
Neurocomputing 555 (2023) 126637

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

A conditional branch predictor based on weightless neural networks
Luis A.Q. Villon a,∗, Zachary Susskind b, Alan T.L. Bacellar a, Igor D.S. Miranda c,
Leandro S. de Araújo d, Priscila M.V. Lima a, Mauricio Breternitz Jr. e, Lizy K. John b,
Felipe M.G. França a,f, Diego L.C. Dutra a

a Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
b University of Texas at Austin, TX, USA
c Universidade Federal do Recôncavo da Bahia (UFRB), BA, Brazil
d Universidade Federal Fluminense (UFF), RJ, Brazil
e Instituto Universitário de Lisboa (ISCTE-IUL)/ISTAR, Lisboa, Portugal
f Instituto de Telecomunicações, Lisboa, Portugal

A R T I C L E I N F O

Keywords:
Weightless neural network
WiSARD
Branch prediction
Binary classification

A B S T R A C T

Conditional branch prediction allows the speculative fetching and execution of instructions before knowing the
direction of conditional statements. As in other areas, machine learning techniques are a promising approach
to building branch predictors, e.g., the Perceptron predictor. However, those traditional solutions demand large
input sizes, which impose a considerable area overhead. We propose a conditional branch predictor based on
the WiSARD (Wilkie, Stoneham, and Aleksander’s Recognition Device) weightless neural network model. The
WiSARD-based predictor implements one-shot online training designed to address branch prediction as a binary
classification problem. We compare the WiSARD-based predictor with two state-of-the-art predictors: TAGE-
SC-L (TAgged GEometric-Statistical Corrector-Loop) and the Multiperspective Perceptron. Our experimental
evaluation shows that our proposed predictor, with a smaller input size, outperforms the perceptron-based
predictor by about 0.09% and achieves similar accuracy to that of TAGE-SC-L. In addition, we perform an
experimental sensitivity analysis to find the best predictor for each dataset, and based on these results, we
designed new specialized predictors using a particular parameter composition for each dataset. The results show
that the specialized WiSARD-based predictor outperforms the state-of-the-art by more than 2.3% in the best
case. Furthermore, through the implementation of specialized predictor classifiers, we discovered that utilizing
90% of the specialized predictor for a specific dataset yielded comparable performance to the corresponding
specialized predictor.
1. Introduction

Recently, academia and industry [1] have used neural networks
to address several problems and challenges related to computer mi-
croarchitecture. Specifically, innovative techniques for implementing
conditional branch prediction were covered using perceptron [2,3],
feedforward neural networks [4], recurrent networks and convolutional
networks [5,6]. Conditional branch prediction is an essential technique
and a keystone of modern superscalar computer processors. This type
of prediction uses a dedicated branch predictor unit implemented in
hardware. Those predictors aim to identify patterns in the execution
history of a program to predict the outcome of a particular branch in
the instruction stream. An increment in the branch predictor accuracy
is a relatively simple and effective way to enhance performance and
reduce energy consumption [7]. Also, the area and energy costs of

∗ Corresponding author.
E-mail address: lvillon@cos.ufrj.br (L.A.Q. Villon).

the branch predictor unit are key considerations in the microprocessor
design.

Weightless neural networks (WNNs) are a category of neural models
which use neurons called RAM nodes to perform prediction. The neu-
rons are made up of lookup tables (LUTs) and do not perform complex
arithmetic operations. One main advantage of WNNs RAM nodes is
the ability to learn non-linear functions of their inputs, which is not
possible in a conventional weighted neural network, such as the per-
ceptron. The WiSARD (Wilkie, Stoneham, and Aleksander’s Recognition
Device) [8] is the first WNN to achieve commercial success and is the
neural network model adopted in this paper.

Due to the ability to learn non-linear features indirectly repre-
sented by the inputs and its relatively simple arithmetic operations, the
WiSARD model is an attractive alternative to traditional neural-based
vailable online 28 July 2023
925-2312/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.neucom.2023.126637
Received 15 February 2023; Received in revised form 22 May 2023; Accepted 24 J
uly 2023

https://www.elsevier.com/locate/neucom
http://www.elsevier.com/locate/neucom
mailto:lvillon@cos.ufrj.br
https://doi.org/10.1016/j.neucom.2023.126637
https://doi.org/10.1016/j.neucom.2023.126637
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.126637&domain=pdf


Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. 1. In this representation of the WiSARD model example, the input image contains ‘‘0’’. It shows an outline of the training phase on the left side. On the right side, the
corresponding discriminator produces the strongest response in the classification phase.
Fig. 2. A representation of the RAM-Discriminator structure.

predictors. Nevertheless, as far as we are aware, there has been no
previous work using the WiSARD technique or any weightless neural
model to implement a conditional branch predictor. This work aims to
explore the potential gain in accuracy and estimated hardware costs
of using a WiSARD-based branch predictor, for which we propose a
new predictor architecture. We designed this novel predictor to treat
branch prediction as a binary classification problem and explore how
it performs a one-shot online training methodology.

The rest of this article is organized as follows. We present back-
ground and fundamental concepts related to this work in Section 2. Our
proposal for the WiSARD-based predictor architecture in Section 3 and
in Section 4 the experimental data and the methodology used. Section 5
shows the experimental results and discusses them in detail. Finally, we
present conclusions in Section 6.

2. Background

This Section briefly provides the relevant background and fun-
damental concepts related to conditional branch prediction and the
WiSARD model.

2.1. Conditional branch predictor

Conditional branches are employed to make decisions in the execu-
tion of a program based on the results of comparison and logical expres-
sions. In high-level programming languages, conditional branches are
consequences of conditionals control flow statements, e.g., if., for, and
while. The compiler translates those conditional control flow statements
to conditional branch instructions. These instructions modify the flow
of the program so that the processor is directed to fetch instructions
2

that are not in the sequential order [9]. However, this introduces
performance issues for modern speculative and pipelined processor
implementations.

To avoid pipeline bubbles and stalls due to conditional branch
instructions, nearly all modern high-performance processors imple-
ment a conditional branch predictor unit in their microarchitecture
design [10]. Instead of stopping execution at a conditional branch
until the branch conditions are resolved, a processor uses the branch
predictor to fetch and speculatively execute instructions along the
predicted path. The main idea consists in predicting branches based
on dynamic information provided by the historical behavior of prior
executions of a particular conditional branch and related instructions
at the microarchitecture level.

In general, a branch predictor has three elements: (1) the input,
which conveys information and features about the current instruction,
such as branch history for example; (2) the prediction, which commu-
nicates to the instruction fetch unit the next instruction it must fetch;
(3) and the main predictor architecture, which uses arithmetic or logic
operations to compute the prediction.

Branch instructions are frequent, composing nearly 20%–30% of
all instructions of computer programs [11]. Furthermore, as computer
architectures become more complex with more instructions issued per
cycle increases, the penalty for a prediction error (misprediction) in-
creases [2]. Since branch misprediction implies a higher latency and
higher energy consumption, a small improvement in branch predic-
tion accuracy can significantly boost performance and energy effi-
ciency [12].

Most modern branch predictors are variants of the TAGE (TAgged
GEometric) [13] and/or perceptron branch predictors [2]. In particular,
the TAGE-SC-L [14] predictor is considered the state-of-the-art in the
industry [15], and it won the 2016 branch predictor championship. In
this predictor, the input consists of a large global history register and
other microarchitecture features. The history register contains tagged
predictor components indexed with distinct history lengths forming a
geometric series. TAGE updates the tag after the execution of each
branch instruction. In addition, TAGE has a neural-based statistical
corrector to detect unlikely predictions and to revert them.

2.2. Neural-based branch predictors

Another state-of-the-art branch predictor is the perceptron-based
predictor. The first relevant work used a single-layer perceptron [2]
which was later improved in more sophisticated versions [3,16,17].
Research projects to reduce the power consumption, complexity [18–
20], and also, to deal with the impossibility, inherent to perceptron
models, to learn nonlinear functions from the inputs [21,22] also are
found in the literature.

One of the most recent versions is the Multiperspective Perceptron
predictor, based on the idea of viewing branch history from multiple



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. 3. A depiction of the input composition. In this example the input size is 208 bits.
Fig. 4. A depiction of the WiSARD-based predictor. In this example there are three local history registers.
Fig. 5. Results of accuracy obtained by the WiSARD-based predictor in the classifica-
tion phase as the size of the n-tuple increases. The ‘‘Avg’’ line represents the average
accuracy of all datasets. Higher is better.
3

perspectives [23]. This predictor uses pattern histories and features
based on other metrics, which results in large input sizes for the data
to be linearly separable. The weights are chosen by hashing across the
different features used to make a prediction. The success of perceptron-
based predictors confirms that neural networks are effective methods
of branch prediction for industrial applications [24].

2.3. Weightless neural networks

Weightless neural networks (WNNs) or n-tuple classifiers [25] are
a subdivision of machine learning which use neurons based on Ran-
dom Access Memory (RAM) units to perform prediction. Similarly to
traditional artificial neural networks (ANNs) in their early days [26],
the human nervous system inspired the WNNs. However, in WNNs,
the dendritic tree is prioritized, unlike conventional ANN paradigms
that utilize the weighted-sum-and-threshold neurons [27]. This is an
important fact since the vast majority of synapses terminate on the
neuron’s dendritic tree [28]. Although neurons in WNN models do not
utilize complex arithmetic operations, these neural models can learn
nonlinear functions from the inputs.

2.4. WiSARD

The WiSARD (Wilkie, Stoneham, and Aleksander’s Recognition De-
vice) was the first weightless neural network distributed commercially.



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. 6. Sensitivity Analysis for each dataset. The horizontal and vertical axis represent the parameter associated to each feature and the accuracy, respectively. Each curve represents
the best result for each feature along Figs. B.9–B.14 from Appendix B.
It consists of a n-tuple classifier composed of class discriminators. Each
discriminator is a set of N RAM nodes having n address lines each [29]
and trained on a particular class of patterns.

To illustrate how the WiSARD model works, we describe an example
implemented for digit recognition tasks, applied to a binarized image in
a matrix representation (Fig. 1). The learning phase consists of writing
1’s in each RAM node in the respective discriminator that is selected
using 𝑛 address bits randomly (but consistently) extracted from the
input pattern value. In the classification phase, all RAM nodes similarly
designated by the input, are read. Then the resulting values are added
to produce a response value. We take the index of the discriminator
with the highest response value as the predicted class. To deal with
the problem of learning saturation, we implement the contents of the
4

RAM nodes as an access counter that is incremented, during the training
phase, with each access. The RAM node counter must have a value
greater than a threshold defined by a ‘‘bleaching’’ algorithm [30] that
is used to resolve ties during prediction (when discriminator responses
are ambiguous because their differences are below a tolerance error).
On performing inference, the output of a RAM is ‘‘1’’ if the addressed
value is greater than the threshold, otherwise, it is ‘‘0’’. In addition, we
present the structure of RAMs in a Discriminator in Fig. 2.

3. Proposal

In this section, we propose a novel predictor architecture based on
the WiSARD model, which is adaptable to fit different constraints of the



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. 7. Behavior of the classifier of the best predictors for each dataset represented in each subfigure, where the 𝑋-axis represents the precision of the customized predictor
classifier. The accuracy is displayed on the 𝑌 -axis in each case. Each bar represents the execution with a certain instruction block size, labeled as 1k, 2k, 5k and 10k, where ‘k’
means 1000 instructions.
applications. We designed the WiSARD-based predictor to perform one-
shot online training, and the respective classification phase performs a
binary classification.

3.1. Input composition

The binary input is a linear combination of different microarchitec-
tural information about current and recent branch addresses. The input
5

is expressed as:

𝑖𝑛𝑝𝑢𝑡 = 𝑎 ⋅ 𝑃𝐶 + 𝑏 ⋅ 𝐺𝐻𝑅 + 𝑐 ⋅ 𝑃𝐶𝑥𝑜𝑟𝐺𝐻𝑅 +
∑𝑁−1

𝑖=0 𝑑𝑖 ⋅ 𝐿𝐻𝑅𝑖 + 𝑒 ⋅ 𝐺𝑃𝐻𝑅 (1)

Where: PC (program counter) represents the least significant bits
from the memory address of the current branch instruction, GHR is
the global history register from the last conditional branches outcomes,
PCxorGHR is the logical exclusive-or operation between the PC and
GHR, LHR is each of the 𝑁 local history registers from the local branch
𝑖



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. A.8. Structure and composition of a LHT. Each row in the table represent a
particular LHR.

and GPHR is the global path history register which stores the eight less
significant bits from the last eight conditional branches. We describe a
more complete and detailed description of these features in Appendix A.
The additional parameters a, b, c, d𝑖 and e represent the strength of its
associated feature in the input.

As an example, suppose we express the values of the variables and
parameters as follows: PC = 24, GHR = 24, PCxorGHR = 24, LHR0 =
4, LHR1 = 8, GPHR = 64, a = 2, b = 2, c = 1, d0= 2, d1 = 2, e = 1.
From an architectural point of view and a hardware perspective, Fig. 3
shows how we use the parameters and registers to compose the input.
In this example, the input size is 208 bits.

In System Verilog language, we can represent the input by the
following relation using replication concatenation and exclusive-or op-
erators.

𝑖𝑛𝑝𝑢𝑡 = {{2{𝑃𝐶[23 ∶ 0]}}, {1{𝑃𝐶[23 ∶ 0] ∧ 𝐺𝐻𝑅}}, {2{𝐺𝐻𝑅}},

{2{𝐿𝐻𝑅0}}, {2{𝐿𝐻𝑅1}}, {1{𝐺𝑃𝐻𝑅}}} (2)

3.2. Predictor architecture

We show the WiSARD-based predictor architecture in Fig. 4. At the
beginning, the RAM node counters are initialized with zero contents.
The classification phase occurs first since the predictor uses an online
learning methodology. In this phase, we pseudo-randomly divided the
current input information in n-tuples of bits to get the address of a RAM
node located in two discriminators: Discriminator ‘‘0’’, which represents
a not taken branch and Discriminator ‘‘1’’ otherwise. We generate
a response from both discriminators, and the one with the highest
response value determines the corresponding final output. In addition,
we implemented a bleaching algorithm, which sets a threshold that
must be exceeded every time there is a tie in the classification process.

Once the classification phase for the current input finishes, next
comes the training phase, where the input is again split in n-tuples
of bits to get the address of all RAM nodes located in the respective
Discriminator. Then the counters in each designated RAM node are
updated accordingly. This procedure, including the classification and
training phase, is performed for all the subsequent inputs of a given
dataset.

4. Methodology

4.1. Dataset

As dataset for this study, we use the 3rd Championship Branch
Prediction (CBP-3) organized by the JILP Workshop on Computer Ar-
chitecture Competitions (JWAC) from Kaggle [31]. The information is
composed only of conditional branch information, and it is distributed
in 3 categories, according to the benchmark application class: integer
workloads (I1 and I2), multimedia (M1 and M2), and server (S1 and S2)
6

applications. All of them have 4 × 105 conditional branch instructions,
with the exception of dataset M1, which has 3 × 105 elements.

Among these datasets, we only consider the PC and the actual
outcome of each branch. This is used to build the microarchitecture
information that compounds the input, as described in Section 3 and
Appendix A. Moreover, as we design our WiSARD-based branch pre-
dictor assuming already existing hardware structures of the branch
predictor unit, i.e., Local History Table and Global History Register, we
use the whole available dataset to evaluate our proposed designs and
the existing solutions, as they all assume the branch unit works using
online learning.

4.2. Experimental setup

We performed 100 experiments on each group of datasets. The
quantitative results and plots, shown later, represent the average of
100 values. We choose this number to evaluate how the uniform
distribution of inputs over RAMs impacts the overall performance of
our design. Even though a given final hardware implementation must
have a fixed mapping, this approach allows us to understand how our
results depend on the input mapping. We set a fixed size, in bits, for
the features in the input from Eq. (1), as follows: PC = 24, GHR = 24,
PCxorGHR = 24, LHR0 = 24, LHR1 = 16, LHR2 = 9, LHR3 = 7, LHR5
= 5, GPHR = 64. Therefore, we express the input in a more simplified
way:

𝑖𝑛𝑝𝑢𝑡 = 24𝑎 + 24𝑏 + 24𝑐 + 24𝑑0 + 16𝑑1 + 9𝑑2 + 7𝑑3 + 5𝑑4 + 64𝑒 (3)

In the rest of this work, we will use Eq. (3) for all different ex-
perimental scenarios. Furthermore, we compare our solution against
the TAGE-SC-L and the Multiperspective Perceptron predictors on all
datasets. The input size for both predictors is 3127 and 2329 bits, re-
spectively, and their training and classification phase do not use a ran-
dom process, as they are final hardwired architecture implementation
models.

5. Results and discussion

We show in this section the results from four different but com-
plementary experimental approaches. In the first part, we made a
pseudo-exhaustive hyperparameter search to find the best input compo-
sition for our predictor whose accuracy would outperform, on average,
the state-of-the-art predictors. We must point out that the current state-
of-the-art branch predictors area achieve performances in the high
99%s for some relevant benchmarks. Moreover, because of the sheer
amount of instructions executed in a CPU quantum or time slice, that
can have as much as 25, 000, 000 branches in a 1 GHz microprocessor
and, due to the complexities of superscalar processors, any fluctuation
in the branch predictor accuracy causes a relevant impact in the overall
system performance. Subsequently, we performed a sensitivity analysis
of all features that compound the input to explore the particular be-
havior and trends. Then, we obtain the parameter configuration to find
the best potential and specialized predictor for each dataset. In the next
step, we performed an experimental analysis of specialized predictor
classifiers.

5.1. Best result - preliminary exploration

Preliminary, our pseudo-exhaustive search (given that WNNs allows
for very agile implementations) showed that the best configuration for
the parameters is: 𝑎 = 24, 𝑏 = 12, 𝑐 = 12, 𝑑0 = 8, 𝑑1 = 8, 𝑑2 = 8, 𝑑3 =
6, 𝑑4 = 12, 𝑒 = 8. Thus, according to Eq. (3), the size of this input
is: 24 ⋅24 + 12 ⋅24 + 12 ⋅24 + 8 ⋅24 + 8 ⋅16 + 8 ⋅9 + 6 ⋅7 + 12
⋅5 + 8 ⋅64 = 2158 bits, which is smaller than the TAGE-SC-L and the
Multiperspective Perceptron counterparts.

We present the details of this first experimental result in Fig. 5. It
illustrates how the accuracy varies as the size of the 𝑛-tuple increases.



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. B.9. Sensitivity Analysis for dataset I1. We observe that PC is the most important feature (Fig. B.9a) since the accuracy increases as its corresponding parameter 𝑎 increases
when compared to the other features (Figs. B.9b–B.9i). For the other features, the accuracy drops or remains oscillating (Figs. B.9b–B.9h). The exception is the feature GPHR, in
which the initial behavior depends on the n-tuple sizes and for large values of 𝑒 the accuracy remains nearly constant (Fig. B.9i). In addition, in nearly all cases, the accuracy
drops as n-tuple size increases.
First, we notice that the accuracy in the datasets I1 and I2 remains
almost constant. In datasets M1 and S1, the accuracy increases up to 𝑛-
tuple size = 22 and then decreases, being dataset S1 where we observe
this effect more pronounced. On the other hand, in datasets S2 and M2,
we see a more prominent accuracy benefit. On average (black line), the
accuracy increases up to 𝑛-tuple size = 25.

We compared these results with TAGE-SC-L and Multiperspective
Perceptron (shown in Table 1 where WNN, T, and MP stand for
the WiSARD-based, TAGE-SC-L, and Multiperspective Perceptron pre-
dictors respectively). We extended the results to a precision of four
decimal places to illustrate a more complete exploration. On average,
7

the WiSARD-based predictor achieves approximately the same accu-
racy as the TAGE-SC-L and slightly outperforms the Multiperspective
Perceptron by approximately 0.09%. We emphasize that our predictor
shows a higher accuracy value on the dataset M2 compared to all other
predictors.

In addition, we performed supplementary experiments using the
same input from TAGE-SC-L and Multiperspective Perceptron in the
WiSARD-based predictor. The results are shown in Table 2. Interest-
ingly, the accuracies obtained with these inputs, on average, were
77.1948% and 89.7698% respectively. As expected, our predictor has



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. B.9. (continued).
Table 1
Accuracy results compare the best configurations of the WiSARD-based predictor with the state-of-the-art (TAGE-SC-L) and the Multiperspective Perceptron predictor. We labeled
them WNN, T, and MP, respectively.

Predictor I1 I2 M1 M2 S1 S2 Average

WNN 99.7948 ± .0016 99.9749 ± .0010 96.0540 ± .0224 86.4968 ± .1458 96.0651 ± .0349 97.8504 ± .0124 96.0393 ± .0621
T 99.8138 ± .0000 99.9782 ± .0000 96.1357 ± .0000 85.8582 ± .0000 96.3213 ± .0000 97.8710 ± .0000 95.9964 ± .0000
MP 99.7700 ± .0000 99.9792 ± .0000 96.2340 ± .0000 85.7533 ± .0000 96.2143 ± .0000 97.7645 ± .0000 95.9525 ± .0000
Table 2
Accuracy results of the WiSARD-based predictor by using the inputs from the TAGE-SC-L and the Multiperspective Perceptron predictors, labeled as Input-T and Input-MP respectively.
For the sake of comparison, the bottom row, labeled as Input-W, represents the best input configurations of the WiSARD-based predictor from Table 1.

Input I1 I2 M1 M2 S1 S2 Average

Input-T 96.2828 ± .1219 99.8607 ± .0011 62.8316 ± .2016 69.4551 ± .0404 64.5249 ± .0415 82.2137 ± .0540 79.1948 ± .0103
Input-MP 99.6334 ± .0220 99.9342 ± .0012 82.8533 ± .2203 74.3839 ± .4133 87.1223 ± .0692 94.6945 ± .0188 89.7698 ± .0375
Input-W 99.7948 ± .0016 99.9749 ± .0010 96.0540 ± .0224 86.4968 ± .1458 96.0651 ± .0349 97.8504 ± .0124 96.0393 ± .0621
a completely different knowledge acquisition process than the other
predictors since the discrepancy in accuracy is considerable.

5.2. Sensitivity analysis

We performed a sensitivity analysis in order to determine the most
relevant features that comprise the input. We carried out this study
across all the six datasets. In all scenarios, the parameters for the base
case were: 𝑎 = 2, 𝑏 = 2, 𝑐 = 2, 𝑑0 = 2, 𝑑1 = 2, 𝑑2 = 3, 𝑑3 = 4, 𝑑4 = 5, 𝑒 = 1.

We show and explain the full results in Appendix B. In Fig. 6, we
report the best curves achieving the highest accuracy for each feature
and dataset. In the legend, the 𝑛-tuple size utilized in each curve is
indicated within parentheses for each case.

In datasets I1 and I2, we observe that PC is the most relevant feature
(Figs. 6(a) and 6(b)) since the accuracy increases as its corresponding
8

parameter also increases. On the other hand, for the other features, the
accuracy drops smoothly. The exceptions are features LHR0 and GPHR,
in which the accuracy decreases quickly in I1 and I2, respectively.

We observe a different situation in datasets M1 and M2. In both
datasets, the accuracy increases for features PCxorGHR and LHR0 re-
spectively (Figs. 6(c) and 6(d)). Interestingly in M1, the worst trends
are characterized by all LHRs, specifically LHR0. While in M2, the
accuracy drops significantly for the feature GPHR.

In addition, in datasets S1 and S2, the most relevant features
are GPHR and PC for large value of their corresponding parameter
(Figs. 6(e) and 6(f)). The accuracy also increases for features GHR and
PCxorGHR while it decreases significantly for the features LHR1 and
LHR0 in datasets S1 and S2, respectively.

These results show that datasets that correspond to the same cate-
gory have the same correlation. We present this for the group integers



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. B.10. Sensitivity Analysis for dataset I2. In this case the PC and the PCxorGHR are the most relevant features since the accuracy increases as its corresponding parameter
𝑎 and 𝑐 increases when compared to the other features (Figs. B.10a and B.10c). In nearly all cases (Figs. B.10b–B.10i) the accuracy decreases as the n-tuple size increases. For
LHR2, LHR3, LHR4 features, the accuracy keeps fluctuating as the corresponding parameter increases in the largest n-tuple sizes (Figs. B.10f–B.10h).
(datasets I1 and I2) and server (datasets S1 and S2). Nevertheless, this
behavior went unobserved in the multimedia category (datasets M1 and
M2).

Among all these results, we must highlight the cases in which
this analysis exceeds the precision previously obtained in our first
experiment (Table 1). Clearly, in datasets I1 and I2, there is at least
one curve that surpasses our previous result for some value of the
parameters (Figs. 6(a) and 6(b)). In datasets M1 and S2, there is no such
a curve that outperforms the horizontal line (Figs. 6(c) and 6(f)). Lastly,
in dataset M2, the results can be significantly more than 1% better than
the previous WNN-predictor result (Fig. 6(d)); while in dataset S1, this
occurs for large values of the parameter associated with PC (Fig. 6(e)).
9

5.3. Best predictor for each dataset

Based on these previous results, we perform a second pseudo-
exhaustive hyperparameters search to find the best particular results for
each dataset. We present the results obtained in this study in Table 3,
and we consolidate them with the results of Table 1 in Table 4. In
the experimental approach of this section, it is more important to
outperform the accuracy described in Table 1 versus the necessity of
smaller input sizes. We achieve this objective for all datasets compared
to the previous WNN version, while our predictors only outperform the
state-of-the-art in the datasets M2, S1, and S2. We emphasize the results
in dataset M2, where the accuracy obtained is at least 2.3% higher than
TAGE-SC-L and Multiperspective Perceptron counterparts.



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. B.10. (continued).
Table 3
Accuracy results for the best parameters configuration for each dataset.

Dataset n-tuple a b c d0 d1 d2 d3 d4 e Input size Accuracy

I1 17 24 2 2 2 8 3 4 5 1 992 99.8067 ± .0018
I2 27 24 6 6 2 2 3 4 0 2 1127 99.9786 ± .0009
M1 24 72 24 72 16 16 16 12 24 16 6044 96.1322 ± .0157
M2 23 10 10 10 150 10 15 20 25 5 5200 88.1783 ± .0202
S1 38 140 10 10 4 4 4 10 12 8 4678 96.8521 ± .0179
S2 38 150 16 16 2 2 8 16 26 8 5274 98.0946 ± .0110
Table 4
Comparison of the accuracy results reported in Tables 1 and 3.

Dataset Accuracy(Best) Accuracy(WNN) Accuracy(T) Accuracy(M)

I1 99.8067 ± .0018 99.7948 ± .0016 99.8138 ± .0000 99.7700 ± .0000
I2 99.9786 ± .0009 99.9749 ± .0010 99.9782 ± .0000 99.9792 ± .0000
M1 96.1322 ± .0157 96.0540 ± .0224 96.1357 ± .0000 96.2340 ± .0000
M2 88.1783 ± .0202 86.4968 ± .1458 85.8582 ± .0000 85.7533 ± .0000
S1 96.8521 ± .0179 96.0651 ± .0349 96.3213 ± .0000 96.2143 ± .0000
S2 98.0946 ± .0110 97.8504 ± .0124 97.8710 ± .0000 97.7645 ± .0000
When comparing the results from Table 3 to the sensitivity analysis
(Figs. B.9–B.14), a direct correlation between the parameters and the
features from the input it is observed, as expected. We summarize this
correlation in Table 5. By far, the PC is the most relevant feature.

5.4. Analysis of specialized predictor classifiers

Since the WiSARD-based predictor outperforms the other state-of-
the-art predictors significantly in some cases, it opens several avenues
to research the behavior of a classifier of specialized predictors for
each dataset corresponding to particular applications, as proposed in a
10
Table 5
Most relevant feature of the input for each dataset.

Dataset Most important
feature(s)

Least important
feature(s)

I1 PC LHR0
I2 PC GPHR
M1 PC, PCxorGHR LHR0
M2 LHR0 GPHR
S1 PC, GPHR LHR1
S2 PC, GPHR LHR0, LHR1



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. B.11. Sensitivity Analysis for dataset M1. The results show differences in accuracy trends for each feature in each case. The accuracy increases or decreases smoothly for
the features PC, GHR and PCxorGHR (Figs. B.11a–B.11c), but substantially drops for LHR0, LHR1, LHR2 (Figs. B.11d–B.11f). Interestingly, the accuracy initially increases and then
drops smoothly for large values of 𝑒 for GPHR (Fig. B.11i). In most cases, the accuracy decreases for large n-tuple sizes (Figs. B.11b–B.11h).
related work [32]. Thus, we performed an additional analysis using the
best predictors for each dataset, according to the results from Table 3.

The main goal is to identify the potential gain in accuracy when
all the six category-specific specialized predictors are implemented
11
and used to perform prediction for each corresponding dataset. We
envisioned a computer system having a classifier that can, with a given
probability, select the correct specialized predictor for a given applica-
tion. From a computer architecture perspective, the Operating System



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. B.11. (continued).
(OS) can inform the processor core of the optimal predictor during the
process scheduling or even be a specialized unit inside the processor
core doing the classification according to the current behavior of the
process. The classifier in our setup can choose among the six existing
datasets in the three categories the one that best matches the behavior
of a given program.

We implemented the classification algorithm of specialized predic-
tors by defining the rate of precision of its selection. To quantify the
final accuracy of the prediction, we divide the number of instructions
in each dataset into blocks of a fixed size, where the prediction of each
block of instructions where performed by all the specialized predictors.
We summarize these results in Fig. 7. The results of the specialized
predictors and the initial version of the WiSARD-based predictor (
Table 1), are also displayed by means of horizontal solid lines and are
labeled as ‘‘Best’’ and ‘‘WNN’’ respectively.

In datasets I1 and I2, the use of at least 50% of the specialized
predictor outperforms the WNN predictor up to more than 0.006% and
0.003%, respectively, (Figs. 7(a) and 7(a)). Nevertheless, in dataset I2,
the prediction accuracy with a 90% precision classifier ties with the
corresponding specialized predictor in this case.

Moreover, in dataset M1, the use of the classifier did not improve
the necessary accuracy to outperform the WNN predictor version.
Meanwhile, in dataset M2 the use of 50% and 90%, the specialized
predictor surpasses the WNN version by more than 0.2% and 1.4%, re-
spectively. In both datasets, the use of the classifier fails to approach the
accuracy of the best results obtained by the corresponding specialized
predictor.
12
In addition, in dataset S1, the use of 90% of the specialized predictor
outperforms the WNN predictor up to more than 0.7%. In dataset S2,
with the prediction accuracy of the classifier at 80% and 90% of pre-
cision, respectively, the presented results tie and outperform by more
than 0.1% the accuracy of the corresponding specialized predictor.

Finally, we also observed that the presented results are independent
of the size of the blocks of instructions, as the accuracy remains
almost similar in each group of the bar charts among all datasets
(Figs. 7(a)–7(f)).

6. Conclusion

WiSARD is one of the most important WNN models, which are
neural networks based on RAM that do not perform complex arithmetic
operations, and as a consequence, we can implement it in hardware and
real-time applications. One interesting and potential area of application
of WNN is computer architecture. Specifically, we can explore WNN as
part of the conditional branch predictor architecture, a well-established
technology implemented in nearly all modern computer processors.

In this work, we proposed and evaluated a conditional branch
predictor based on WNNs, particularly in the WiSARD model. We
performed four different experiments to obtain a complete exploration
of general potential, plus some particular insights.

First, through a pseudo-exhaustive hyperparameter search, we ex-
perimented with the WiSARD-based predictor to compare it with TAGE-
SC-L, a state-of-the-art, and with the Multiperspective Perceptron, a
neural-based predictor. Using a smaller input size (and thus taking



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. B.12. Sensitivity Analysis for dataset M2. In this case, the accuracy increases for LHR0, LHR1, LHR2 (Figs. B.12d–B.12f); remains nearly constant for the features LHR3 and
LHR4 (Figs. B.12g and B.12h) and drops significantly for the other features (Figs. B.12a, B.12b, B.12c, B.12i). For this dataset it is important to highlight the feature GPHR, since
the accuracy degrades significantly as the parameter 𝑒 increases (Fig. B.12i). In addition, in almost all cases the accuracy increases as the n-tuple size increases.
fewer hardware resources), our predictor achieves, on average, similar
accuracies to the TAGE-SC-L and outperforms the Multiperspective
Perceptron by approximately 0.09%.

Next, we performed a sensitivity analysis in all datasets to determine
the most relevant features of the input. The results show that the PC
13
value is the most important feature at the microarchitecture level to
our predictor.

Subsequently, our third experimental results show that a deeper
pseudo-exhaustive parameter search for each dataset leads to different
configurations for our first WiSARD-based predictor, outperforming the



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. B.12. (continued).
TAGE-SC-L and the Multiperspective Perceptron for three datasets. The
difference in accuracy for the best case is higher than %2.3.

In addition, since the use of predictor configurations adapted to spe-
cific dataset characteristics indicated a promising new venue for further
performance gains, we designed specialized predictor classifiers, that
with a certain probability, select the correct specialized predictor for an
application. Our experiments demonstrated that employing specialized
predictors in at least 50% of the branches in our datasets yielded
superior results compared to our initial WiSARD-based predictor across
four of the six datasets analyzed. Notably, in one specific case, utilizing
the specialized predictor on 90% of the branches achieved comparable
performance to its corresponding specialized predictor.

We can extend this work by using Bloom filters [33] to reduce
the hardware area of our design while reducing memory and power
consumption, making the training and classification phases more effi-
cient. A crucial aspect for expanding this study involves investigating
various feature selection methods to compare the sensitivity analysis
using novel experimental approaches. As the predictor utilizes an online
training approach that relies on binary data, which we interpreted
as categorical information, the feature selection techniques applicable
to this research may diverge from the sensitivity analysis. This com-
prehensive examination of the approach will be the subject of future
research.
14
Finally, based on the results obtained for the branch predictor
problem, we believe the WiSARD model is a good fit for other types of
predictors used in computer architecture, specifically at the microarchi-
tecture layer. Since our work shows that WNN can be, at least, explored
in this area, we surmise that we are at the start of an interesting
research field, and further research is warranted.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to thank CAPES, Brazil and CNPq, Brazil for
the financial support to this work. In addition, this work was partially
supported by Fundação para a Ciência e a Tecnologia, I.P. (FCT),
Portugal [ISTAR Projects: UIDB/04466/2020 and UIDP/04466/2020],
by project FLOYD:POCI-01-0247- FEDER-045912, and Project FCT UID-
BASE/50008/2020.



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. B.13. Sensitivity Analysis for dataset S1. We observe that the most relevant features are PC and GPHR (Figs. B.13a and B.13i) since accuracy achieves the highest values,
particularly for high values of the parameter 𝑎. The accuracy also increases for the features GHR and PCxorGHR (Figs. B.13b and Fig. B.13c) but decreases for all other LHR type

features (Figs. B.13d–B.13h). Furthermore, in almost all cases the best and worst curves correspond to n-tuple sizes 20 and 32 respectively.
Appendix A. Description of features

In this appendix, the features that compound the input are described
using a computer architecture approach.
15
A.1. Program counter (PC)

The PC is a register which contains the address bits of the current
instruction being executed in a given program. In most modern general



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. B.13. (continued).
purpose processors, the size of the PC is 32 or 64 bits. In the datasets
analyzed in this work, the size is 32 bits.

A.2. Global history register (GHR)

The idea of GHR is to track the global history of all conditional
branches real outcomes, which can be 0 (Not taken branch) or 1 (Taken
branch). This information is stored in a shift register which is updated
with the result of the actual branch outcome in the execution of a
program.

A.3. XOR operation between PC and GHR

As mentioned and previously addressed in related works [34], the
XOR operation (exclusive-OR) between PC and GHR can synthesize the
information in a smaller memory space. This leads to a more compact
branch predictor unit.

A.4. Local history register (LHR)

This register stores the last occurrences of the same branch instruc-
tion. One LHR is associated with one or a particular set of conditional
branches. The Local History Registers for all branches are contained in a
16
Local History Table (LHT), in which each entry is indexed by the branch
instruction address [35]. Fig. A.8 illustrates how the least significant
bits of the PC are employed to update the LHR in the LHT.

A.5. Global path history register (GPHR)

This memory represents an array of the last 8 branch addresses. As
branches are executed, their addresses are shifted into the first position
of this array. In this work, the elements of the array are simply the
lower 8 bits of the branch address. In other related works, this register
is known as Global Addresses (GA) [15,36].

Appendix B. Supplementary sensitivity analysis

In this appendix we show the full results of the sensitivity analysis
exhibited in Figs. B.9–B.14. In all subfigures, the vertical and horizontal
axis represent, respectively, the accuracy and the parameter associated
to each feature according to relation (1). Each dashed curve represent
the behavior for a particular n-tuple size. In addition, the continuous
horizontal line exhibits the previous experimental result (Table 1).
For each feature, this horizontal line also references, in parentheses,
the corresponding parameter value and the n-tuple size previously
employed.



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. B.14. Sensitivity Analysis for dataset S2. The most important features are PC and GPHR (Figs. B.14a and B.14i) since the accuracy achieves the highest values when
compared to the other features. The accuracy also increases for the features GHR and PCxorGHR (Figs. B.14b and B.14c) but decreases significantly for all other LHR type features
(Figs. B.14d–B.14h). In addition, the worst results correspond to n-tuple size 16. Thus, interestingly, the trends of results for both datasets S1 and S2 are somehow similar.
The results show the importance of the parameters, and conse-
quently the corresponding features, for each dataset. In some cases,
the accuracy degrades when a particular parameter increases. We
hypothesize the reason for this behavior is directly related to the
microarchitectural characteristics of the input associated with each
benchmark. Furthermore, we observe that as the n-tuple size increases,
17
the accuracy drops significantly depending on the datasets analyzed.
This result can be explained by the response of the WiSARD model,
which depends on the n-tuple size [27].

In addition, in some cases we observe oscillatory trends of the
accuracy curves, especially in the results of datasets I1 and I2 (Figs. B.9
and B.10). This is explained by the fact that binary input size is not a



Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Fig. B.14. (continued).
multiple of the n-tuple size in these cases. The WiSARD-based predictor
is designed to add ‘‘0s’’ to fill a multiple number of bits of the n-tuple
size in the input. Therefore, the standard deviation tends to increase
slightly in the experimental results, generating this oscillatory behavior.

References

[1] D.D. Penney, L. Chen, A survey of machine learning applied to computer
architecture design, 2019, arXiv preprint arXiv:1909.12373.

[2] D.A. Jiménez, C. Lin, Dynamic branch prediction with perceptrons, in: Proceed-
ings HPCA Seventh International Symposium on High-Performance Computer
Architecture, IEEE, 2001, pp. 197–206.

[3] D.A. Jiménez, Fast path-based neural branch prediction, in: Proceedings. 36th
Annual IEEE/ACM Int Symp on Microarchitecture, 2003. MICRO-36, 2003, pp.
243–252.

[4] A. Smith, Branch prediction with neural networks: Hidden layers and recurrent
connections, in: Dept of Comp Science UC, Vol. 92307, San Diego la Jolla, CA,
Citeseer, 2004.

[5] S.J. Tarsa, C.-K. Lin, G. Keskin, G. Chinya, H. Wang, Improving branch prediction
by modeling global history with convolutional neural networks, 2019, arXiv
preprint arXiv:1906.09889.

[6] Y. Mao, H. Zhou, X. Gui, J. Shen, Exploring convolution neural network for
branch prediction, IEEE Access 8 (2020) 152008–152016.

[7] P. Michaud, An alternative tage-like conditional branch predictor, ACM Trans.
Archit. Code Optim. (TACO) 15 (3) (2018) 1–23.

[8] I. Aleksander, W. Thomas, P. Bowden, WISARD-a radical step forward in image
recognition, Sensor Review 4 (3) (1984) 120–124, http://dx.doi.org/10.1108/
eb007637.

[9] S.L. Harris, D. Harris, Digital Design and Computer Architecture, RISC-V Ed.,
Morgan Kaufmann, 2021.

[10] J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach,
Elsevier, 2019.
18
[11] T. Jiang, N. Wu, F. Zhou, L. Zhao, F. Ge, J. Wen, Design of a high performance
branch predictor based on global history considering hardware cost, in: 2021
IEEE 4th International Conference on Electronics Technology, ICET, IEEE, 2021,
pp. 422–426.

[12] S. Mittal, A survey of techniques for dynamic branch prediction, Concurr.
Comput.: Pract. Exper. 31 (1) (2019) e4666.

[13] A. Seznec, P. Michaud, A case for (partially) Tagged geometric history length
branch prediction, J. Instruct.-Level Parallel. 8 (2006) 23.

[14] A. Seznec, Tage-sc-l branch predictors, in: JILP-Championship Branch Prediction,
2014, p. 9.

[15] Y. Mao, Z. Huiyang, X. Gui, Exploring Deep Neural Networks for Branch
Prediction, ECE Department, NC University, 2017.

[16] D.A. Jiménez, C. Lin, Perceptron learning for predicting the behavior of
conditional branches, in: IJCNN’01. International Joint Conference on Neu-
ral Networks. Proceedings (Cat. No. 01CH37222), Vol. 3, IEEE, 2001, pp.
2122–2127.

[17] D.A. Jiménez, C. Lin, Neural methods for dynamic branch prediction, ACM Trans.
Comput. Syst. (TOCS) 20 (4) (2002) 369–397.

[18] G.H. Loh, D.A. Jimenez, Reducing the power and complexity of path-based neural
branch prediction, in: Proceedings of the 5th Workshop on Complexity Effective
Design, WCED5, 2005, pp. 1–8.

[19] D.A. Jiménez, G.H. Loh, Controlling the power and area of neural branch
predictors for practical implementation in high-performance processors, in: 2006
18th International Symposium on Computer Architecture and High Performance
Computing, SBAC-PAD’06, IEEE, 2006, pp. 55–62.

[20] R.S. Amant, D.A. Jiménez, D. Burger, Low-power, high-performance analog
neural branch prediction, in: 2008 41st IEEE/ACM International Symposium on
Microarchitecture, IEEE, 2008, pp. 447–458.

[21] D.A. Jiménez, Piecewise linear branch prediction, in: 32nd International
Symposium on Computer Architecture, ISCA’05, IEEE, 2005, pp. 382–393.

[22] D.A. Jiménez, Generalizing neural branch prediction, ACM Trans. Archit. Code
Optim. (TACO) 5 (4) (2009) 1–27.

[23] D.A. Jiménez, Multiperspective perceptron predictor, in: 5th JILP Workshop on
Computer Architecture Competitions: Championship Branch Prediction, CBP-5,
2016, p. 5.

http://arxiv.org/abs/1909.12373
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb2
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb2
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb2
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb2
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb2
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb3
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb3
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb3
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb3
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb3
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb4
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb4
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb4
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb4
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb4
http://arxiv.org/abs/1906.09889
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb6
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb6
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb6
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb7
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb7
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb7
http://dx.doi.org/10.1108/eb007637
http://dx.doi.org/10.1108/eb007637
http://dx.doi.org/10.1108/eb007637
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb9
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb9
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb9
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb10
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb10
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb10
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb11
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb11
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb11
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb11
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb11
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb11
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb11
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb12
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb12
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb12
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb13
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb13
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb13
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb14
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb14
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb14
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb15
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb15
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb15
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb16
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb16
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb16
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb16
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb16
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb16
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb16
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb17
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb17
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb17
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb18
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb18
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb18
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb18
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb18
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb19
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb19
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb19
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb19
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb19
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb19
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb19
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb20
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb20
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb20
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb20
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb20
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb21
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb21
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb21
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb22
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb22
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb22
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb23
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb23
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb23
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb23
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb23


Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
[24] B. Grayson, J. Rupley, G.Z. Zuraski, E. Quinnell, D.A. Jiménez, T. Nakra, P.
Kitchin, R. Hensley, E. Brekelbaum, V. Sinha, et al., Evolution of the samsung
exynos cpu microarchitecture, in: 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture, ISCA, IEEE, 2020, pp. 40–51.

[25] W.W. Bledsoe, I. Browning, Pattern recognition and reading by machine, in:
Papers Presented At the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM
Computer Conference, 1959, pp. 225–232.

[26] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous
activity, The Bull. Math. Biophys. 5 (4) (1943) 115–133.

[27] I. Aleksander, M. De Gregorio, F.M.G. França, P.M.V. Lima, H. Morton, A
brief introduction to weightless neural systems, in: ESANN, Citeseer, 2009, pp.
299–305.

[28] N. Spruston, G. Stuart, M. Häusser, Dendritic integration, Dendrites (1999)
231–271.

[29] L.A.L. Filho, L.F. Oliveira, A.L. Filho, G.P. Guarisa, P.M. Lima, F.M. França,
Prediction of palm oil production with an enhanced n-tuple regression network,
in: ESANN, 2019, p. 6.

[30] B.P. Grieco, P.M. Lima, M. De Gregorio, F.M. França, Producing pattern examples
from ‘‘mental’’ images, Neurocomputing 73 (7–9) (2010) 1057–1064.

[31] D. Shkadarevich, Branch prediction, 2020, https://www.kaggle.com/
dmitryshkadarevich/branch-prediction.

[32] T.A. Khan, M. Ugur, K. Nathella, D. Sunwoo, H. Litz, D.A. Jiménez, B.
Kasikci, Whisper: Profile-guided branch misprediction elimination for data center
applications, MICRO, IEEE, 2022, pp. 19–34.

[33] L. Santiago, L. Verona, F. Rangel, F. Firmino, D.S. Menasché, W. Caarls, M.
Breternitz Jr., S. Kundu, P.M. Lima, F.M. França, Weightless neural networks as
memory segmented bloom filters, Neurocomputing 416 (2020) 292–304.

[34] S. McFarling, Combining branch predictors, Tech. rep., Citeseer, 1993.
[35] T.-Y. Yeh, Y.N. Patt, A comparison of dynamic branch predictors that use

two levels of branch history, in: Proceedings of the 20th Annual International
Symposium on Computer Architecture, 1993, pp. 257–266.

[36] D. Jiménez, Idealized piecewise linear branch prediction, J. Instr.-Level
Parallelism 7 (2005) 1–11.

Luis A.Q. Villon is a master’s student in System Engineering
and Computer Science at Federal University of Rio de
Janeiro (UFRJ). Currently, his research is associated with
weightless neural networks and machine learning tech-
niques applied to computer architecture, specially branch
prediction. In addition, Luis is a B.S. student in physics at
Federal Fluminense University (UFF). In the future, his main
interest is to explore the convergence in the fundamentals
of quantum mechanics, artificial intelligence and computer
architecture.

Zachary Susskind is a Ph.D. student in Computer Engineer-
ing at The University of Texas at Austin, where he received
his B.Sc. in 2019. His research interests include algorithm-
hardware co-design, efficient machine learning, and other
topics related to deploying AI in resource constrained
‘‘edge’’ environments.

Alan T.L. Bacellar is a bachelor’s student in Applied
Mathematics at Federal University of Rio de Janeiro (UFRJ),
advised by Felipe M. G. França and Priscila M.V. Lima. His
research interests include artificial intelligence, weightless
neural networks, deep learning, distributed algorithms and
optimization.

Igor Miranda obtained the B.Eng (2007) and M.Eng (2009)
degrees in Electronic Engineering and a Ph.D. in Industrial
Engineering (2017) from the Federal University of Bahia,
Brazil. He joined the Division of Electrical and Computer
Engineering, Federal University of Recôncavo da Bahia, as
a lecturer in 2013, where he has been assistant professor
since 2018. From 2018 to 2019, during a sabbatical year,
he was a postdoctoral research associate at the University of
Stellenbosch. Since 2022, he has been a visiting researcher
at the University of Texas at Austin, supported by the
19
Fulbright program. His research interests lie in the areas
of signal processing, machine learning and VLSI design.

Leandro S. de Araújo is Professor of Computer Science and
Information System at the Universidade Federal Fluminense
(UFF), Brazil. He obtained his D.Sc. (2019) and M.Sc. (2016)
in Systems and Computer Engineering at COPPE, Federal
University of Rio de Janeiro (UFRJ), Brazil and B.Sc. in
Computer Science from the State University of Rio de
Janeiro (2014). He has experience in the IT industry with
the development of applications on the web and desktop
environments. His research interests include Cognitive Ar-
chitecture, Hardware-Assisted Security, Machine Learning,
Reconfigurable Computing and Parallel Programming.

Priscila M.V. Lima B.Sc. in Computer Science from Federal
University of Rio de Janeiro (UFRJ) (Magna cum Laude,
1982), M.Sc. in Systems Engineering and Computer Sci-
ence from COPPE/UFRJ (1987), and her Ph.D. from the
Department of Computing, Imperial College London, U.K.
(2000). She holds the Chair of Artificial Intelligence of
the Brazilian College of Advanced Studies (CBAE) of the
UFRJ, Brazil, as a Professor at Tercio Pacitti Institute,
and Professor at the Systems Engineering and Computer
Science Program, COPPE, UFRJ, Brazil. She has research
and teaching interests in artificial intelligence, artificial neu-
ral networks, computational intelligence, weightless neural
networks, computational logic, distributed algorithms and
other aspects of parallel and distributed computing.

Mauricio Breternitz Jr. is a Principal Investigator at Iscte
Instituto Universitário de Lisboa. He received the Electronics
Engineer degree with honors at ITA-Instituto Tecnologico
de Aeronautica, Brazil, a MSc in Computer Science at
UNICAMP, Brazil and the Ph.D. in Computer Engineering at
Carnegie-Mellon University. He worked at IBM (TJWatson
and Austin), Motorola, Intel Labs, TimesN Systems, and
AMD Research in Austin,TX. Previously, Mauricio conceived
and pushed through deployment innovative algorithmic &
microarchitectural ideas that have had significant posi-
tive product impact. Mauricio worked on exascale system
proposals (part of the AMD Research contribution to the
U.S.Department of Energy Exascale Program), on novel
algorithms utilizing CPU and GPUs accelerating machine
learning, on system-level and architectural-level character-
ization of cloud workloads and on novel approaches to
utilizing CPU and GPU. Mauricio holds 56 U.S. patents and
has 55 more pending.

Lizy K. John holds the Truchard Foundation Chair in
Engineering in the Department of Electrical & Computer
Engineering at The University of Texas at Austin. Her
research is in the areas of computer architecture, multi-
core processors, memory systems, performance evaluation
and benchmarking, workload characterization, and reconfig-
urable computing. Prof. John’s research has been supported
by the United States National Science Foundation, Semi-
conductor Research Consortium (SRC), DARPA, Lockheed
Martin, AMD, ARM, Meta, Ampere, Oracle, Huawei, IBM,
Intel, Motorola, Freescale, Dell, Samsung, Texas Instruments,
etc. She is recipient of NSF CAREER award, UT Austin
Engineering Foundation Faculty Award, Halliburton, Brown
and Root Engineering Foundation Young Faculty Award,
University of Texas Alumni Association Teaching Award,
The Pennsylvania State University Outstanding Engineering
Alumnus Award, etc. Lizy John holds 15 U. S. patents
and has published four books, 16 book chapters, 300+
refereed journal and conference publications, and more than
50 workshop papers. Prof. John is the Editor-in-Chief of
IEEE Micro, and has served in the editorial boards of IEEE
Transactions on Computers, IEEE Transactions on VLSI, IEEE
Transactions on Sustainable Computing, IEEE Computer
Architecture Letters, ACM Transactions on Architectures and
Code Optimization. She is an IEEE Fellow, ACM Fellow, and
Fellow of the National Academy of Inventors.

http://refhub.elsevier.com/S0925-2312(23)00760-9/sb24
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb24
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb24
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb24
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb24
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb24
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb24
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb25
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb25
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb25
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb25
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb25
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb26
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb26
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb26
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb27
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb27
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb27
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb27
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb27
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb28
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb28
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb28
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb29
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb29
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb29
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb29
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb29
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb30
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb30
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb30
https://www.kaggle.com/dmitryshkadarevich/branch-prediction
https://www.kaggle.com/dmitryshkadarevich/branch-prediction
https://www.kaggle.com/dmitryshkadarevich/branch-prediction
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb32
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb32
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb32
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb32
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb32
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb33
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb33
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb33
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb33
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb33
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb34
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb35
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb35
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb35
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb35
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb35
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb36
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb36
http://refhub.elsevier.com/S0925-2312(23)00760-9/sb36


Neurocomputing 555 (2023) 126637L.A.Q. Villon et al.
Felipe M.G. França is a Researcher at the Instituto de
Telecomunicações, Universidade do Porto, Portugal, and
an Invited Full Professor of Computer Science and Engi-
neering, COPPE, Universidade Federal do Rio de Janeiro
(UFRJ), Brazil. He received his Electronics Engineer degree
from UFRJ (1982), the M.Sc. in Computer Science from
COPPE/UFRJ (1987), and his Ph.D. from the Department
of Electrical and Electronics Engineering of the Imperial
College London, U.K. (1994). He has published over 250
scientific papers and 2 granted patents. He has experience in
Computer Science and Electronics Engineering, acting on the
following subjects: artificial neural networks, computational
intelligence, weightless neural networks, computer architec-
ture, cryptographic circuits, dataflow computing, distributed
20
algorithms, collective robotics, intelligent transportation
systems.

Diego L.C. Dutra is currently a professor at the Federal
University of Rio de Janeiro (UFRJ), Brazil, where he
is a member of the COMPASS Laboratory and leader of
the HEADS research group. He worked as a postdoctoral
researcher in the MOSAIC Lab until 2017. He received
his D.Sc. in Systems Engineering and Computer Science
Program from UFRJ in 2015. His research interests in-
clude computer architecture, high-performance computing,
virtualization, cloud computing, microarchitecture security,
mobile systems, and Software-Defined Systems.


	A conditional branch predictor based on weightless neural networks
	Introduction
	Background
	Conditional Branch Predictor
	Neural-based branch predictors
	Weightless Neural Networks
	WiSARD

	Proposal
	Input Composition
	Predictor Architecture

	Methodology
	Dataset
	Experimental setup

	Results and Discussion
	Best Result - Preliminary Exploration
	Sensitivity Analysis
	Best predictor for each dataset
	Analysis of specialized predictor classifiers

	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Description of features
	Program Counter (PC)
	Global History Register (GHR)
	XOR operation between PC and GHR
	Local History Register (LHR)
	Global Path History Register (GPHR)

	Appendix B. Supplementary Sensitivity Analysis
	References


