

UFRJ WTEXAS LUT based Neural Networks as Neuro-Symbolic Systems

Lizy K. John¹, Priscila M. V. Lima², Alan T. L. Bacellar¹, Shashank Nag¹, Eugene John³, and Felipe M. G. França⁴ 1- UT Austin, Austin, USA; 2- UFRJ, Rio de Janeiro, Brazil; 3- UTSA, San Antonio, USA; 4- IT-Porto, Porto, Portugal

Introduction

- Integration of neural and symbolic learning paradigms in the same computational substract, is of growing interest.
- However, this could be computationally expensive, in terms of memory and time-costs, with deployability challenges in online learning.
- Weightless neural networks (WNNs) use LUTs for computation, capturing complex behaviors with shallow models.
- We propose using LUT-based neural networks as Neuro-Symbolic learning systems, bringing these to the level of integrated circuits.

WiSARD

- Early WNN for classification [1]. Use many small LUTs, with a subset of model inputs as inputs to the LUTs.
- -One set of LUTs for each output class "discriminator".
- Learn n-tuple "subpatterns" in training data. For inference we want more LUTs to output 1 in the correct class's discriminator than in any other (Figure 2).

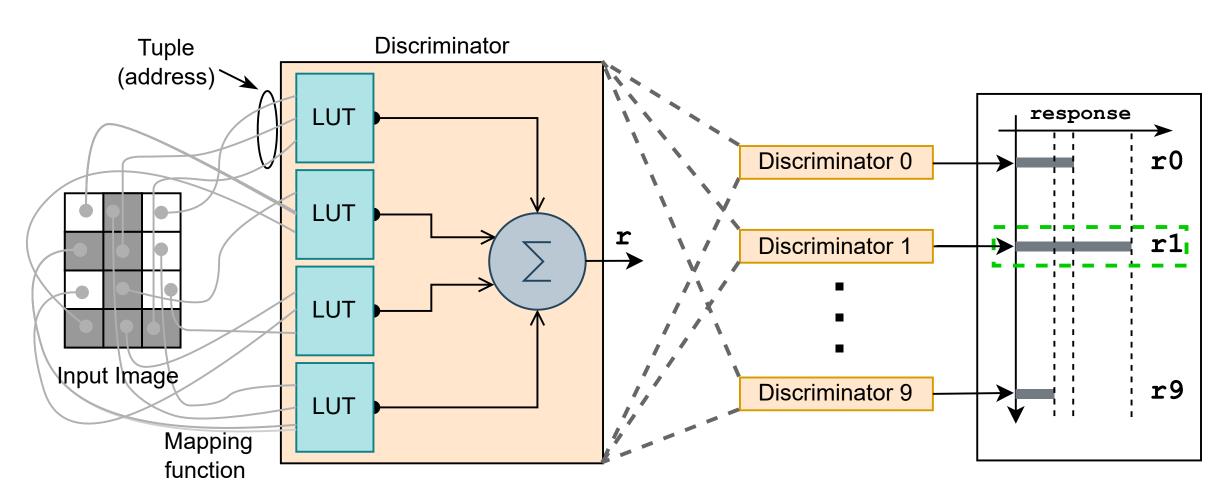


Figure 1: A WiSARD model.

BTHOWeN & ULEEN

- Improved WNN, with a FPGA-based inference accelerator.
- BTHOWeN [8] incorporates arithmetic-free hashing, counting bloom filters, and bleaching.
- -Consumes 85-99% fewer cycles and 80-95% less energy compared to iso-accuracy DNNs.
- ULEEN [7] incorporates ensembles and pruning of LUTs.
- -Excels over iso-accuracy Binary Neural Networks [4]

Differentiable Weightless Neural Networks (DWNs)

- Multi-layer WNNs, with directly-chained layers of LUTs.
- -An Extended Finite Difference (EFD) based learning rule.
- -A Learnable Mapping interconnect layer.
- -An arithmetic-free Learnable Reduction technique for tiny circuits.
- A Spectrial Normalization based regularization technique.
- DWNs achieve the lowest average rank and L1 norm, with comparable parameter sizes against other models (Table 1).

	Ours)	DiffLogicNet	AutoGluon XGBoost
Avg Rank	2.5	4.5	3.4
	0.005	0.016	0.009

Table 1: Rank and L1 accuracy loss of DWNs vs. leading approaches to tabular machine learning datasets.

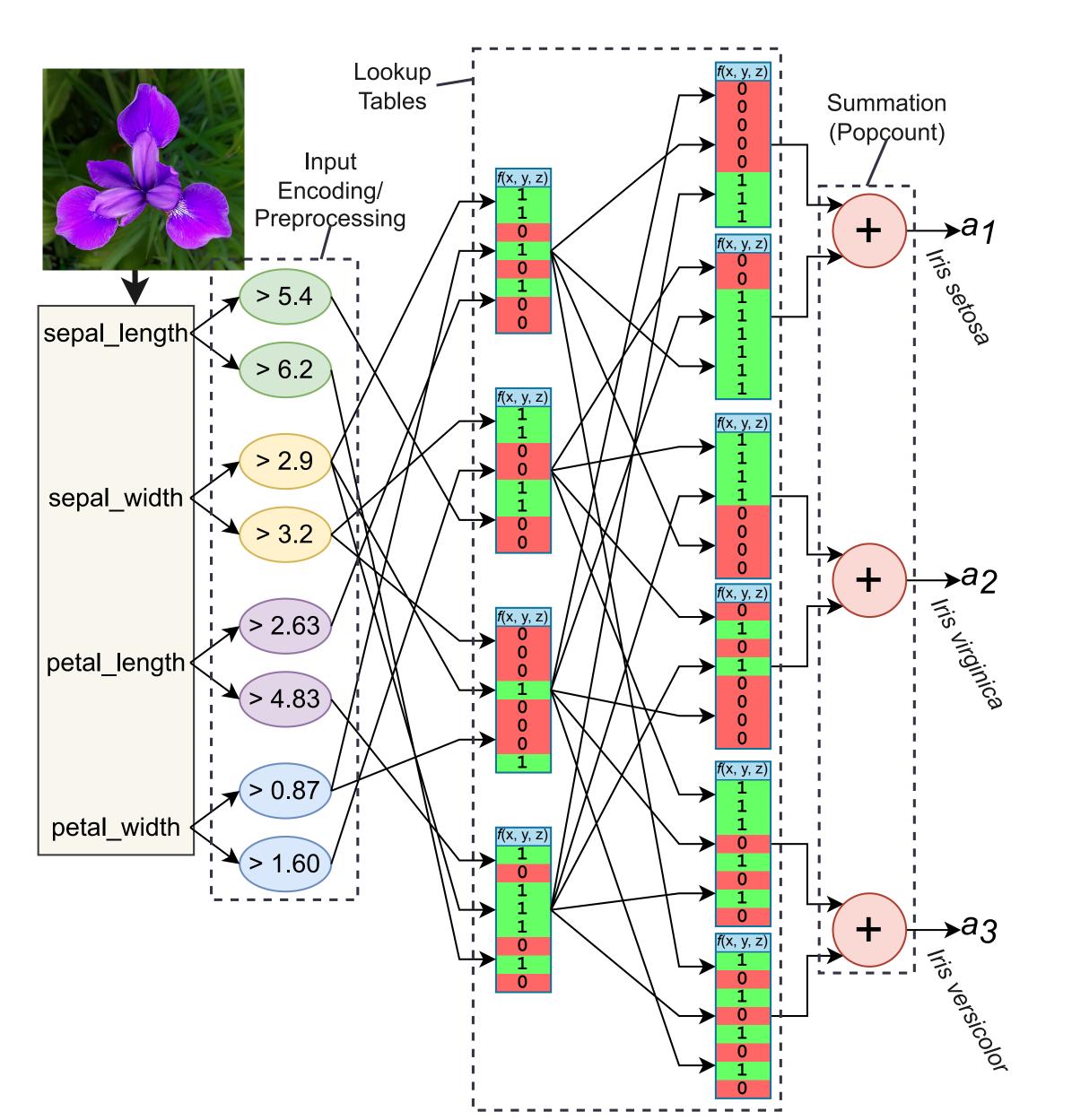
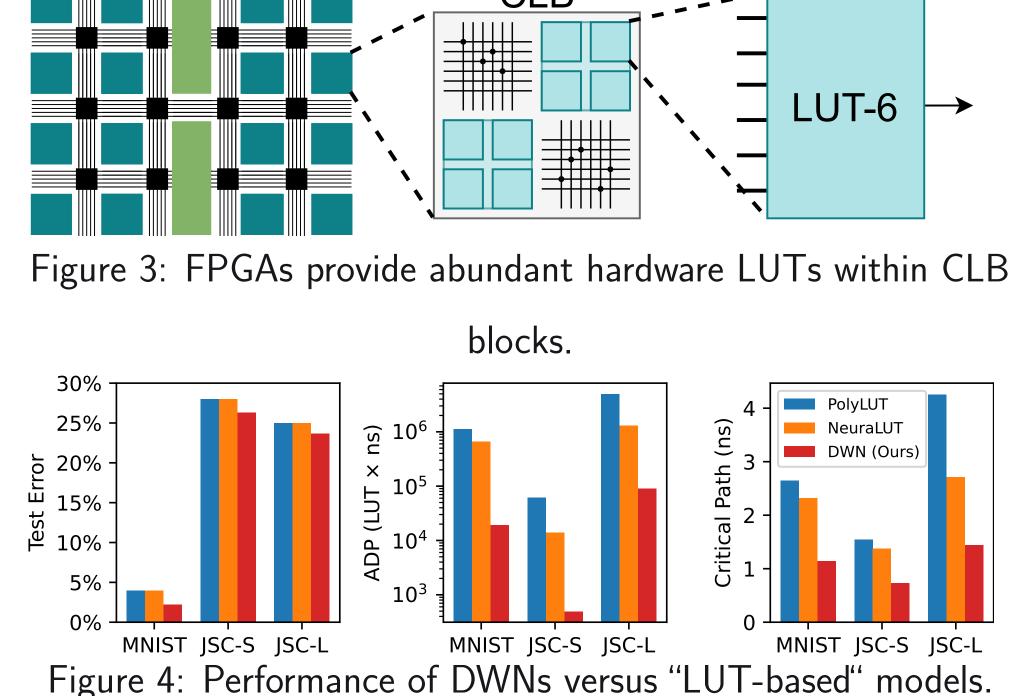


Figure 2: A tiny DWN for the Anderson/Fisher Iris dataset.

DWNs on FPGAs

• DWN model LUTs can be directly converted to hardware LUTs, which are abundant on FPGAs (Figure 3); for best efficiency, LUT sizes should be matched between the model and the FPGA.



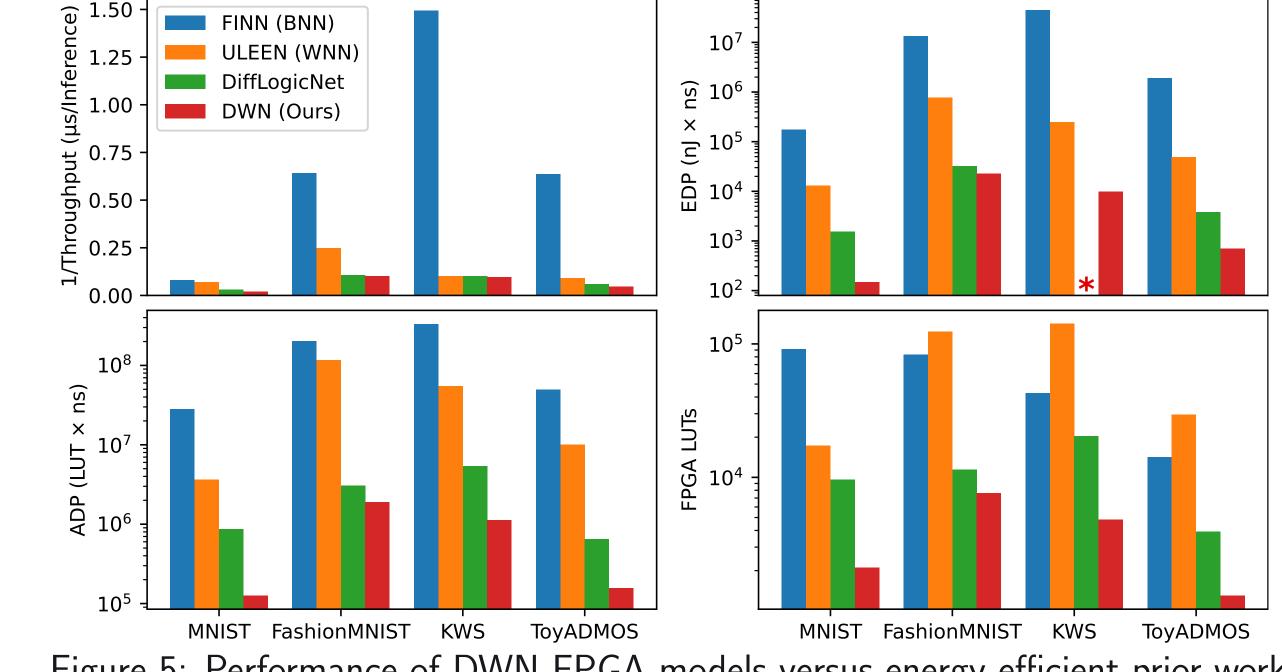
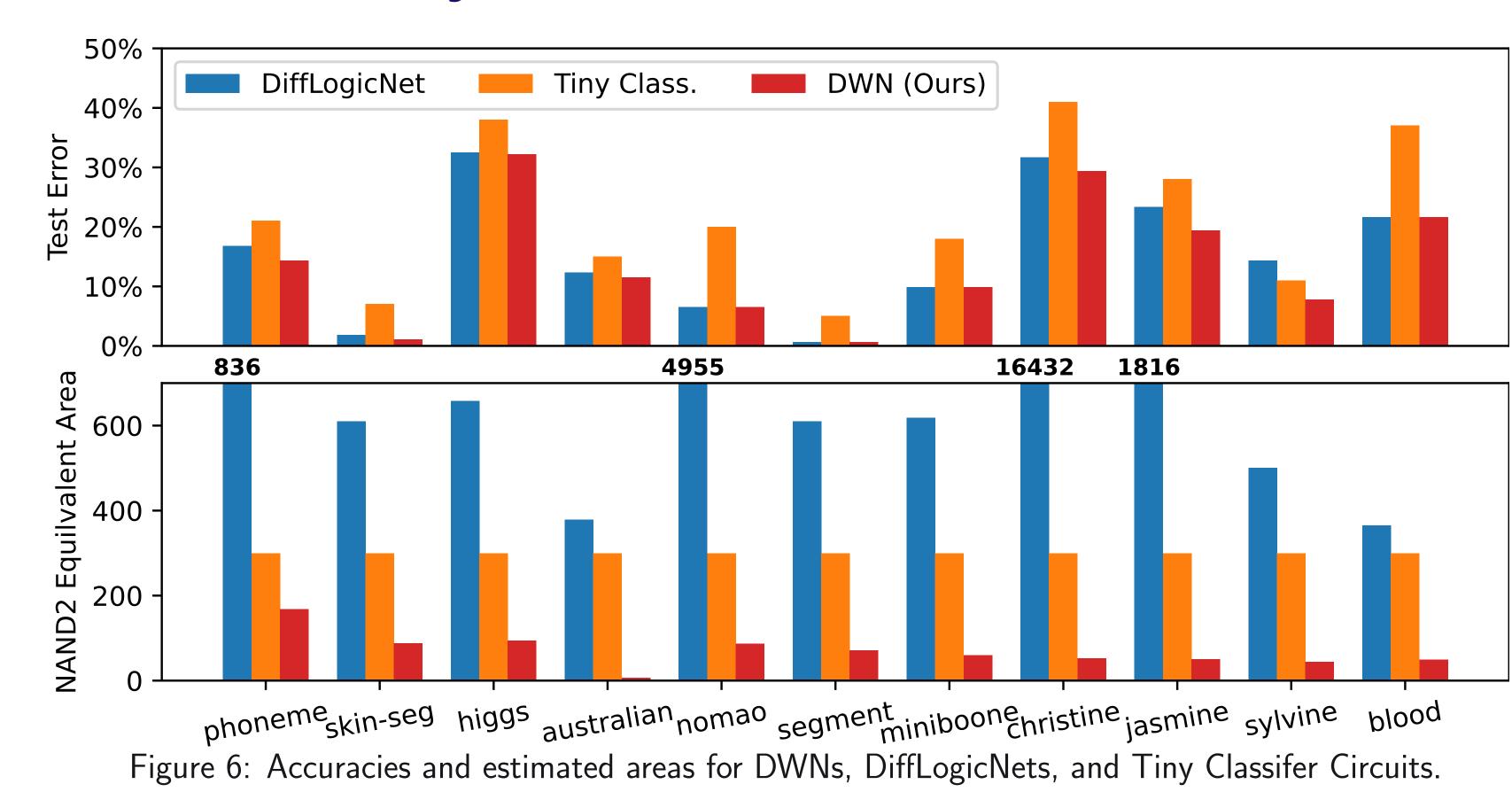


Figure 5: Performance of DWN FPGA models versus energy-efficient prior work.

- Figure 4 compares DWNs against recent "LUT-based" models PolyLUT [3] and NeuraLUT [2].
- Figure 5 compares DWNs against iso-accuracy models for BNNs (FINN [9]), SOTA WNNs (ULEEN [7]), and DiffLogicNet [6], which they outperform in size, speed, and efficiency.

DWNs for Tiny Circuits



• Figure 6 compares DWNs implemented as tiny ICs against estimated NAND2 equivalent areas for Tiny Classifier Circuits [5].

Neurosymbolic Inference Engines

- Differentiable Weightless Neural Networks can be considered as a symbol extractor, or ultra-fast ultra-thin neurosymbolic inference engine.
- Learnable input mapping can be considered as rule-based learning.
- LUT contents can be considered as the neural component.
- Ongoing efforts aim to integrate explicit knowledge or rules into DWNs, on top of those implicitly acquired during training.

References

- [1] I Aleksander, WV Thomas, and PA Bowden. WISARD a radical step forward in image recognition. 1984.
- [2] Marta Andronic and George A. Constantinides. NeuraLUT: Hiding Neural Network Density in Boolean Synthesizable Functions. 2024.
- [3] Marta Andronic and George A. Constantinides. PolyLUT: learning piecewise polynomials for ultra-low latency FPGA LUT-based inference. 2023.
- [4] Itay Hubara et al. Binarized Neural Networks. 2016.
- [5] Konstantinos lordanou et al. Low-cost and efficient prediction hardware for tabular data using tiny classifier circuits. 2024.
- [6] Felix Petersen et al. Deep Differentiable Logic Gate Networks. 2022.
- [7] Zachary Susskind et al. ULEEN: A Novel Architecture for Ultra-low-energy Edge Neural Networks. 2023.
- [8] Zachary Susskind et al. Weightless Neural Networks for Efficient Edge Inference. 2022. doi: https: //doi.org/10.1145/3559009.3569680.
- [9] Y Umuroglu et al. FINN: A Framework for Fast, Scalable Binarized Neural Network Inference. 2017.

Acknowledgement: This research was supported in part by Semiconductor Research Corporation (SRC) Task 3148.001, National Science Foundation (NSF) Grant #2326894 & #2425655, NVIDIA Applied Research Accelerator Program Grant. Any opinions, findings, conclusions, or recommendations are those of the authors and not of the funding agencies.