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Introduction
e Integration of neural and symbolic learning paradigms in
the same computational substract, is of growing interest.

e However, this could be computationally expensive, in
terms of memory and time-costs, with deployability chal-
lenges in online learning.

o Weightless neural networks (WNNs) use LUTs for compu-
tation, capturing complex behaviors with shallow models.

e \We propose using LU T-based neural networks as Neuro-
Symbolic learning systems, bringing these to the level of
integrated circuits.

WiSARD

e Early WNN for classification [1]. Use many small LUTs,
with a subset of model inputs as inputs to the LU Ts.

—One set of LUTs for each output class "discriminator”.

e Learn n-tuple "subpatterns” in training data. For inference
we want more LUTs to output 1 in the correct class's
discriminator than in any other (Figure 2).
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Figure 1: A WiSARD model.

BTHOWeN & ULEEN

e Improved WNN, with a FPGA-based inference accelerator.

e BTHOWeN [8] incorporates arithmetic-free hashing,
counting bloom filters, and bleaching.

—Consumes 85-99% fewer cycles and 80-95% less energy
compared to iso-accuracy DNNSs.

e ULEEN [7] incorporates ensembles and pruning of LUTs.
—Excels over iso-accuracy Binary Neural Networks [4]

Differentiable Weightless Neural Networks (DWNs)

e Multi-layer WNNs, with directly-chained
layers of LUTs.

—An Extended Finite Difference (EFD)

based learning rule.
—A Learnable Mapping interconnect layer.

—An arithmetic-free Learnable Reduction
technique for tiny circuits.

—A Spectrial Normalization based regular-
ization technique.

e DWNSs achieve the lowest average rank
and L1 norm, with comparable parame-
ter sizes against other models (Table 1).

DWN .. : AutoGluon

(Ours) DiffLogicNet XGBoost
Avg Rank 2.5 4.5 3.4
Avg L1  0.005 0.016 0.009

Table 1: Rank and L1 accuracy loss of DWNs vs. leading
approaches to tabular machine learning datasets.

DWNs on FPGAs
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Figure 2: A tiny DWN for the Anderson/Fisher Iris dataset.

¢ DWN model LUTs can be directly converted to hardware LUTs, which are abundant on FPGAs
(Figure 3); for best efficiency, LUT sizes should be matched between the model and the FPGA.
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Figure 3: FPGAs provide abundant
blocks.
30%
4 - WEE PolylLUT
25% - —~ 106 m NeuralUT
5 20% - )‘—: 5 E 3 | == DWN (Ours)
W 159 - 5 0 -
o =] 2]
1 10% A o 104 K
o 2
5% - 10° 4 O
0% - : 0 -
MNIST JSC-S JSC-L MNIST JSC-S JSC-L MNIST JSC-S JSC-L
Figure 4: Performance of DWNs versus “LU T-based” models.
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Figure 5: Performance of DWN FPGA models versus energy-efficient prior work.

o Figure 4 compares DWNs against recent “LUT-based” models PolyLUT [3] and NeuraLUT |[2].

o Figure 5 compares DWNs against iso-accuracy models for BNNs (FINN [9]), SOTA WNNs
(ULEEN [7]), and DiffLogicNet [6], which they outperform in size, speed, and efficiency.

DWNs for Tiny Circuits

50%

B DiffLogicNet Tiny Class. B DWN (Ours)

40% -
S 30% -
L
0 20% -
|G_J (0]

ol 11 ]

- A s = BN -

o 836 4955 16432 1816
)
<< 600 -
=
o
> 400 |
S
0
~ 200 - I I
: i
% O | | . | . | | . | . | . | - | - | - 1 -

phonemes\(\n—seg higg> austra\'\aﬂnomao Segmef‘&\m\booﬂ%\msﬂne-Xasm‘me sy\Vine plood

Figure 6: Accuracies and estimated areas for DWNs, DiffLogicNets, and Tiny Classifer Circuits.

e Figure 6 compares DWNs implemented as tiny ICs against estimated
NAND2 equivalent areas for Tiny Classifier Circuits [5].

Neurosymbolic Inference Engines

e Differentiable Weightless Neural Networks can be considered as a symbol
extractor, or ultra-fast ultra-thin neurosymbolic inference engine.

e earnable input mapping can be considered as rule-based learning.
e LUT contents can be considered as the neural component.

e Ongoing efforts aim to integrate explicit knowledge or rules into DWNs,
on top of those implicitly acquired during training.
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