compare different techniques. Therefore, we aislg final error as one of the metrics
in our evaluation methodology. We will discuss this in detailnive examine the sampling
error in this section.

In order to design a comprehensive and fair evaluation methodolagyneed to
understand the rationale of representative sampling, and diseediffdrent factors that affect
the quality of the result. Representative sampling statitsselecting and measuring the phase
classification feature and performing cluster analysis basetl ofhis is done entirely in the
phase feature space. We expect the instruction chunks insidelesteh t be similar to each
other. Since the distance between two phase feature vallegg¢fie dissimilarity between two
chunks of instructions, it is desirable that the data pointimihe same cluster be very close to
each other. A better clustering algorithm will result in moohesive clusters in the phase
classification feature space. Nevertheless, we also warddamaous phases in the target metric

space. If the phase feature is strongly correlated tivéltarget metric, then a cohesive cluster

will map to a homogeneous phase. On the other hand, if the cométatveak, then the phases
will not be homogenous despite the better cohesiveness in the pdessfication feature space

(from using a better clustering algorithm). The accurachefsampling result is also impacted
by the choice of the data point to represent a phase. Usualig fomogeneity in a phase is
improved, then randomly selecting any data point to represerghge should result in smaller
error. However, as in SimPoint, the representative data igot selected randomly. Instead,
the one closest to the center of the cluster in the phase classifiesstture space is selected. It is
possible that, even though the target metric in the phase is not éiloaoog, the data point

picked happens to exhibit a target metric value equal to the meean aetric value of the phase,

resulting in zero error.

Therefore, our evaluation methodology consists of three components featbee and
target metric space. First, we examine the cohesivasfeslsisters in the phase classification
feature space. Then, we measure the homogeneity of target metric in esechlpdstly, we look
at the final sampling error. The last two metrics aréhétarget metric space. Another difficulty
in representative sampling is how to determine the optimaiber of clusters/phases - an open
problem in data mining research. In representative samplinggtimal number of clusters
usually depends on an optimization criterion e.g. BIC score theesiseld in SimPoint. In this
study, we present results for all cluster numbers between Z0anehich covers the range of the
number of clusters used in SimPoint.

In the phase feature space, the cohesiveness of clusters weasred by the Average

Distance (AD) from each data point to the representative data pairé ofuster it belongs to.

AD =" distance(x,c)/n,

wherex is a data point and is the representative data point for the clusterteiongs to and
is total number of data points. This metric can be used to cerdgéerent clustering algorithms
with the same phase classification feature and the sata@absmeasure. We want the program
behavior in each phase to be as homogeneous as possible. A etidmalwill give tighter
clusters and thus a smaller average distance.

We use the Normalized Standard Deviation (NS) metric, eldfas follows, to evaluate

the homogeneity of phases in the target metric space.

NS = /(le:% >)/S,

wheren,; is the size of clustér § is the standard deviation of the target metric in clusteis the

total number of data points, aBds the standard deviation of the target metric for at gaints.

NS reflects the tightness of the cluster in the targdtienspace. The lower the normalized
standard deviation, the more homogeneous the phases are. NS risndetdry the quality of
clustering in the phase classification feature space dsawdby the correlation between the
feature and the target metric. Since the calculation cbNginvolves target metric, it can be
used to compare different clustering algorithms, different distareasures, and different phase
features.

Lau et. al. used weighted average of Coefficient of WangCOV) to evaluate different
phase classification features [7]. The average COV is siildS. One major difference is that
in NS the denominator is the total standard deviation while in @@/the mean target metric
value. Average COV can also be used to measure the homogeneity of phdd8sphssess one
advantage: it also reflects the benefit of stratified semgplStratified sampling is a sampling
method well studied in statistical sampling theory. It hasstime rationale as the representative
sampling discussed above. In stratified sampling, the populatidivided into homogeneous
groups calledstrata, which corresponds to our term phases or clusters. Unlike in the
representative sampling where the data point closest t@tierds selected, multiple data points
are randomly sampled from each stratunin proportional stratified sampling, the number of
data points sampled in each stratum is proportional to the total nwhluata points in the
stratum. The accuracy of a sample design is measured byrtheceaof its sample mean. A
more complex sampling design is often compared to the simple raratoplirsy, where data
points are just randomly picked from the whole population. ddsign effect (deff) of a
sampling plan is the ratio of the variance of the estinoétained from the (more complex)
sample to the variance of the estimate obtained from a siampd@m sample of the same number
of data points. It measures the benefit of using more complexeaegibns. From [8] it can be
shown that

NS? =Vyraitiea |V = deff g, ifiea -

random
where Vgraified iS the variance of sample means in proportional stratiietpbng, andV,angom IS

the variance in simple random sampling. Therefore, NS shows usnoctv we have gained
compared to simple random sampling, or how much variance we have reduced by takitig the e
effort to cluster. If NS is close 1, then the target metric in each clastsrvaried as in the whole
benchmark. It is similar to randomly grouping data points intotelssand not achieving any

reduction in variance within a phase. We will get similaugacy just by random sampling. On

2 Stratified sampling has the advantage that itgyveonfidence interval after the sampling to cjfatie
accuracy of the result. It is not used in represere sampling mainly because it requires far namnenks
of instructions to be simulated.

the other hand, if NS is close to 0, then the target metm@ins almost constant in each phase
and our result will be much more accurate than simple random sampling.

We also examine the final Relative Error (RE) in tamgetric compared to full cycle-
accurate simulation, which is defined as,

Sl
RE:ZFM—V‘/Y/,

i=1

wherey; is the target metric of the representative data poialuisteri. Y is the true target metric

of the benchmark. The relative error is determined not loplthe quality of the clustering and
the correlation between the feature and target metrialbatby how close the target metric for
the representative data point is to the mean target noé@icluster. It is the final metric that the
user cares about. However, unlike NS, which is calculated flom data points, the relative
error is affected by onlk representative data points. Sireen, it is far less stable than NS.
Consider, for exampleyzip2-source from SPEC CPU2000 benchmark suite. Figure 1b shows
NS in CPI for two distance measures, Euclidean distance rauithom projection and cosine
distance. As expected, when we divide the data points into maseterd, the overall
homogeneity improves. In contrast, Figure 1a shows the reltiwefor CPI of the simulation
using representative sampling. The error curve does not ladeardarend. Sometimes the error
even goes up significantly with more clusters, which is clearly not expeattthia indicates the
unreliability of the error metric. In addition, projected Hadedn distance gives more
homogeneous phases for all cluster numbers between 4 and 10. Hoeswkifor the relative
error is much more “messy”. The curves cross each other sorradithe two distance measures
consistently gives smaller error, which makes comparisgndifficult. To show the usefulness
of the NS metric, the relative error of using stratifiachpling is shown in Figure 1c. The result
is the average of 2000 repetition of the experiment. In eachigrer a total of 200 chunks are
selected. It is clear that the error in stratified samgpfollows the NS and the projected
Euclidean distance shows smaller errors; just as we would éxpexrted from its better NS
result. Based on the above analysis, we use NS as ouewadiration metric in the space of the
target metric.

All three metrics (AD, NS, and RE) are needed to evaluakpiesentative sampling
technique, and every metric provides a different insight. dmipg one metric may not
automatically make other metrics better. Suppose, we useéea tlestering algorithm and get
smaller average distances, but NS does not improve, then weikitotecause the correlation
between the phase classification feature and the targat msetrot strong enough. We need to

search for a better phase classification feature. If wengee homogeneous CPI in each phase

10

(i.e. smaller NS) but the final error remains large, thdndicates that the error introduced by
picking the central data point dwarfs our improvement in homogenHitgnger simulation time

is affordable, then one can also resort to classic stratified isempl

representative sampling normalized standard deviation
3.5% 0.6
3.0% /,/A\ 05 ™
S 25% \ 04 '\\'.\.\"-_
2 . '\-\-
5 2.0%] T
o 0.3
2 1.5% %//
© 0.2
o 1.0% -
05% - 0.1
0.0% ! 0.0 T T T T T
4 5 6 7 8 9 10
4 5 nu?nber 07f clustgrs ° 10 number of clusters
‘+ kmeans.projected_euclidean —=— kmeans.cosine‘ ‘+ kmeans .projected_euclidean —=— kmeans.cosine ‘
(a) Normalized standard deviation for CPI (b) Relative error in CPI for representative
sampling

stratified sampling
2.0%

1.8%

1.6% N
g 12 M ———
] 1.0% —
5 08%
T 0.6%

0.4%

0.2% -

0.0%

4 5 6 YA 8 9 10

number of clusters

‘ —e— kmeans.projected_euclidean —=— kmeans.cosine ‘

(c) Relative error in CPI for proportional stratified sampling

Figure 1. Comparing projected Euclidean distance with cosine distance for bzip2-source.

5. Evaluation and analysis of clustered sampling using BBV

51 Comparing clustering algorithms and distance measur es

Although k-means clustering algorithm is popular in represestatampling, it has
serious limitations, as discussed in Section 2.1. There hdseantany study on how different
clustering algorithms affect the quality of representatarming. Therefore, we would like to
evaluate a different algorithm against the k-means algoritiivie choose k-medoid method [4]

because it overcomes the limitations of k-means. Fitsttgedoid methods are less strict about

11

the distribution of the data points and are robust to the existenoetlwrs. Secondly, in k-
medoid methods, the medoid, which is a real data point, naturally represetitstoe

There are several k-medoid methods such as Partitioning AroundidvigtaM) and
Clustering LARge Applications (CLARA) [9]. The problem with thasethods is that they have
a high computational requirement. The time complexity for PAI®(I{n-k)%), wherek is the
number of clusters and is the number of data points. CLARA algorithm exhibits a time
complexity ofO(k(40+K)*+k(n-k)). We choose to use CLARANS (Clustering Large Applications
based on RANdomized Search) algorithm, proposed by Ng and Han [10][t&aljSeeof its
lower computation cost, which is basically linearly proportional to the nuoflgata points.

CLARANS algorithm can be viewed as a search through a déaphwheren is the
number of data points akds the number of clusters. In this graph, a node is represented by a set
of k data points Qny, Onp, ... On}. Each data point is a selected medoid. Gooeedoids have
been determined the remaining nodes can be assigned to the med@dhbatlosest. Thus a
node in the graph (i.e. a set of medoids) corresponds to a clustetutgpn. Two nodes are
neighbors (i.e. connected by an arc) if their sets differ by only data point. CLARANS
searches the graph neighbor by neighbor for a node with minimum Eash node hagn-k)
neighbors. Examining ak(n-k) neighbors of a node is time consuming wheamdk are large.
To limit the cost of searching, CLARANS limits the maximaomber of neighbors examined to
a user specified parametemxneighbor. CLARANS algorithm proceeds as follows.

1. Input parametersumlocal and maxneighbor. Initialize i to 1, andmincost to a large

number.

Setcurrent to an arbitrary node iG,.

Setj to 1.

Consider a random neighbBrof current, and calculate the cost differential of the two

nodes.

If Shas a lower cost, setirrent to S and go to Step (3).

Otherwise, incrementy 1. Ifj <= maxneighbor, go to Step (4).

Otherwise, when > maxneighbor, compare the cost afurrent with mincost. If the

former is less thamincost, setmincost to the cost of current, and $estnode to current.

8. Increment by 1. Ifi >numlocal, outputbestnode and halt. Otherwise, go to Step (2).

In all three representative sampling techniques we revielgdidean distance between

the phase classification features is used to measure the idiggmbetween the chunks of

instructions. It is well known that no single distance measuthesbest for all clustering

12

applications. Other distance measurements such as the Mantistance and cosine distance
have been applied to different applications.

In this study the cosine distance is of special intertishas been successfully used in
automatically clustering documents into different topics. uUDments are often represented as
vectors, where each element is the frequency with whigbarsicular term occurs in the
document. If we compare BBV with a text document vector, weseantheir similarity. An
element in BBV is the number of times a specific statgidblock is executed, which is similar
to the number of times a specific word occurs in a documentddition, both are very high
dimension vectors (thousands to more than a hundred thousand dimend&ecsuse of the
similarity between BBV and the document vector, and the success ¢ clisiance in document
clustering, it is very interesting to see whether cosiggadce can be applied to representative

sampling. Ifp andq are two vectors, then cosine distance is defined as

cosine_distance(p, g)=1-

peq
| ol

where ¢ indicates vector dot product, arﬂ@” is the length of vectop. Because the result is

divided by the norm of the vectors, the cosine distance is r@afigasure of the angle betwgen
andg. If the angle is Q then the two vectors are the same except for the magnifidecosine
distance will be 0, which is the minimum value. If the angl@dfs then the two vectors do not
share any elements. In other words, the code in the two chunkstafctions are complete
different because they do not share any basic blocks. In g@stb@& cosine distance reaches the

maximum value of 1.

5.2 Experiment Setup

We use 8 programs with the reference data set from tB€ SFPU2000 benchmark
suite. The programs and the number of instructions are listecble Za Following SimPaoint,
we divide the instruction stream of each program into interdad®® million instructions. In all
our experiments we use CPl as the target metric becausetlite most commonly used
performance metric. To evaluate the result in the targeespacsimulate all 8 benchmarks in

sim-outorder [2] to collect CPI for each chunk.

13

Benchmark- | Number of instructions
Input Pair (million)

art-110 41,798
bz p2-source 108,878
equake 131,518
gcc-166 46,917
lucas 142,398
mcf 61,867
vortex-1 118,976
vpr-route 84,068

Table 2. Number of instructions and simulation time of selected SPEC CPU 2000 benchmarks

with reference data set. The data set name is appended to the benchmark name.

Pipeline
Issue Width 8 instructions/cycle
Decode Width 8 instructions/cycle
Register Update Unit 128 entries
Load-Store Queue 32 entries
Commit Width 8 instructions/cycle
Cache Hierarchy
L1 Data 16KB; 4-way assoc., 32B lines, 2-cycle hit
L1 Instruction 8KB; 2-way assoc., 32B lines, 2-cycle hit
L2 Unified 1MB; 4-way assoc., 64B lines, 20-cycle hit
Memory Access Latency 151 cycles
Combined Branch Predictor
Bimodal 8192 entrieg
PAg 8192 entrieg
Return Address Stack 64 entries
Branch Target Buffer 2048 entries; 4-way assog.
Misprediction Latency 14 cycles

Table 3. Processor Configuration

The processor configuration used in the simulation is shownhleTa The same configuration
has been used in study on cache warm-up [12] and in validat@mBbint [13]. K-means and
CLARANS clustering algorithms were each evaluated usingegi®j Euclidean and cosine
distance measures. Because clustering algorithms are flessive at high dimensional
Euclidean space, the dimensionality of BBV is reduced to 15 thrarglom projection just as in

SimPoint. Thus it is given the name “projected Euclidean distance”.

The number of clusters evaluated is from 4 to 10, which covers aohaké range of
number of clusters used in SimPoint. Both k-means and CLARANSgmwaydifferent result

with different random seeds. In k-means, a random seed isashddse the initial centroids

14

while in CLARANS a random seed controls the random search. Theref@ run each

experiment 5 times with different random seeds and the data shown belevaietage result.

5.3 Experiment result

Following the evaluation methodology proposed in Section 4, we fisdt@e the two
clustering algorithms in the BBV space. Figure 2 comparesvdrage distance of k-means and
CLARANS algorithms for project Euclidean distance. The grdph<osine distance are in
Appendix A. Since average distance metric cannot be compared betweserdiifistances, the
result for projected Euclidean distance and cosine distare@rawn separately. CLARANS
clearly produces tighter clusters than k-means in most cdsessome benchmarks, such as
equake andgcc-166 the reduction in average distance is significant. At 10 ckydier projected
Euclidean distance, CLARANS reduces the distance by over 50%e for cosine distance the

reduction is almost 90%.

art-110 bzip2-source
0.0007 0.26
0.24
0.0006 {— =~ ~
\’\.\ 0.22 1—=.
0.0005 02
@Q .
8 BN \'\ 4
0.0004
& g 0184
2 0.0003 -\-\ \ S 0.16
0.0002 ~_ o 0.14 =~
0.0001 T 0.12
[o} T T T T T T 0.1
4 5 6 7 8 9 10 4 5 6 7 8 9 10
clusters clusters
—e— kmeans.cosine —=— clarans.cosine —e— kmeans.projected_euclidean —s— clarans.projected_euclidean
equake gcc-166
0.05 .\ 0.4
0.045 \/\ 0.35
0.04 0.3 :\
g 0035 +—= g 025 T
o] M—\
T 0.025 \‘\ S o015 ——
0.02 _\‘\ 01 — =
0.015 — 0.05
0.01 - - - - - - o
4 5 6 7 8 9 10 4 5 6 7 8 9 10
clusters clusters
—e— kmeans.projected_euclidean —s— clarans.projected_euclidean —e— kmeans.projected_euclidean —s— clarans.projected_euclidean
mcf lucas
0.18 1
0.95 AN
0.16 -, 0.9 =
\
0.14 0.85 5
8 ~_ 8 0.8
g o012 g ors
_‘g \-\\:\ u 07 S~
0.1 _\\‘k\‘\ 0.65 \’.\\\.\
0.6
0.08 e
. 0.55 -\‘\‘:
0.06 0.5
4 5 6 7 8 9 10 4 5 6 7 8 9 10
clusters clusters
—e— kmeans.projected_euclidean —&— clarans.projected_euclidean —e— kmeans.projected_euclidean —=— clarans projected_euclidean |

15

vortex-1 vpr-route

0.06 0.075
0.07 P
0.05
\ 0.065
0.04 o \
8 _-s:\‘\ g oos
& o003 g \\
h -\'\\:% 5 0058
S El \-\,\\
0.02 0.05 \
0.01 0.045 —
0o T T T T T T 0.04 T T T
4 5 6 7 8 9 10 a 5 6 7 8 9 10

clusters clusters

—&— kmeans .projected_euclidean —#— clarans.projected_euclidean —e— kmeans .projected_euclidean —m— clarans.projected_euclidean

Figure 2. Average distance for different clustering algorithms and distance measures.

We then examine the normalized standard deviation, which isnshiowigure 3. The
NS shows a downward trend. Therefore, as we increase the nahgimases, the CPI in each
phase shows lesser variance. Because CLARANS has imptevedadlity of the clusters in the
BBV space, it is expected that it will produce more homogeneousephhsn k-means.
However, this is not always true. The curves for CLARAMSE k-means sometimes cross each
other. For example, for benchmddcas, CLARANS shows an advantage over k-means in the
projected Euclidean space for all number of clusters. But, fonalimed standard deviation, the
picture is mixed. The two curves cross each other twice. CLARANS & fat4 and 5 clusters
but k-means wins for 6, 7 and 8 clusters. CLARANS overcomesaksnagain at 9 clusters and
they finally tie at 10 clusters. This type of behavior indic#tes the correlation between BBV
and CPI is not strong enough for the reduction in distance in thé dpAce to translate into
better homogeneity in CPI for each phase. Nevertheless, CN&Ralgorithm produces more
homogeneous CPI phases in most cases. Table 5 shows thengualgoirithm and distance
measure with the overall lowest normalized standard dewriatin 5 (or 6) out of 8 benchmarks,
CLARANS is better than k-means. The cosine distance we experimented whib, aher hand,
does not seem to perform better than the projected Euclidean distance. (gpaimeeds the best
for only vortex-1.

Normalized Stdev (bzip2-source) 0.29 Normalized Stdev (art-110)

0.65

06 027
0.55 0.25

05 %‘\ 0.23 R
0.45 \‘\ 0.21

04 0.19 \

—=

0.35 0.17
0.3 T T T T T T 0.15 T T T T T T
4 5 6 7 8 9 10 4 5 6 7 8 9 10
number of clusters number of clusters
—e— kmeans.projected_euclidean kmeans.cosine ‘ —e— kmeans.projected_euclidean kmeans.cosine ‘

—x— clarans.projected_euclidean —+— clarans.cosine —%— clarans.projected_euclidean —+— clarans.cosine

16

Normalized Stdev (equake)

Normalized Stdev (gcc-166)

0.35 0.9
0.3 0.85 -
0.25 \v/\ 0.8 |
0.2 . 0.75 N
. \\ — o — \—»\\
0.15 s i N(—‘\
—_ 0.65 ~ Q’
0.1
N 0.6
0.05 055
0 T T T T T T 0.5 T T T T T ————%
4 5 6 7 8 9 10 4 5 6 7 8 9 10

number of clusters

—e— kmeans.projected_euclidean kmeans.cosine

—x— clarans.projected_euclidean —+— clarans.cosine

Normalized Stdev (lucas)

—e—kmeans.projected_euclidean kmeans.cosine

—x— clarans.projected_euclidean —+— clarans.cosine

0.93

001 075 Normalized Stdev (mcf)
0.89 L\\ o7«

085 e 065

0.83 il S—
081 \‘\;\‘k
0.79 S

0.77 ~
075 045
4 5 6 7 8 9 10 4 5 6 7 8 9 10
number of clusters number of clusters
—e— kmeans.projected_euclidean kmeans.cosine —e— kmeans.projected_euclidean kmeans.cosine
—x— clarans.projected_euclidean —+— clarans.cosine —x— clarans.projected_euclidean —+— clarans.cosine
04 Normalized Stdev (vortex-1) 00 Normalized Stdev (vpr-route)
—
0.35 N 0.85 \‘.—\\
0.8 LS —
0.3
\ \ 0.75 4
0.25
\ 071
-
02 e 0.65 |
0.15 0.6 T T T T T T
4 5 6 7 8 9 10 4 5 6 7 8 9 10

number of clusters

number of clusters

—e— kmeans.projected_euclidean kmeans.cosine

—x— clarans.projected_euclidean —+— clarans.cosine

—e— kmeans.projected_euclidean kmeans.cosine

—x— clarans.projected_euclidean —+— clarans.cosine

Figure 3. Normalized standard deviation for different clustering algorithms and distance measures

Benchmark Best clustering algorithm and distance measure
art-110 Kmeans with projected Euclidean distance
bizp2-source CLARANS with projected Euclidean dista
equake CLARANS with projected Euclidean distance
gcc-166 CLARANS with projected Euclidean distance
lucas No clear winner
mcf CLARANS with projected Euclidean distance
vortex-1 CLARANS with cosine distance
vpr-route Tie between k-means and CLARANS th
projected Euclidean distance V\'r

Table 4. Best clustering algorithm and distance measure for different benchmarks

17

Figure 4 shows the relative error of representative sampimyg different clustering algorithms

and distance metrics. Since the normalized standard deviation dea®as@® phases are

6.0% Error (bzip2-source)

| R

0.0%

number of clusters

—=— kmeans.projected_euclidean kmeans.cosine

—-~— clarans.cosine

—e— clarans.projected_euclidean

Error (equake)

number of clusters

—=— kmeans.projected_euclidean kmeans.cosine

——clarans.cosine

—e— clarans.projected_euclidean

Error (mcf)

17.0%
15.0% LS
13.0% \\
- \S(\ \\
9.0% /
.
N~—
7.0%
5.0%
4 5 6 7 8 9 10
number of clusters
—=— kmeans.projected_euclidean kmeans.cosine
—e— clarans.projected_euclidean ——clarans.cosine
Error (vpr-route;
14.0% wp)
12.0%
10.0%
80% r////\
6.0% ' \/
4.0% \
\\ —
—
20% ~ =
0.0%
4 5 6 7 8 9 10

number of clusters

—=—kmeans.projected_euclidean kmeans.cosine

—e—clarans.projected_euclidean —=—clarans.cosine

0.40% Error (art-110)

0.35%

0.30% \
-\

0.25%

0.20% j i kN

0.15% \

//.\ /I
0.10% \é

0.05%

0.00%

number of clusters

—=— kmeans.projected_euclidean kmeans.cosine

—e—clarans.projected_euclidean —-— clarans.cosine

200% Error (gcc-166)

25.0%

20.0%

150% /\\
10.0% e B — R

number of clusters

—s— kmeans.projected_euclidean kmeans.cosine

—e— clarans.projected_euclidean ——clarans.cosine

Error (lucas)

N

4 5 6 7 8 9 10

number of clusters

—s—kmeans.projected_euclidean kmeans.cosine

—e—clarans.projected_euclidean —=—clarans.cosine

Error (vortex-1)

0.0%

number of clusters

—=— kmeans.projected_euclidean kmeans.cosine

—e— clarans.projected_euclidean —-—clarans.cosine

Figure 4. Relative error in the CPI from representative sampling for different clustering algorithms

and distance measures.

18

identified, the errors are expected to follow suite. Howebhey do not show a general trend and
vary a lot, crossing each other multiple times. If it is stmes difficult to pinpoint the
algorithm with the best NS, then it is almost impossibledeniify the one with consistently
lowest error. If we only focus on projected Euclidean degatused in SimPoint), then
CLARANS consistently results in smaller error faquake andvortex-1. For the remaining 6
benchmarks, they are comparable.

To conclude, better clustering algorithms such as CLARANS definitely produce
tighter clusters in the BBV space. However, as we are movirgefuatvay from BBV space and
toward the final error, the benefit of better algorithms dirhieésbecause more factors come to
play a role. In occasional cases k-means produces lessoraniatiCPI in the phases, but
CLARANS generally result in more homogeneous CPI phases. Thk dimulation error
depends not only on the homogeneity in the phases, but also on whettatalpoint closest to
the cluster center in BBV space exhibits CPI value equal to tha @Bl of the phase. This adds
more uncertainty to the result and makes it difficult toleata different algorithms with error.
Nevertheless, CLARANS shows smaller error for two benchmamkisgives comparable result

for the rest.

7. Reuse Distance Distribution - A new feature for phase classification

Due to the gap between processor and memory performance, datdateceysis one of
the most important factors that determine program performane®dern day microprocessors.
Data access latency is a function of the inherent lodalitiie data address stream of a program.
Therefore, we feel that a feature based on the data locéldyprogram will be able to find
phases in a program that have similar data locality, anderghmmw similar performance. It is
important that the locality feature should be microarchitecindependent. This increases the
confidence that the phases identified by the feature will Vadid across different
microarchitectures.

BBV feature, used irEimPoint, is based on the intuition that the performance of a
program at a given time is directly related to the code #xecuting at that time. The BBV
feature does not capture the properties of the data localitheopriogram. However, it is
possible that a static section of code in a program has differemory reference patterns at
different points of time in its execution. A feature basethertemporal and spatial data locality
in a program will be able to capture this behavior, and mmarefore perform better than BBV in

finding phases that are more homogeneous.

19

There has been some previous research work to explore the deaig for finding such
a feature based on the data locality of the program. Laal.€f7] extensively examined
different phase features that are based on data acceshadinm local stride (with and without
PC hash), global stride (with and without PC hash), loops wathl ktride, memory working set
size, working set bit vector, and memory access frequentgrgecThey conclude that the BBV
feature is better than the data accesses based featirésely studied. The features used in their
study are related to the access pattern of the data adthesss), but do not directly measure the
data locality. Since data locality impacts program perfoon@athese phase features may not be
a strong enough indicator of the program performance.

Lafage et. al. [5] used average memory reuse distance {&idure for finding phases in
a program that are homogeneous with reference to data cacheatmissWe implemented a
feature similar to RDI to understand whether the phases igenty RDI are also homogeneous
in CPI. For the 8 program-input sets we used from SPEC CPU2000 kkcsunte, we found
that BBV performs significantly better than RDI for finding pea in a program that are

homogeneous with reference to the CPI.

7.1 ReuseDistance Distribution (RDD) Definition
A reuse pair of memory accesses is a pair of addrasshe data memory stream of a program
that map to the same memory line, without any intermediatesses to the same memory line.
A memory line is analogous to a cache block. Reuse distance is the numeenaf/raddresses
that are accessed between the accesses to the two agldrébsaeuse pair. We define the RDD
feature as the relative frequencies of the differense distances of all the reuse pairs in the data
address stream of a program. The reuse distances can hage aumber of unique values
(theoretically ranging from 0O to the total number of data memefigrences made by a program
minus two). Therefore, in order to make the distribution moreyeasinageable, we use a
grouped frequency approach to represent the relative frequenaysef disstances. The width of
each interval in the histogram is exponentially distributed.-aireuse distance ofis classified
into intervalTlog .r 7 (ceiling of natural log of the reuse distance). In genearadal n consists
of reuse distances fronfto €. By definition, a reuse distance of zero is classified mdfitst
interval. We can represent the RDD feature as a vectonweldgiments, where elemant < n) is
the relative frequency of the number of reuse distances for interval

For a given memory line size, the RDD feature charaetetize temporal locality of the
data memory address stream. Information about the spatilifyiafea memory address stream

can also be characterized by measuring the RDD featurerionge of different memory line

20

sizes. The RDD feature is able to discriminate the exetstices from each other based on the
temporal and spatial locality of their data access stream.

The following example is a simple illustration of how the RBature is calculated for
an address stream.

Example:

Consider the following data memory address stream (address, access #):

0x2004 (#1), 0x2022 (#2), 0x300c (#3), 0x2108 (#4), 0x3204(#5), 0x200a (#6), 0x2048 (#7),
0x3108(#8), 0x3002(#9), 0x320c (#10), 0x2040(#11), 0x202f (#12)

For a memory line of 16 bytes, the memory lines to which thddeesses maps is
calculated by masking the least significant 4 bits in the asldresaddresses 0x0000 to 0x000f
will map to memory line 0, 0x0010 to 0x001f will map to memory linetcl €herefore, the
address in the data stream, 0x2004, will map to memory line 0x200, ad@i2322 to 0x202,
etc. The sequence of memory lines accessed by this address stream is:
0x200 (#1), 0x202 (#2), 0x300 (#3), 0x210 (#4), 0x320(#5), 0x200(#6), 0x204(#7), 0x310(#8),
0x300(#9), 0x320(#10), 0x204(#11), 0x202(#12)

Addresses for reference #1 and #6 are different, but they ntap s8ame memory line,
0x200, and therefore form a reuse pair (#1, #6). Similarly, referéheamd #9 map to the same
memory line, 0x300. The list of all the reuse pairs in thenpk@a address stream is (#1, #6), (#2,
#12), (#3, #9), (#5, #10), (#7, #11), For reuse pair (#1, #6), the reuse distémeaisnber of
memory lines accessed between the reference #1 and #6, whidkcisording to the logarithmic
scheme used for classifying reuse distance into intervalsisa distance of 4 is classified into
interval 2 (log ¢ 47). Following is a list of the reuse distances, and theniate they are
classified into for all the reuse pairs in the example addsasam, (reference #, reference #,
reuse distance, interval):

(#1, #6, 4, 2), (#2, #12, 9, 3), (#3,#9, 5, 2), (#5, #10, 4, 2), (#7, #11, 3, 2),

We observe that out of the 5 reuse pairs of memory accessrsedpairs are classified
into the 2% interval, and 1 reuse pair is classified into tffe 3The RDD feature (for n=5
intervals) for the example memory address stream can be epfedy the following vector:
RDD;¢ = <0, 0.8, 0.2, 0, 0> i.e. 80% of the reuse distances are iMtheezval and 20% of the

reuse distances are in tH&iterval.
7.2 Comparing RDD and BBV featuresfor phase classification

As described in section 4, normalized standard deviation isenm@itable and insightful

metric as compared to the final error in CPI for comparing features used for phase

21

classification. We therefore used normalized standard deviatéiric for comparing the RDD
and BBV features. We used the 8 programs listed in Tab&riilar to SmPoint, we divide the
instruction stream of each program into intervals of 100 millistriictions. RDD feature (for
memory line sizes of 16, 64, 256, and 4096 bytes) and the BBV featganeasured for every
interval of 100 million instructions. The different clusteringoaithms and distance measures
that were used for clustering points in the BBV feature spezdisted in Table 4. For clustering
the points in the RDD feature space, we used the CLARANS aneaks clustering algorithm
each with Euclidean and cosine distance measures. To ewlaeatesult in the target metric
space (CPI), we gathered CPI data for the processor conitgudgscribed in Table 2. The
same configuration was used for validatigPoint [3].

In order to make a meaningful comparison between the two featoresery program,
we selected the best (smallest normalized standard deviat©RI) algorithm-distance pair for
the RDD feature, and compared it with the best algorithm-dist@air for the BBV feature.
Figure 5 shows a plot of the best algorithm-distance pair And BBV features for the 8
program-input pairs used in this study.

From these graphs we observe that, irrespective of the numbmustérs, the RDD
feature gives lower normalized standard deviation in CPI thanBBV feature forgcc-166,
lucas, mcf, vpr-route, andart-110 programs. Fogcc-166, the normalized standard deviation for
BBV and RDD features are almost the same if 4 clustersselected. However, for 5 to 7
clusters, the RDD feature shows a smaller normalized standard deviatiompared to the BBV
feature (0.45 for RDD compared to 0.61 for BBV for 5 cluste)r cluster sizes of 9 and 10,
the normalized standard deviation for RDD feature is smdibar BBV feature by 11%. For
lucas, the normalized standard deviation for 4 clusters formed usinBi2 feature is smaller
than the normalized standard deviation from forming 10 clusters ti®n8BV feature. This
shows thatucas significantly benefits from the RDD feature as comparethéoBBV feature.
Forming more than 4 clusters using the BBV feature does goffisantly benefitmcf. The
normalized standard deviation given by the BBV feature for#tolusters is not very different,
showing that the benefit from increasing the number of clugerstivery significant. However,
the normalized standard deviation focf using RDD feature is not only smaller than that of
BBV, but also reduces from 0.45 to 0.33 when the number of clusteespectively increased
from 4 to 10. Fowpr-route, the normalized standard deviation for RDBsignificantly smaller
than BBV for 4 clusters (0.56 for RDD feature compared to 0.8 for)BB%r all other clusters
sizes, the normalized standard deviation for RDD featusealer by at least 24% than that for
the BBV feature. The normalized standard deviatiorafel10 is very small (0.25 for BBV

22

Best Normalized Stdev (bzip2-source) Best Normalized Stdev (art)
06 0.3
% 05 M 5 o5 | e
g - § o2 ——
2 031 3 015
0.2 0.1
0.1 0.05
0 0 T T T T T T
4 5 6 7 8 9 10 4 5 6 7 8 9 10
number of clusters Number of clusters
—e— DL(clarans.cosine) —+— BBV(clarans.projected_euclidean) —e— DL(kmeans.cosine) —+— BBV(kmeans.projected_euclidean)
Best Normalized Stdev (lucas) Best Normalized Stdev (gcc-166)
1 0.8
— [——
- 09 T 0.7
—— \
S 08 — S 06 T~
< —, < T
So7 — g os —
& 0.6 — o™ T—————
305 204
504 203
zo3 5 02
E 02 o1
so01 s
0 T T T T T - 0 T T T T T T
4 5 6 7 8 9 10 4 5 6 7 8 9 10
number of clusters number of clusters
—e— DL(clarans.cosine) —+— BBV(kmeans.cosine) —e— DL(clarans.euclidean) —+— BBV(clarans.projected_euclidean)
Best Normalized Stdev (equake .
(ea) Best Normalized Stdev (vortex-1)
0.18 0.45
z 0.16 £ 041
© 0144 5 J
= © 035
> 012 S 03l
S 01y S 025
3 0.08 3 o2 ~. T
= - I S—
% 005 Zo1s
g 0.04 4 ERER
2002 5005
0 T T T T T T 0 T T T T T T
4 5 6 7 8 9 10 4 5 6 7 8 9 10
number of clusters number of clusters
—e— DL(clarans.euclidean) —+— BBV(clarans.projected_euclidean) —e— DL(clarans.cosine) —+—BBV(clarans.cosine)

Best Normalized Stdev (mcf)
Best Normalized Stdev (vpr-route)

0.6
0.9 _
- 0.5 =
R ————— : e
£ e ——— 3 044
3 0.6 K ‘\’\‘\k—a‘.\‘
2 os D— e S S0
@ 0.4
03 029
0.2 0.1
0.1
0 T T r v - . 0 T T T r T v
4 5 6 7 8 9 10 4 5 6 7 8 9 10
number of clusters number of clusters
—e— DL(kmeans.cosine) —+— BBV/(clarans.projected_euclidean) —e—DL(clarans.cosine) —+— BBV(clarans.projected_euclidean)

Figure 5. Normalized standard deviation in CPI for BBV and RDD feature for 8 program-input

pairs from SPEC CPU2000 integer benchmark suite.

23

feature and 0.22 for RDD feature) even when just 4 clustesebzeted. This shows thatt-110
substantially benefits from clustering using the BBV or R@atdire. Although the normalized
standard deviation foart-110 is small for the BBV feature, the RDD feature improvebyit

approximately 14% irrespective of the number of clusters that aetes

For bzip2-source, the graphs for both the features cross each other and hence we
conclude that none of the features clearly outperforms the dtwsvever, forvortex-1 and
equake, the BBV feature always gives a lower normalized stahdaviation in CPIl as compared
to the BBV feature.

Pipeline
Issue Width 8 instructions/cycle 16 instructions/cycle
Decode Width 8 instructions/cycle 16 instructions/cycle
Register Update Unit | 128 entries 256 entries
Load-Store Queue 64 entries 128 entries
Commit Width 8 instructions/cycle 8 instructions/cycle

Cache Hierarchy

L1 Data 16KB; 2-way assoc., 32B lines, I-cycle h|t 32KB; 2-way assoc., 32B lines, 1-cycle hit
L1 Instruction 16KB; 2-way assoc., 32B lines, 1-cycle Qit32KB; 2-way assoc., 32B lines, 1-cycle hit
L2 Unified 256KB; 4-way assoc., 64B lines, 12-cycle 256KB; 8-way assoc., 64B lines, 16-cycle hit
Memory Access hit 100 cycles

Latency 100 cycles

Combined Branch Predictor

Bimodal 2048 entries 8192 entries

PAg 2048 entries 8192 entries

Return Address Stacl 32 entries 64 entries

Branch Target Buffer | 512 entries; 4-way assoc. 2048 entries; 4-way assoc.
Misprediction 7 cycles 10 cycles

Latency

Table 5: Processor configurations for the additional two microarchitectures used to compare

RDD and BBV features

For this processor configuration, the RDD feature is consistéetier than the BBV
feature for 5 out of the 8 benchmark programs. However, it is pegkit the RDD feature is
better than BBV just for the microarchitecture configuration that sedected for this experiment.

Therefore, we feel that it is important to evaluate RDD aB¥ Beatures on microarchitectures

24

that are very different from the one chosen for this experiméie therefore selected two
configurations, same as those used for evaluation of SMARTS isgnmpéthodology [18], as
additional points to compare BBV and RDD features. We repeateéxperiment with the 8
benchmark programs for the two microarchitecture configuratidrable 5 shows the
microarchitecture details of the two configurations. Figushi@wvs a plot of the best algorithm-
distance pairs (for normalized standard deviation) for RDD BB features for thegcc-166

program on the two microarchitectures. The graphs for the otheygrams are id\ppendix B

for the 8-way configuration and #ppendix C for the 16-way configuration.

09 Normalized Stdev (gcc-166) i Normalized Stdev (gcc-166)
P 0.9
i \ 08 A\\
. B 0.7
06 \\g 06 D S e
_— 0.5 4
0% T 0.4
04 0.3
03 02
0.1
02 T T T T T T 0 T T T T T T
4 5 6 7 8 9 10 4 5 6 7 8 9 10
number of clusters number of clusters
—e—RDD(clarans.cosine) —a—BBV(clarans.projected_euclidean) —e— RDM(clarans.cosine) —a— BBV(clarans. projected_euclidean)
(a) 8-way processor configuration (b) 16-way processor configuration

Figure 6. Normalized standard deviation in CPI for BBV and RDD features (for gcc-166 program)

We again observe that the RDD feature gives lower nazathBtandard deviation in CPI
than the BBV feature for the same five programs;-166, art, lucas, mcf, and vpr-route
programs. Fobzp2-source, none of the features clearly outperformed the other.edt@ke and
vortex-1 programs, the BBV feature gives a lower normalized standaréhtoe in CPI as
compared to the RDD feature.

In this study, we found that the RDD feature is consistenthetb#tan BBV for phase
classification in 5 out of 8 programs that we used. The validatiomg ubree different
microarchitecture configurations has increased our confiddwatehe results are independent of
the microarchitecture and are generally applicable. Thigestg that the best feature for finding
phases is program dependent. However, the best feature forpeggrgm often holds true on
different microarchitecture configurations. Based on thesdtsesve feel that one can select the
best feature for a program using one microarchitecture and w@dgo it on similar

microarchitectures.

25

7.3 Comparing clustering algorithm-distance measure for RDD feature

In this section, we compare the quality of CLARANS and K-metustering algorithms
for clustering using the RDD feature. We use the Averagtabie (AD) metric to compare the
quality of clusters in the RDD feature space. Figure 7 shiogvgraphs for the AD for different
number of clusters fogcc-166. The graphs for the other 7 programs are in Appendix D. We
observe from the graphs that for all the programs, irresgeotithe distance measured used and
the number of clusters formed, CLARANS clustering algoritiows a lower AD as compared
to the k-means algorithm. On the three different microachites, for the RDD feature,
CLARANS algorithm produces more homogeneous phases in CPI incames than k-means
algorithms. This observation with RDD agrees with our reviconclusion with BBV, that, in

general, CLARANS produces more homogeneous phases in CPI.

gce-166 gec-166

0.016 0

18 1
0.014 \\ 5 T~
0.012 B =~

14
g 0.01 _.\\0\ § 12 \ \'\\".\.\‘
& 0.008 \.\’\e\. g 10
3 0006 T~ s e \\-\
6
0.004 \'_\- : —

0.002 +

IN)

(=}
S}

4 5 6 7 8 9 10 4 5 6 7 8 9 10
clusters clusters

—e— kmeans.cosine —&— clarans.cosine —e— kmeans.euclidean —=— clarans.euclidean

Figure7. Average Distance for different number of clusters in the RDD #eapace
(fogce-166 program)
8. Conclusion

In this paper, we proposed to use a set of statistical metndsshowed that, unlike error
in target metric space, these metrics are very reliablghtful, and provide a deeper
understanding of the quality of clustering in representatiagobag. We used these metrics to
evaluate the benefit from using CLARANS clustering algorittund cosine distance measure.
We proposed and evaluated a new data locality based microangtgténdependent feature,
RDD, for phase classification in a program.

Our experiments showed that for BBV and RDD features, forbalhchmarks,
CLARANS produces more cohesive clusters in the feature sgacenapared to the k-means
clustering algorithm. CLARANS algorithm also results in mooenogeneous phases in CPI for

many, but not all, benchmarks. From this we can conclude thatea bleistering algorithm can

26

improve the quality of clustering in the feature space, but thefth@btained in the target metric
space also depends on the correlation between the feature and the target met

The new feature that we propose, RDD, is consistently bitéer BBV for phase
classification in 5 out of 8 programs on three different asicchitectures. Therefore, the best
feature for finding phases is program dependent, but often holds dnuedifferent
microarchitecture configurations. This helps the user to enthasbest feature for more efficient
microprocessor simulation. The user can select the bestrdefdr a program using one

microarchitecture, and be confident that the results can be used omtiffie@sarchitectures.

References

[1] Standard Performance Evaluation Corporation. SEB02000 V1.2. http://www.spec.org/cpu2000/

[2] D. Burger, and T. M. Austin. The SimpleScalar teet, version 2.0. Technical Report 1342, Computer
Sciences Department, University of Wisconsin-Madsome 1997.

[3] T. Sherwood, E. Perelman, G. Hamerly, and B. Caldatomatically characterizing large scale program
behavior. In Proceedings of the International Cmfee on Architectural Support for Programming
Languages and Operating Systems (October 20027 45-

[4] R. Todi. SPECIite: Using Representative SampleRaduce SPEC CPU2000 Workload. IEEEAhnual
Workshop on Workload Characterization. 2001.

[5] T. Lafage and A. Seznec, “Choosing RepresentativesSof Program Execution for Microarchitecture
Simulations: A Preliminary Application to the Daféream”, Kluwer Academic Publishers, pp. 145-163,
September 2000.

[6] Hartigan, J.A. and Wong, M.A. A K-means clusteraigorithm. Applied Statistics 28, 100-108. 1979

[71 Jeremy Lau, Stefan Schoenmackers, and Brad Cdlderctures for Phase Classification, 2004 IEEE
International Symposium on Performance AnalysiSystems and Software, March 2004.

[8] W. G. Cochran. Sampling Technique¥,&i. John Wiley & Sons, 1977.

[9] L. Kaufman and P. J. Rousseeuw. Finding Groups ataDan Introduction to Cluster Analysis. John
Wiley & Sons. 1990.

[10] R. T. Ng and J. Han. Efficient and Effective Clustg Methods for Spatial Data Mining. Proceedinds o
the 20" VLDB Conference. Santiago, Chile. 1994.

[11] Raymond T. Ng, Jiawei Han. CLARANS: A Method foru€lering Objects for Spatial Data Mining. IEEE
Transactions on Knowledge and Data Engineering\acdiolume 14 , Issue 5, 2002. pp. 1003 — 1016.

[12] J. W. Haskins, Jr. and K. Skadron. “Memory RefeeefiReuse Latency: Accelerated Warm-up for
Sampled Microarchitecture Simulation.” In Procewgi of the International Symposium on Performance
Analysis of Systems and Software, Mar. 2003.

[13] Example Error Rates for SimPoint, http://www.csdieslu/~calder/simpoint/error-rates.htm

[14] E. Perelman, G. Hamerly, and B. Calder. Pickindistteally valid and early simulation points. In
Proceedings of the International Conference on IRRarArchitectures and Compilation Techniques
(September 2003), 244-255.

[15] T. Sherwood, E. Perelman and B. Calder. Basic Biskribution Analysis to Find Periodic Behaviordan
Simulation Points in Applications. In the proceeginof International Conference on Parallel
Architectures and Compilation Techniques (Septerabed)

[16] R.E. Kass and L. Wasserman. A reference Bayesgtnfde nested hypotheses and its relationship to
Schwarz criterion. Journal American Statistical @ation 90(431):928-934, 1995

[17] D. Pelleg and A. Moore. X-Means: Extending K-meuaiith efficient estimation of the number of clusters
In Proceedings of the {7International Conference on Machine Learning, pag@7-734. Morgan
Kaufmann, San Francisco, CA. 2000.

[18] R. Wunderlich, T. Wenisch, B. Falsafi, and J.HOBIARTS: Accelerating microarchitecture simulation
via rigorous statistical sampling. In'3@nnual International Symposium on Computer Arattitee, June
2003.

27

Average Distance (AD) Metric for BBV feature using cosine distance measure

Appendix A

clusters
—e— kmeans.cosine —#— clarans.cosine ‘

art-110 equake
0.022 0.02 N
o |3 i
0.018 \ 0.014
@ [
o o 0.012
§ 0.016 g o001 S
2 o o~
° 0.014 T 0.008
: 0.006
0.012 0.004
0.002
0.01 T T T T T T 0 T T T T T T
4 5 6 7 8 9 10 4 5 6 7 8 9 10
clusters clusters
—e— kmeans projected_euclidean —s— clarans.projected_euclidean ‘ —e— kmeans.cosine —8— clarans.cosine ‘
gcc-166 mcf
0.25 0.05
0.045
02 0-041 .\
\\ 0cas L e
8 015 -\-\ —~—— g o003
i=4 =
8 8 0.025
w "
s 01 s 002 _\:\\.\'\‘
\\—_\- 0.015
0.05 0.01 4 \'\'\.
0.005
0 T T T T T T 0 T T T T T T
4 5 6 7 8 9 10 4 5 6 7 8 9 10
clusters clusters
—e— kmeans.cosine —#— clarans.cosine —&— kmeans.cosine —#— clarans.cosine
vortex-1 vpr-route
0.025 0.025
0.02 4 0.02
8 0.015 8 o.015 :\\\—‘—’
c =
c g \'_\
2 @
5 0014 5 001 “\\-\
0.005 — 0.005 —=
0 T T T T T T 0 T T T T T T
4 5 6 7 8 9 10 4 5 6 7 8 9 10
clusters clusters
—e— kmeans.cosine —=— clarans.cosine —e&— kmeans.cosine —— clarans.cosine
bzip2-source lucas
0.17 0.4
0.15 | =\ 035 [\
4 0.3
° 0.13 g
2 c
8 011 % 0.25
2 2
- ©
0091 o2 N
0.07 \ 0.15 '\\:&‘
0.05 T T T T T T 01 T T T T T

clusters
—e— kmeans.cosine —s— clarans.cosine ‘

28

Appendix B
Normalized Standard Deviation in CPI for 8-way configuration (RDD feature)

Normalized Stdev (art)

Normalized Stdev (bzip2-source)

0.4 0.6
038 0.55 o
0.36 05
0.34
032 1 o\.\‘\ 0.45 -
0.3 — 0.4
028 —~— 0.35
0.26
0.3
0.24
0.22 0.25
0.2 T T T T T T 0.2 T T T T T T
5 6 7 8 9 10 4 5 6 7 8 9 10
number of clusters number of clusters
—e— RDD(clarans.cosine) BBV(kmeans.projected_euclidean) —e— RDD(clarans.cosine) BBV(clarans.projected_euclidean)
0.2 Normalized Stdev (equake) 09 Normalized Stdev (gcc-166)
0.18 ——:
0.16 o8 \
0.14 . 07 -
0.12 08 \
o1 \’\ \g N
0.08 — 05 —
0.06 —_— 0.4
0.04
0.02 031
0 T T T T T T 0.2 T T T T T T
5 6 7 8 9 10 4 5 6 7 8 9 10
number of clusters number of clusters
—e— RDD(clarans.cosine) BBV(clarans.projected_euclidean) —e— RDD(clarans.cosine) BBV(clarans.projected_euclidean)
0.65 Normalized Stdev (lucas) 0.6 Normalized Stdev (mcf)
0.6 0.55 1
0.55 § 054
051 0.45
0.45 4
0.4
0.4 \\
0.35 — 0.35
03 ——— 03
0.25 4 0.25 4
0.2 T T T T T T 0.2 T T T T T T
5 6 7 8 9 10 4 5 6 7 8 9 10
number of clusters number of clusters
—e— RDD(clarans.cosine) BBV(kmeans.cosine) —e— RDD(clarans.eucldiean) BBV(clarans.projected_euclidean)
055 Normalized Stdev (vortex-1) 09 Normalized Stdev (vpr-route)
051 o8] T
0.45 | 07 — _
o ool \—’—0_,‘,
0.35 — 05 1
0.3 1 0.4
0.25 q 0.3
0.2 T T T T T T 0.2 T T T T T T
5 6 7 8 9 10 4 5 6 7 8 9 10
number of clusters number of clusters
—e—RDD(clarans.cosine) BBV/(clarans.cosine) —e— RDD(kmeans.euclidean) BBV(kmeans.projected_euclidean)

29

Normalized Standard Deviation in CPI for 16-way configuration (RDD feature)

Appendix C

1 Normalized Stdev (art) 1 Normalized Stdev (bzip2-source)
0.9 — 0.9
0.8 M 08
0.7 0.7 4
0.6 0.6
0.5 05—
0.4 0.4 . ~—
0.3 0.3
0.2 0.2
0.1 0.1
0 T T T T T T 0 T T T T T T
4 5 6 7 8 9 10 4 5 6 7 8 9 10
number of clusters number of clusters
—e— DL(kmeans.cosine) BBV(kmeans.cosine) —e— DL(clarans.cosine) BBV(clarans.projected_euclidean)
0.25 Normalized Stdev (equake) 1 Normalized Stdev (gcc-166)
0.9
0.2 0.8 -
0.7 4 \\\'\,—.,_4.
0.15 0.6 4
0.54
0.1 0.4
0.3
0.05 0.2
0.14
0 T T T T T T 0 T T T T T T
4 5 6 7 8 9 10 4 5 6 7 8 9 10
number of clusters number of clusters
—e— DL(clarans.cosine) BBV(clarans.cosine) —e— DL(clarans.cosine) BBV(clarans.projected_euclidean)
1 Normalized Stdev (lucas) 1 Normalized Stdev (mcf)
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
o4 —0 0.4 T ———
0.3 — 0.3
0.2 0.2
0.1 0.1
0 0
4 5 6 7 8 9 10 4 5 6 7 8 9 10
number of clusters number of clusters
—e— DL(clarans.cosine) BBV(kmeans.cosine) —e— DL(kmeans.euclidean) BBV(kmeans.projected_euclidean)
1 Normalized Stdev (vortex-1) 1 Normalized Stdev (vpr-route)
0.9 0.9
0.8 0.8 ~__
o
0.7 0.7
0.6 0.6 e
0.5 I ————— 05
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0 T T T T T T 0
4 5 6 7 8 9 10 4 5 6 7 8 9 10

number of clusters

—e— DL(clarans.cosine) BBV(clarans.cosine)

number of clusters

—e— DL(clarans.cosine) BBV(kmeans.projected_euclidean)

30

Appendix D
Average Distance (AD) Metric for RDD feature

art art
141 0.00025
121
0.0002
1.01
§ 0.81 1 ¢ 0.00015
5 8
2 1]
E 0.61 k<1 0.0001 ~
0.41
0.00005
0.21
0.01 T T T T T T o) T T T T T
4 5 6 7 8 9 10 5 6 7 8 9 10
clusters clusters
—e— kmeans euclidean —#— clarans euclidean —e— kmeans.cosine —s— clarans.cosine
bzip2-source bzip2-source
12.1 0.008
101 0.007
) & 0.006 A
g 8.1 g 0.005 4
5 614 & 0.004 =
2] =
s a1 T 0.003
0.002 \
21 0.001
0.1 T T T T T T 0
4 5 6 7 8 9 10 5 6 7 8 9 10
clusters clusters
—e— kmeans.euclidean —%— clarans.euclidean —e— kmeans.cosine —#— clarans.cosine
equake equake
2 0.0014
18
e ‘\\‘\‘ 0.0012 \
1.4 .\ 0.001
g 12 - 8 0.0008 ™
5 — —
@ o
2 o8 i S — & o.0006
06 e 0.0004
04 \-\
02 0.0002 ——
0 T T T T T T 0o
4 5 6 7 8 9 10 5 6 7 8 9 10
clusters clusters
—e— kmeans.euclidean —%— clarans.euclidean —e— kmeans.cosine —=— clarans.cosine
gce-166 gcc-166
20 0.016
18 0.014
16 0.012
14 \
0.01 4
g 12 8
g 10 A — § o008 -—
] 2
5 8 -_\- T 0.006
i] B 0.004 -—
2 0.002 4
o] 0 T T T T T T
4 5 6 7 8 9 10 5 6 7 8 9 10
clusters clusters

—e— kmeans .euclidean —®— clarans.euclidean

31

—e&— kmeans.cosine —#— clarans.cosine

lucas

lucas
145 0.016
125 0.014 - _\‘\\
105 Q 0.012
. \ @ 0.01-
S 85 g
g e 8 0.008
g 65 5 e
S T 0.006 —
45 0.004
25 0.002
0.5 T T T T T T o] T T T T T
4 5 6 7 8 9 10 4 5 6 7 8 9 10
clusters clusters
—&— kmeans.euclidean —#— clarans.euclidean —e&— kmeans.cosine —&— clarans.cosine
mcf mcf
20.06 0.03
18.06 .
16.06 = 0.025
14.06 e \‘\
o 1206 \'\ ° 0.02
§ 1006 v/ & 0.015
7] 7] \—,\.
S 8.06 \'\'\. 3 \-\
6.06 0.01 —
4.06 0.005 -
2.06
0.06 T T T T T T 0 T T T T T T
4 5 6 7 8 9 10 4 5 6 7 8 9 10
clusters clusters
—&— kmeans.euclidean —#— clarans.euclidean —&— kmeans.cosine —®— clarans.cosine
vortex-1 vortex-1
35 0.001
0.0009
3
0.0008 |
25 -\ 0.0007 - \‘\

8 2 3 0.0006 =

c =4

5 ‘l\l \\ & 0.0005

1%}
g 15 \'\m\ll: 5 0.0004 q

1 0.0003 1
05 0.0002 -

: 0.0001 A

0 T T T T T T 0 T T T T T T

5 6 7 8 9 10 4 5 6 7 8 9 10
clusters clusters
—a— kmeans.euclidean —#— clarans.euclidean —e— kmeans .cosine —#— clarans.cosine
vpr-route vpr-route

4.54 0.0025
4.04 LN
354 4 0.002 |

L, 3041 ° -_

§ 254 g oo \\

g 8

w 2.044 7]

2 3 0.001 —
154]
1.04 0.0005
0.54
0.04 T T T T T T 0 T T T T T T

4 5 6 7 8 9 10 4 5 6 7 8 9 10
clusters clusters

—e— kmeans euclidean —#— clarans.euclidean

—— kmeans.cosine —#— clarans.cosine

32

