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Introduction
• Integration of neural and symbolic learning paradigms in
the same computational substract, is of growing interest.

•However, this could be computationally expensive, in
terms of memory and time-costs, with deployability chal-
lenges in online learning.

•Weightless neural networks (WNNs) use LUTs for compu-
tation, capturing complex behaviors with shallow models.

•We propose using LUT-based neural networks as Neuro-
Symbolic learning systems, bringing these to the level of
integrated circuits.

WiSARD
•Early WNN for classification [1]. Use many small LUTs,
with a subset of model inputs as inputs to the LUTs.

–One set of LUTs for each output class ”discriminator”.

•Learn n-tuple ”subpatterns”in training data. For inference
we want more LUTs to output 1 in the correct class’s
discriminator than in any other (Figure 2).
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Figure 1: A WiSARD model.

BTHOWeN & ULEEN
• Improved WNN, with a FPGA-based inference accelerator.

•BTHOWeN [8] incorporates arithmetic-free hashing,
counting bloom filters, and bleaching.

–Consumes 85-99% fewer cycles and 80-95% less energy
compared to iso-accuracy DNNs.

•ULEEN [7] incorporates ensembles and pruning of LUTs.

–Excels over iso-accuracy Binary Neural Networks [4]

Differentiable Weightless Neural Networks (DWNs)
•Multi-layer WNNs, with directly-chained
layers of LUTs.

–An Extended Finite Difference (EFD)
based learning rule.

–A Learnable Mapping interconnect layer.

–An arithmetic-free Learnable Reduction
technique for tiny circuits.

–A Spectrial Normalization based regular-
ization technique.

•DWNs achieve the lowest average rank
and L1 norm, with comparable parame-
ter sizes against other models (Table 1).

DWN
DiffLogicNet

AutoGluon
(Ours) XGBoost

Avg Rank 2.5 4.5 3.4
Avg L1 0.005 0.016 0.009

Table 1: Rank and L1 accuracy loss of DWNs vs. leading

approaches to tabular machine learning datasets.
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Figure 2: A tiny DWN for the Anderson/Fisher Iris dataset.

DWNs on FPGAs
•DWN model LUTs can be directly converted to hardware LUTs, which are abundant on FPGAs
(Figure 3); for best efficiency, LUT sizes should be matched between the model and the FPGA.
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Figure 3: FPGAs provide abundant hardware LUTs within CLB

blocks.
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Figure 4: Performance of DWNs versus“LUT-based“ models.
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Figure 5: Performance of DWN FPGA models versus energy-efficient prior work.

•Figure 4 compares DWNs against recent“LUT-based“ models PolyLUT [3] and NeuraLUT [2].

•Figure 5 compares DWNs against iso-accuracy models for BNNs (FINN [9]), SOTA WNNs
(ULEEN [7]), and DiffLogicNet [6], which they outperform in size, speed, and efficiency.

DWNs for Tiny Circuits
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Figure 6: Accuracies and estimated areas for DWNs, DiffLogicNets, and Tiny Classifer Circuits.

•Figure 6 compares DWNs implemented as tiny ICs against estimated
NAND2 equivalent areas for Tiny Classifier Circuits [5].

Neurosymbolic Inference Engines

•Differentiable Weightless Neural Networks can be considered as a symbol
extractor, or ultra-fast ultra-thin neurosymbolic inference engine.

•Learnable input mapping can be considered as rule-based learning.

•LUT contents can be considered as the neural component.

•Ongoing efforts aim to integrate explicit knowledge or rules into DWNs,
on top of those implicitly acquired during training.
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