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Graph neural networks (GNNs) are of great interest in real-life applications such as citation networks and drug

discovery owing to GNN’s ability to apply machine learning techniques on graphs. GNNs utilize a two-step

approach to classify the nodes in a graph into pre-defined categories. The first step uses a combination kernel

to perform data-intensive convolution operations with regular memory access patterns. The second step uses

an aggregation kernel that operates on sparse data having irregular access patterns. These mixed data patterns

render CPU/GPU-based compute energy-inefficient. Von Neumann based accelerators like AWB-GCN [7] suf-

fer from increased data movement, as the data-intensive combination requires large data movement to/from

memory to perform computations. ReFLIP [8] performs resistive random access memory based in-memory

(PIM) compute to overcome data movement costs. However, ReFLIP suffers from increased area requirement

due to dedicated accelerator arrangement, and reduced performance due to limited parallelism and energy due

to fundamental issues in ReRAM-based compute. This article presents a scalable (non-exponential storage re-

quirement), DAC/ADC-less PIM-based combination, with (i) early compute termination and (ii) pre-compute

by reconfiguring SOC components. Graph and sparsity-aware near-memory aggregation using the proposed

compute-as-soon-as-ready (CAR) broadcast approach improves performance and energy further. NEM-GNN

achieves ∼80–230x, ∼80–300x, ∼850–1,134x, and ∼7–8x improvement over ReFLIP, in terms of performance,

throughput, energy efficiency, and compute density.
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1 INTRODUCTION

Over the past decade, there has been widespread utilization of deep learning models such as
convolutional neural networks and recommendation networks in diverse fields like image and
video processing. These models primarily operate within the realm of Euclidean data, wherein
data inputs conform to a structured and precisely defined n-dimensional space. However, these

Authors’ address: S. R. Sundara Raman, L. John, and J. P. Kulkarni, The University of Texas at Austin, 2515 Speedway,

Austin, TX 78712; e-mails: s.siddhartharaman@utexas.edu, ljohn@ece.utexas.edu, jaydeep@austin.utexas.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 1544-3973/2024/05-ART39

https://doi.org/10.1145/3652607

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 39. Publication date: May 2024.

https://orcid.org/0000-0002-3563-8560
https://orcid.org/0000-0002-8747-5214
https://orcid.org/0000-0002-0258-6776
https://doi.org/10.1145/3652607
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3652607
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652607&domain=pdf&date_stamp=2024-05-21


39:2 S. R. Sundara Raman et al.

well-established models exhibit inefficiency when confronted with domains like citation networks,
molecular chemistry, and electric grids [8, 9], characterized by non-Euclidean data structures such
as graphs and manifold geometries (3D surface structures). In these cases, the data inputs devi-
ate from structured paradigms, and the pursuit to encapsulate them within a strictly defined n-
dimensional space leads to loss of valuable information. Consequently, geometric deep learning
[2] has emerged as a solution tailored to the idiosyncrasies of non-Euclidean data relationships.
One of the approaches geared toward processing graph-based data hinges on the utilization of
Graph Neural Network (GNN) models. These models are adept at handling graph-based inputs,
facilitating the classification of nodes in a graph into distinct categorical groups.

GNNs employ two fundamental mechanisms: (i) a combination kernel, akin to the convolution
process in CNNs, is harnessed to encode the information within nodes, and (ii) aggregation kernels
are then utilized to encode the information in edges, which helps to comprehend the relationship
between graph nodes. Regarding computations, the operations associated with the combination
kernel are notably data intensive, exhibiting regular memory access patterns. However, operations
linked to the aggregation kernel are characterized by sparsity and irregularity. The mixed data pat-
tern is a major limiter behind using CPU/GPU for GNN compute [28]. Various accelerator designs
have been proposed to tackle this particular concern.

These accelerators can broadly be classified into traditional von Neumann based accelera-
tors/processing in/near-memory designs. The proposed designs (both von Neumann/Processing

in Memory (PIM)) are dedicated domain-specific accelerators that require periodic interaction
with the host, resulting in energy overhead. The existing von Neumann based accelerator designs
like AWB-GCN [7] and HyGCN [28] incur data movement cost for transferring data from the
processor to memory. Since the combination kernel uses data-intensive operations, requiring pe-
riodic data movement costs, this architecture is energy-inefficient. The state-of-the-art PIM/near-
memory architectures for solving traditional graph algorithms, and GNNs, like ReFLIP [8], exhibit
reduction in data movement by enabling computations within memory [19]. These architectures
use crossbar Resistive Random Access Memory (ReRAM) arrays, Digital-to-Analog Con-

verters (DACs), and Analog-to-Digital Converters (ADCs). The problems specifically with
ReFLIP are the following. First, this is a dedicated accelerator requiring periodic host-accelerator
interaction, leading to energy inefficiency. Second, the presence of DACs/ADCs renders the ar-
chitecture susceptible to process variations, causing a decline in accuracy. Third, exponential in-
crease in storage requirement with increased bit-precision/resolution for GNN compute incurs
scalability challenges. Fourth, aggregation is performed only upon the completion of combina-
tion operations, lacking any overlap between them, limiting performance. Fifth, sparse in-memory
aggregation leads to compute density challenges. The major contributions of this work are the
following:

— Re-configurability: SOC components like L1/L2 cache are reconfigured to realize NEM-GNN
without requiring memory array modifications/dedicated accelerator arrangement, thereby
improving energy of the design.

— DAC/ADC-less: Bit-serial PIM architectures for combination (NEM-C1, NEM-C2, NEM-C3)
with early termination of compute and pre-compute strategies without DAC/ADC, achieving
highly accurate compute.

— Scalability: NEM-GNN is scalable to high bit-precision compute without requiring exponen-
tial storage for the compute array.

— Graph-aware: Near-memory aggregation optimized specifically with Compute-as-soon-as-

Ready (CAR) and “broadcast” approaches to hide aggregation latency, by overlapping com-
bination and aggregation completely.
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Fig. 1. Undirected, unweighted graph with five nodes and six edges passing through a one-layer GCN. Com-
bination showing MAC between dense feature and weight matrices, and aggregation showing MAC between
sparse D–1 and adjacency matrices to generate the final MAC before ReLU and softmax function.

— Sparsity-aware: Leveraging sparsity in kernels to minimize the unnecessary compute and
utilizing the high-throughput of the design to improve compute density further.

— NEM-GNN outperforms ReFLIP by ∼80–230x, ∼80–300x, ∼850–1,134x and ∼7–8x in terms
of performance, throughput, energy efficiency, and compute density.

2 BACKGROUND

2.1 Graph Neural Networks

Graphs, characterized by nodes and edges, have been a traditional and crucial data structure to rep-
resent unstructured data across a diverse range of real-world applications. In the pursuit of facili-
tating classification and clustering of graph nodes, considerable research effort has been devoted
to GNNs. These networks are designed to extract distinctive features from graph structures and to
enable an understanding of relationships among nodes within a graph. A variety of GNN variants,
including Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), and
GraphSage [24, 25] are being researched extensively. These explorations are geared toward unrav-
eling specific attributes of interest in various domains such as social network modeling, molecular
chemistry, and citation networks. A GNN model is composed of multiple layers. In each GNN layer,
every node from the input graph undergoes processing by two kernels: the combination and the
aggregation kernel.

The function of the combination kernel is to convert the feature vectors (H), which characterize
individual nodes in the graph, into an equivalent vector. This process entails the Multiplication

and Accumulation (MAC) of the H values associated with each node in the graph using a weight
matrix, akin to what is seen in a fully connected layer of a traditional neural network. The formula-
tion of this kernel remains constant across all GNNs within the lth layer and is expressed generically
for the nth node as Hcomb[l][n] = Hlayer[l-1][n]*W[l]. When l = 1, the Hlayer[l-1] becomes the
same as the input feature vector. For other layers, it is the final output of previous layer, similar to
a traditional CNN. Across all nodes, feature vectors can be concatenated to form the feature matrix
Hcomb[l] = {Hcomb[l][n]}.

The aggregation kernel combines attributes from neighboring nodes, represented by H, to gain
insight into interactions with adjacent nodes and to mitigate data irregularities, by averaging
across nodes [14]. This process varies across different GNN models. The aggregation mechanism
for the lth layer is denoted as Hagg[l] = M*Hcomb[l], with the matrix M being contingent upon the
specific GNN model in use. The aggregation mechanisms associated with different GNN models
are as follows.

For GCN, M = D–1*A, where D is the degree matrix normalized over the node degree, typi-
cally represented as a diagonal matrix for easy matrix multiplication, and A is the adjacency
matrix (Figure 1) across all neighbors. The adjacency matrix includes a self-loop, which results
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in the diagonal elements being set to 1. Similarly, the degree matrix is a diagonal matrix where
Dii = Σ Ai.

As an example of GCN, in Figure 1, a depiction of a graph with five nodes in an unweighted,
undirected setup is shown. Each node contains three features, resulting in a feature matrix size of
5*3. These features undergo a transformation using a weight matrix, akin to neural network convo-
lutions. The weight matrix (combination kernel) is sized as 3*3, leading to a resultant combination
matrix of 5*3. Subsequently, aggregation follows, employing kernels consisting of the degree and
adjacency matrix. For example, the feature vectors of node 1 (H11, H12, H13) transform based on
the weight matrix. Node 1 has three adjacent nodes, accounting for self-looping. Consequently,
D–1

11 becomes 1/3. The aggregated output for node 1 is a scaled sum of combination vectors of
nodes 1, 2, and 5.

In the case of GraphSage, M = Dsamp
–1*Asamp, where Dsamp and Asamp denote the sampled version

of the degree and adjacency matrices, respectively. In contrast to the approach of aggregating in-
formation from all neighbors, as seen in GCN, GraphSage exclusively employs a subset of chosen
or pre-trained neighbors associated with a specific node for aggregation purposes. This selection
process aims to ensure a consistent and predetermined count of neighbors for all nodes. Conse-
quently, this strategy introduces a sense of relative preference among neighbors for aggregation.

For GAT, M = (Attn)*(A), where Attn is the attention matrix. Unlike GCN and GraphSage, Attn
relies on the combination vector of a node to determine the weight corresponding to each neigh-
boring node. The Attn vector for a particular node is obtained by (i) defining attention between
the ith and jth neighboring node as ea*(ReLU(Hcomb-i | |Hcomb-j)), where a is a trained vector and | | indicates
concatenation of combination vector of both the nodes, and (ii) normalizing the attention across
all elements in a row of the Attn matrix to refrain from numerical explosion.

ReLU is used as the activation function at the output of the aggregation layer to introduce non-
linearity. Finally, the softmax function is used for classification into different categories.

2.2 Processing in/Near-Memory

CPUs and GPUs have long served as the primary workhorses for various user applications, includ-
ing GNNs. However, they face increased data movement costs due to their von Neumann archi-
tecture, requiring periodic data transfers between memory and computational units. PIM aims to
embed computations within memory, mitigating these costs. The choice of memory technology
in PIM designs is crucial, with many GNN accelerators favoring ReRAM. However, ReRAM-based
accelerators are often dedicated solely to GNNs, leading to increased dead silicon area when inte-
grated into existing SOCs crowded with multiple accelerators. Understanding ReRAM character-
istics is essential to grasp the drawbacks of these designs.

2.3 ReRAM Bitcell

This non-volatile memory element operates by varying resistance, unlike traditional charge-based
memory like Static Random Access Memory (SRAM). It toggles between low-resistance (SET)
and high-resistance (RESET) states, akin to ‘1’ or ‘0’ in SRAM/Dynamic Random Access Mem-

ory (DRAM). The memory bitcell consists of 1T1R (1-Transistor 1-Resistor), wherein writing
involves activating the corresponding Word Line (WL) and applying voltage to the Bit Line

(BL) for SET/RESET. Reading relies on current flow, low for RESET and high for SET states. De-
spite their compactness, ReRAMs suffer from limited endurance, higher voltage requirements,
latency, and susceptibility to process variations [13, 17, 19]. However, there are many draw-
backs (which are overcome by the SRAM bitcell), and their compact nature is a driving factor
[3, 16, 18].
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Fig. 2. Landscape of GNN-based acceleration. The prior works are predominantly dedicated accelerators
requiring periodic host-accelerator interaction. These are further classified into von Neumann, ReRAM-based
PIM, and DRAM/HBM-based PIM. The proposed accelerator is not dedicated and reuses cache in CPUs to
perform GCNs. The bitcells for PIM designs are also shown.

2.4 SRAM Bitcell

SRAM stands out in cache/register file design for its ultra-low access latency (in the nanosecond
range), surpassing other memory technologies [12]. Designs typically feature either a decoupled
read/write port structure, seen in the 8T (8-Transistor) SRAM, or a shared read/write port struc-
ture, as seen in the 6T (6-Transistor) SRAM. The 8T SRAM employs the Write Word Line (WWL)

for writing and the Write Bit Line (WBL) to store data in the storage node (S). During a read op-
eration, the Read Bit Line (RBL) is precharged to a high voltage. If the S node holds ‘1’, R2 is ac-
tivated, discharging RBL through the R1-R2 stack. For a ‘0’ in the bitcell, precharged RBL remains
unchanged, aiding content distinction. The 8T SRAM performs efficient RAW (read-after-write)
computations, unlike the typical 6T SRAM that necessitates write, precharge, and read commands,
making RAW a three-cycle operation. For 8T SRAMs, precharge is overlapped with the write com-
mand, thereby making RAW a two-cycle operation, because RBL can be precharged, while a differ-
ent row of bitcells is written using a combination of WWL/WBL. Additionally, these have lower
write/read voltage/power as opposed to ReRAM, and resilience to process variations, thus giving
performance and power advantage [23].

2.5 DRAM Bitcell

DRAM serves as the main memory storage due to its low cost and compact bitcell design. The 1T1C
bitcell (Figure 2), utilizes a capacitor to store information. The write operation involves activating
WL while storing data onto the ‘S’ node by driving BL. Precharging the BL to half of the operating
voltage precedes the read operation, where the voltage at BL changes based on the bitcell contents.
The advantages of DRAM lie in its compactness, cost-effectiveness, and high capacity. Addition-
ally, its capacity can be augmented through 3D stacking, enabling High-Bandwidth Memory

(HBM)/High Memory Cube (HMC) designs. DRAM faces challenges such as periodic refresh
due to the capacitor’s dynamic nature, resulting in performance/energy overhead.

2.6 Related Work

The existing GNN accelerators are classified into von Neumann/PIM-based dedicated accelerators.
Von Neumann based dedicated architectures like AWB-GCN [7], HyGCN [28], DCIM-GCN [15],
PEDAL [5], and FlowGNN [21] make use of a dedicated accelerator, specifically designed for GNN.
The logic units are present outside the memory for performing combination and aggregation.
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AWB-GCN introduces hardware-level enhancements aimed at addressing the challenge of work-
load imbalance, a consequence of the interaction between sparse input graphs and dense weight
matrices. The proposed hybrid architecture employs distinct storage units for the combination and
aggregation stages. This is complemented by specialized control logic that facilitates the seamless
distribution of workloads across different processing engines. However, it is important to note that
this strategy brings about an additional area overhead and offers only a modest assurance of opti-
mal resource utilization. Moreover, the scalability of this solution is constrained by the number of
processing elements. This is geared toward optimizing GCN predominantly.

HyGCN introduces an architectural approach and programming paradigm that harnesses both
intra-vertex and inter-vertex parallelism during the combination and aggregation phases, thereby
enhancing overall performance. Nevertheless, it is worth noting that despite these improvements,
HyGCN lacks an inherent awareness of sparsity, leading to less efficient utilization of hardware
resources and consequently resulting in an additional area overhead. Moreover, the inherent
limitations of the von Neumann architecture become evident as graph sizes grow, contributing
to the energy overhead caused by frequent data transfers between memory and computational
units.

DCIM-GCN [15] employs memory as a storage component and supplements it with NOR
gates/logic in proximity to the memory for near-memory combination. The aggregation, however,
utilizes the von Neumann architecture and is specifically optimized for GCN.

PEDAL [5] introduces a power-efficient dataflow accelerator that optimizes dataflow based on
the incoming graph’s nature, enhancing efficiency and flexibility, by changing the order of exe-
cution between combination and aggregation. It employs a dedicated von Neumann architecture,
necessitating periodic CPU-accelerator interaction.

FlowGNN [21] proposes a generic accelerator with parallelism ranging from node/edge, using
multiple data queues and execution units along with scatter/gather mechanisms. The dataflow
is general and can be applied to any graph-based model like GCN, GAT, and GraphSage. This
architecture is realized on an FPGA, similar to other von Neumann accelerators and suffers from
similar drawbacks.

PIM-based accelerators predominantly have utilized ReRAM/DRAM for in-memory processing.
ReFLIP, PIM-GCN [29], and Challapalle et al. [3] present a PIM accelerator that utilizes a crossbar
ReRAM architecture. ReFLIP adopts a weight stationary approach for executing dot product op-
erations, and it includes a peripheral DAC/ADC to perform analog compute. However, there are
notable drawbacks associated with this approach, which are detailed in Section 3.

PIM-GCN uses a similar approach to ReFLIP for performing MAC for combination, except
that the aggregation is performed using a two-step process with the first step being a Content-

Addressable Memory (CAM) to identify neighbors, and the second step involves performing
MAC. The proposed approach aims to schedule node computations in a way that the inter-node
parallelism is maximal.

Challapalle et al. propose multiple engines with an architecture similar to PIM-GCN, except that
the presence of separate engines potentially aids performance, at the cost of power/energy. How-
ever, the architecture is limited to performing GCN and cannot be extended to GAT/GraphSage.

DRAM/HBM-based near-memory accelerators make use of compute units closer to DRAM.
GCIM [4] uses a novel data-aware mapping algorithm to efficiently utilize near-memory (3D-
stacked HMC) MAC units. SpaceA [27] uses a near-memory CAM/MAC structure in process-
ing engines to enable graph processing and perform workload balancing by mapping different
sparse features to different banks, and is optimized for general graph processing and not for
GCNs.

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 39. Publication date: May 2024.
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Fig. 3. (a) ReRAM approaches (i) use DAC for incoming H conversion to an equivalent analog value,
(ii) store weights of GNN in a binary scaled fashion, and (iii) utilize current buffer+reductor to perform
current-based summation and ADC to generate H*W. (b) Qualitative comparison between ReRAM ap-
proaches and NEM-GNN. (c) A summary of the identified issues and the proposed solutions.

3 MOTIVATION

In this section, we motivate NEM-GNN by highlighting the issues in existing PIM designs. The
combination phase, predominantly consisting of convolution between weights and feature vectors,
is naturally suitable for PIM compute. Furthermore, the dense weights are reused across various
feature vectors, establishing the PIM-based combination as a weight-stationary approach. Aggre-
gation is not amenable to PIM compute, as detailed later.

3.1 Issues in ReRAM-Based PIM for Combination

ReRAM device limitations are discussed in Section 2.3 and also detailed in the work of Boppidi
et al. [1]. This section covers disadvantages, with specific reference to compute, as the existing
ReRAM-based accelerators follow the same strategy for performing in-memory dot product com-
pute as that of ReFLIP. Figure 3(a) illustrates dot product compute between H = 1001 and W =
101. The weight bits are stored in a binary scaled fashion: the 0th bit is stored once, the 1st bit
is replicated twice, and the 2nd bit is replicated four times. In the combination phase, the corre-
sponding analog value for H is mapped onto the WL, and the current flowing through the BL is
aggregated using a current reductor. This is then fed into an ADC to derive the equivalent digital
value. First, the weights are stored in binary scaled fashion in memory. The incoming H value of
1001 is converted into an equivalent analog voltage of 0.6V by using DAC. This voltage then acti-
vates multiple bitcells in the same column, by mapping H onto WL. The current summation across
all ReRAM bitcells in a column (BL) is then performed by a combination of the current buffer and
reductor. This is then converted into an equivalent voltage, and fed into ADC, which outputs an
equivalent digital value of 101101. NEM-GNN overcomes the usage of analog blocks (summarized
in Figure 3(b)). The disadvantages of the compute strategy are as follows. First, the presence of
ADC and using ReRAM-based compute implies that the existing SOC components cannot be re-
configured to realize ReFLIP and need a dedicated accelerator arrangement. Second, the binary
scaled storage requirement requires that 2n-1 rows are needed for storing an n-bit weight. This
implies that the area of the memory array scales exponentially as the precision of weight increases,
limiting scalability. Third, ADC should be extremely precise, as an 8-bit weight multiplied by an
8-bit feature vector (H) requires a 16-bit ADC. The process variations inherent to ADCs pose se-
rious implications on the compute accuracy (see Figure 3(b)). Fourth, throughput is restricted by
the number of ADCs per bank (1 in the case of ReFLIP). Furthermore, the ADCs and current re-
ductor affect the energy of the design with an additional area overhead arising from bulky ADCs.
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Fifth, compute density, quantified as the ratio of operations performed within memory per bitcell,
serves as an indicator for gauging the efficiency of hardware resource utilization. In ReFLIP, for
the dot product between an m-bit feature vector and an n-bit weight, the compute density equals
(m*n)/(2n), which needs to be improved substantially. These issues are summarized in Figure 3(c).

3.2 Issues in ReRAM-Based PIM for Aggregation

ReRAM-based PIM approaches perform both combination and aggregation in memory. However,
aggregation is not really suitable for PIM computation for the following reasons. First, realizing
the exponential compute required for aggregation, like in GATs, is not suitable for PIM. Second,
aggregation in memory can be achieved by two means. The first option involves the usage of a
separate memory array to store the resultant dot product from the combination phase, and the
second option involves the reuse of the existing combination memory array for aggregation as
well. The first option incurs additional area overhead for the associated memory array resulting in
ineffective utilization of hardware resources, degrading the array density, and energy for compute.
The second option improves the utilization of hardware resources at the cost of performance and
additional control circuitry. Furthermore, this adds a degree of serialization between combination
and aggregation, as aggregation can be initiated only after combination is complete. This causes a
performance bottleneck with no overlap between combination and aggregation. Therefore, both of
these approaches are inefficient in terms of performance, energy, and area. ReFLIP and PIM-GCN
uses the latter, whereas Challapalle et al. use the former. Finally, the sparse aggregation compute,
if performed in-memory, degrades the compute density, as most PIM computes are insignificant.

3.3 Issues in DRAM-Based Near-Memory Compute for GNN

DRAMs, designed for cost efficiency and expanded storage, face constraints when integrating near-
memory processing, leading to reduced storage capacity [20]. Given that DRAM is a single-chip
package from manufacturers and directly integrated into existing SOC architectures, the fixed
area allowance must accommodate additional near-DRAM logic. Notably, Samsung’s near-DRAM
chip for ML acceleration halved its storage capacity to include per-bank near-memory logic [10].
Consequently, traditional DRAM-hits turn into (DRAM+PIM)-misses, causing performance dips
in storage-intensive workloads. This issue persists even in HBMs, with smaller storage capacities
(e.g., recent HBM3 of 24 GB vs. DDR4 of 256 GB) and reduced storage density due to added bulky
near-memory digital logic to DRAM bitcell arrays.

From GNNs’ perspective, large datasets can push DRAM capacities to their limits. Storing
basic node information (excluding edges/weights) with an 8-bit representation for features in
PubMed/Reddit datasets alone demands 0.4 GB/0.5 GB. Preserving DRAM capacity becomes crucial
to avoid the consequential power/energy expenses. Reduced DRAM capacity might limit concur-
rent CPU applications and performance degradation in traditional CPU workload execution.

Samsung’s demonstration focused on ML, optimizing for MAC operations. However, GNNs dif-
fer as aggregation navigates nodes, utilizing CAM operations, distinct from mere arithmetic opera-
tions. There are two approaches: (i) employing CAMs via traditional CPU, causing GNN execution
degradation due to CPU-DRAM interaction, different from ML applications, and (ii) including ex-
tra CAMs, which would further reduce storage capacity. Considering XNOR computation area vs.
FP16 addition, this logic could trim DRAM by 10%. For instance, a reduced 3-GB HBM-based PIM
(originally 6 GB, halved for ML in the work of Lee et al. [10]), now reduced to 2.7 GB, pushes DRAM
limits, potentially causing misses and impacting performance/energy for datasets. Moreover, PIM’s
3.5x ML performance gain would see a 10% reduction. Moreover, SpaceA augments HBM with
specialized processing engines, expanding bit-width, incorporating CAMs, and load queues. This
adaptation reduces DRAM capacity, impacting both traditional CPU tasks and GNN performance.
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Fig. 4. (a) NEM-GNN is realized by repurposing the L1 cache for in-memory compute, with minimal near-
memory peripheral logic added to each CPU core. (b) In an L1 cache, consisting of two banks, shift and add
are present at a granularity of 1 per every eight columns per bank, with one adder reduction/multiplier per
bank, and other dedicated logic shared across the entire cache. (c) DRAM is accessed to transfer weights/
feature vectors into a shared L2 cache. The L1 cache stores weights. Combination datapath involves a PIM (L1
cache) dot product with near-memory logic. The combination result goes via the UWC/WC engine depending
on the weighted nature of the underlying graph, followed by D-generator/control logic for aggregation. It is
to be noted that UWC/WC engines use the added near-memory logic (multiplier/adder) and do not require
dedicated hardware.

GCIM adopts 3D-stacked HMC, encountering issues akin to SpaceA, facing bandwidth constraints
leading to Micron halting its production in 2018. To summarize, Compute-near-DRAM approaches
reduce DRAM capacity, causing performance and energy bottlenecks with increased misses, par-
ticularly for high-capacity workloads.

4 NEM-GNN’S SALIENT FEATURES

4.1 Reconfigurability

The requirement of dedicated accelerator arrangement in previous works is overcome by reusing
the L1 cache inside the CPU core for performing in-memory compute with additional near-memory
logic. Figure 4(a) shows a multi-core CPU design with each core integrating dedicated minimal
near-memory logic for performing combination/aggregation. Figure 4(b) shows the per-core addi-
tional near-memory logic for the L1 cache, assumed to be consisting of two banks for illustration.
Shift and add are present at a granularity of 1 for every eight columns (assuming weights for 8 bits)
for every bank. One adder reduction tree/multiplier per bank along with buffer/control/counter
shared across the entire L1 cache is used to realize NEM-GNN.

The datapath is split into combination and aggregation. For the combination datapath, the com-
pute array reuses the L1 cache to achieve PIM functionality with additional near-memory control
logic for Early Compute Termination (ECT) and addition. For aggregation, we utilize a near-
memory buffer for storing the adjacency matrix, a D generator for generating the correspond-
ing degree (M) matrix, and Unweighted Control (UWC)/Weighted Control (WC) engines for
graph/sparsity-aware aggregation. If the underlying graph is unweighted, the UWC engine is used
for aggregation, whereas the WC engine is used for weighted graphs. It is to be noted that these
engines reuse the added near-memory logic like multiplier/adder and do not require dedicated
logic for their functionality. There is no requirement for ADC/DAC/specific memory technology,
enabling integration of NEM-GNN into a traditional CPU pipeline. For GNNs that do not fit on-
chip, DRAM is accessed to fetch data into L1/L2. The access latency of DRAM is amortized by
prefetching data, as PIM accesses are deterministic.
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Fig. 5. (a) Compute array organization for NEM-C1: two tiles with four banks in each tile, with bit-serial
PIM performed between H mapped onto RWL and W replicated across both tiles, are shown for illustration.

Two-bit eight-element H and 1-bit 8*3 weight matrix are shown with Hjin indicating the nth bit of the jth

element for the ith node. (b) W is stored in an 8T SRAM bitcell in the L1 cache, and H is mapped onto RWL.
RBL discharge is used as a measure of the dot product between W and H. RBL is initially precharged to Vcc
and discharges only when W and H are ‘1.’ (c) Shift and add across partial dot products from PIM compute,
with the result of final addition written into a row of combination array.

4.2 Scalable L1 Cache Digital PIM Compute without DAC/ADC: Architecture to Circuit

Scalability is affected by exponential area requirement as the precision of weight increases. This
is primarily because of the requirement for data replication across different banks. We propose
three PIM approaches, which begin with n2 data replication (NEM-C1), and further reduce it to no
replication requirement (NEM-C2/C3), as detailed in the next section.

Our proposed designs implement a digital bit-serial PIM methodology for combination that elim-
inates the necessity for DAC/ADC. This setup proves robust against process variations, ensuring
accurate computations. With the employment of bit-serial computation devoid of DAC/ADC, the
design’s throughput is freed from ADC-related constraints. The bit-serial computation, in conjunc-
tion with strategies like early computation termination or pre-computation, facilitates achieving
high performance/throughput for NEM-GNN designs. Moreover, the absence of data replication
combined with bit-serial computation contributes to an enhanced compute density, elaborated in
Section 5. Furthermore, given that (i) ReRAMs suffer from scalability, compute density, and perfor-
mance/energy issues and (ii) DRAMs suffer from reduced storage capacity, we propose L1 cache
based PIM, which retains storage of DRAM, while offering improved performance/energy. From a
memory organization standpoint, the L1 cache consists of multiple tiles, with each tile consisting
of multiple banks, leveraging tile and bank-level parallelism (as shown in Figure 5(a)). These de-
signs use decoupled read/write port structure (8T SRAM), with the decoupled read port transistors
marked as R1 and R2 in Figure 5(b). The read port transistors are repurposed to perform dot prod-
uct compute (bit-wise AND) for combination by mapping H bits onto RWL and storing weights in
the bitcell. The compute can be described as follows. First, RBL is precharged to Vcc before com-
pute. Second, only when both S and RWL are ‘1’ does RBL discharge via the read-port transistors
(R1/R2), implying that the computed value is 1. Third, RBL remains at Vcc for other combinations
of H and W, because one of the read-port transistors is turned OFF. When W = ‘0,’ R2 is turned
OFF, as the S node is 0; when H = ‘0,’ R1 is turned OFF, preventing discharge of RBL in either case.
Using this PIM approach, we propose three different bit-serial scalable, performance, and compute
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density optimized PIM approaches, namely (i) n2 data replication, (ii) no data replication with ECT,
and (iii) pre-compute, which are detailed in Section 5.

4.3 Graph and Sparsity-Aware Aggregation

We use a near-memory approach for aggregation, which enables performing exponential in-
memory compute. The near-memory aggregation with CAR and broadcast approach helps achieve
better performance in NEM-GNN, as aggregation latency is effectively hidden by computing as
soon as the combination results are ready. This is done by effective broadcast of combination re-
sults, as soon as the combination outputs are available for aggregation.

Furthermore, the sparsity-aware approach helps alleviate insignificant computations while
leveraging PIM’s high throughput for performing significant computations. Graph connectivity-
aware aggregation helps optimize aggregation based on different graphs, enabling achieving high
performance, without area overhead, for graphs that fundamentally require less computation for
aggregation. For instance, unweighted graphs require less computation as compared to weighted
graphs, because of no requirement on multiplying with weight of the graph edge for aggregation.

4.4 No Impact on Traditional CPU Workloads

Since NEM-GNN is realized reusing the L1 cache, with additional near-memory logic, with no
reduction in storage capacity, there is no impact on traditional CPU workloads. First, there are
no SRAM memory array level modifications to realize NEM-GNN, which could potentially impact
the execution of traditional CPU workloads. Second, there is minimal near-memory logic that
is added to realize NEM-GNN, achieved through effective reuse of hardware. For instance, the
UWC/WC engines share the same adder, D-generator shares the multiplier with UWC/WC engines,
and softmax shares exponential compute, with aggregation for GAT. Third, the additional near-
memory logic does not intervene in normal CPU operation and does not add additional power
overhead.

5 NEM-C*: SCALABLE IN-MEMORY COMBINATION DESIGNS WITHOUT DAC/ADC

5.1 NEM-C1: Scalable Bit-Serial PIM with n2 Data Replication

The exponential storage requirement (n-bit weight requiring 2n bitcells, independent of H bit-
width) in ReFLIP is combatted by bit-serial PIM, with n-bit weight requiring m*n bitcells for m-bit
H, as detailed in the subsequent paragraph.

At the bank/tile level, the weights are kept stationary in the compute arrays, making the overall
design a weight-stationary design. The weights are shown to be replicated for illustration of NEM-
C1 design in Figure 5(a) (whereas other designs do not require data replication). An eight-element
H vector each of 2-bits and 1-bit 8*3 weight matrix is shown with Hjin indicating the nth bit of the
jth element for the ith node. The observation is that during dot product compute between H for each
node (feature vector) and weight matrix to output combination vector, the same H element (H11) is
used across a row of weights (W11, W12, W13). This reuse is used to map a row in the weight matrix
onto a row in a compute bank, with H mapped onto the corresponding RWLs in a bit-serial fashion,
enabling Wxy parallelism over the y-dimension (H11

1* W11 computed in parallel with H11
1* W12).

Inside a bank (e.g., in bank0), H11
1 and H51

1 are mapped in successive cycles onto the RWL as a
row is computed per bank, per cycle. The weight matrix is split across banks in a tile, enabling Hjin
parallelism over the j-dimension (H11

1*W11 computed in parallel with H21
1*W21), and the weights

are replicated across tiles for enabling Hjin parallelism over n-dimension (H11
1*W11 computed

in parallel with H11
2*W11). The replication of weights across multiple tiles ensures that the dot

product between Hjin and Wxy is computed using O(n2) bitcells in a single cycle.
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Fig. 6. NEM-C2: ECT occurs once one of the bit-serial H element bits is found to be 1, without a data repli-
cation requirement. The ECT datapath checks for a non-zero H bit in step 1 and writes the non-zero dot
product into the ECT register in step 2. In parallel, the PIM datapath computes partial dot products in step
1 and subsequently stores them in the ECT register in step 2. This value is broadcasted to fill the other dot
product entries in step 3 of the PIM datapath using ECT control signals generated in step 3 of the ECT data-
path. A 3:1 MUX for writing into the partial products array: BR/ECT/‘0’ indicate bank read (computed value
from memory)/read of ECT register/zero value, respectively. The dot product datapath fills the combination
array with the result of combination. NEM-C3 eliminates the ECT datapath by pre-computing for H bit being
0/1 and uses an AND gate (marked in blue) instead of 3:1 MUX in step 3, while using PIM and dot product
datapaths, similar to NEM-C2.

This is illustrated by using an example in Figure 5. If the different bits of Hji are mapped onto
RWLs of the same banks in different tiles, then bank0 of tile0 computes W11*H11

1, whereas bank0
of tile1 computes W11*H11

2. These two partial dot products can be shifted and added together
to generate the dot product W11*H11. Similarly, dot products obtained across different banks and
tiles are shifted and added to obtain W21*H21, W31*H31, and W41*H41. Finally, a full addition is
performed to generate the MAC result for combination. A full adder accumulates the dot product
from SA into a row of combination array (see Figure 5(c)).

The overall replication requirement is reduced to m*n for the dot product between m-bit H and
n-bit W, resulting in O(n2) data replication. Furthermore, the compute density for the L1-cache com-
pute is improved from (m*n)/(2n) in ReFLIP to ((m*n)/(m*n) = 1) in NEM-C1, indicating effective
utilization of hardware resources. Moreover, the lower overhead of SAs compared to DAC/ADC,
and the lesser number of RWLs to be turned ON (n2 vs. 2n) leads to reduced energy requirement.

5.2 NEM-C2: Scalable Bit-Serial PIM with ECT

NEM-C2 aims to eliminate the need for weight replication in the compute array by utilizing previ-
ously computed values. This aims to enhance the efficiency of bit-serial computation in terms of
area, energy, and compute density. For example, when storing 3700*10 weights for a single layer
of GCN in memory, where both feature vectors and weights are represented with 8-bit resolution,
ReFLIP would demand about 1.2 MB of storage, NEM-C1 would need around 0.2 MB, and NEM-C2
would utilize only 4.6 KB for storing these weights.

Similar to NEM-C1, multi-bit weights are stored in a single row of the compute array, with
elements of H mapped onto RWL in a bit-serial fashion, enabling Wxy parallelism over the y-
dimension. Various banks serve to accommodate distinct weight rows, thereby permitting Hjin
parallelism across the j-dimension. Furthermore, parallelism across the i-dimension extends across
tiles. There is no requirement for data replication across banks, unlike NEM-C1.

Figure 6 illustrates the interplay among distinct data paths: PIM, ECT, and the dot product path.
In step 1 of the PIM datapath, the “H*W compute” stage generates the dot product between a row
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of weights and a bit of H element. Subsequently, in the second step of the PIM datapath, the re-
sulting dot product between H11

i and (W11, W12, W13) is stored in the partial products array. It is
notable that when one of the bits within the bit-serial H element is determined to be 1, it leads to
the identification of both potential outcomes from multiplying a row by 0 and 1 (as multiplying
by 0 would output 0). This knowledge can be leveraged to prematurely terminate the H*W com-
putation, thus saving energy. The ECT datapath provides assistance to terminate compute early,
by identifying the position of ‘1’ in a bit-stream of H mapped onto RWL. The CAM logic allows
for rapid searching based on content rather than memory addresses. This is utilized in step 1 of
the ECT datapath in Figure 6 and is used to identify whether H-bit is ‘1.’ A valid bit is set if a non-
zero element is found. The associated dot products between the non-zero H11

1 and (W11, W12,
W13) are written into the ECT register in step 2 and the partial products array in parallel. Upon
the completion of the ECT write operation, the remaining elements of the partial products array
(denoted as YTC (Yet to Compute)) are promptly filled by employing a single-cycle, broadcasted
write using the data contained within the ECT register. This broadcast begins with the generation
of ECT control signals in step 3 of the ECT datapath, using the values of H elements and valid bit
indication from CAM logic. Specifically, “BR” is chosen if the valid bit is ‘0,’ “ECT” is chosen if both
the valid bit and the corresponding H bit are ‘1,’ and ‘0’ is chosen if the valid bit is set while the
corresponding H bit is ‘0.’ The broadcast is done in step 3 of the PIM datapath, using three write-
ported partial products array with three ports being bank read (when CAM logic has not detected
a 1 in H element yet), ECT read (when ECT register is filled), and ‘0’ (when the H element bit is 0).
Finally, the partial dot products are accumulated from the dot product array, onto the combination
array, which is shown in the dot product datapath.

The broadcasted write turns off the compute array earlier, thereby improving the energy of the
system. No weight replication for a bit-serial PIM approach improves the PIM compute density to
((m*n)/n = m) along with reduced area requirements.

5.3 NEM-C3: Scalable Bit-Serial PIM with Pre-Compute

NEM-C2 introduces an ECT datapath, which can be mitigated by leveraging the fact that all H bits
are available from the storage array read. NEM-C3 tries to eliminate ECT overhead and enhance
performance, by virtue of increased pre-computation.

Similar to NEM-C2, multi-bit weights are stored in a single compute array row, with H mapped
onto RWL in a bit-serial fashion. Bank/tile-level parallelism for parallelism across the j/i-dimension
in Hjin is leveraged, without requiring data replication (as shown in Figure 6).

During the computation of dot products, NEM-C2 awaits the first occurrence of ‘1’ in the H el-
ement before terminating the compute. In contrast, in NEM-C3, the computation terminates even
earlier by pre-computing dot products corresponding to both ‘1’ and ‘0’ H-bits. This approach obvi-
ates the need for the ECT datapath while still utilizing the existing PIM and dot product datapaths
to implement NEM-C3. The first two steps of the PIM datapath remain the same as NEM-C2. How-
ever, in step 3, both dot products are broadcasted to fill the partial-products array based on the
H bit (shown as blue AND in Figure 6), eliminating the overhead of ECT. This helps reduce three
write ports (3:1 MUX) on the partial products array to a simple logical AND operation between
the bank read and the bit for the row in partial products array (H11

2 for the 2nd row). This AND
operation effectively signifies whether the array should be populated with ‘zero’ or the actual H
value, depending on whether the H-bit mapped onto the RWL is ‘0’ or ‘1.’ The dot product datapath
itself remains unchanged from NEM-C3.

This results in overall area/power reduction, improved compute density due to ECT elimina-
tion, and reduction in write ports. Furthermore, the pre-compute strategy helps with achieving
improved performance and energy, as the compute can be terminated earlier than NEM-C2.
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6 GRAPH AND SPARSITY-AWARE NEAR MEMORY AGGREGATION

Aggregation involves a two-step procedure, with the first being the multiplication of the resultant
combination output with the adjacency (A) matrix, and the second being the multiplication of the
outcome from the first step with the D matrix (assuming GCN for simplicity of explanation). In
the context of the first step, which is carried out in the WC/UWC engine, the computation is both
graph-aware and sparsity-aware. The graph structures are intelligently optimized and distributed
across different engines based on connectivity patterns, while the computation is made aware of
matrix sparsity to mitigate unnecessary operations involving the A matrix. Additionally, we intro-
duce two approaches: the CAR strategy and “broadcast” technique. These techniques help overlap
aggregation with combination, enabling resource reuse and concurrent processing. Moving on
to the second step, this operation is executed within the D generator, and the process adopts a
“sparsity-aware” approach. This technique strategically reduces the number of computations by
accounting for the matrix’s sparse characteristics.

6.1 Graph and Sparsity-Aware UWC Engine for Unweighted Graphs

While GCNs find application across various graph types, their most frequent utilization occurs
with unweighted graphs, notably in citation networks like CiteSeer and Cora. We enhance the
efficiency of these specific graphs by skillfully mapping them onto the UWC engine. This map-
ping capitalizes on inherent graph patterns and reusability, effectively minimizing the hardware
demands.

Several key challenges are evident from prior approaches. First, in the context of ReRAM-PIM-
based aggregation, the PIM array computes partial dot products, necessitating an additional array
(referred to as the “aggregation array”) to store these partial dot products before they are collec-
tively accumulated. This requires increased area. Second, ReFLIP employs the same PIM array for
both combination and aggregation, leading to a situation wherein aggregation only commences
after the combination process concludes. Third, the process of writing the resultant combination
array onto PIM array before aggregation introduces an added energy cost. Contrasting this, NEM-
GNN adopts a distinct strategy. It does away with the requirement for a PIM array dedicated to
aggregation, instead using the “aggregation array” to initiate aggregation as soon as a fresh entry
is introduced into the combination array. This facilitates the concurrent execution of aggregation
and combination, resulting in improved performance, while eliminating the need for power and
area overhead associated with PIM array write and read operations.

For aggregation in undirected, unweighted graphs, we begin by reading the adjacency vector
(stored in compressed sparse row format (CSR)) for the node undergoing combination (indicated by
the “NodeProc” register) in Figure 7. In step 1, reading the adjacency vector highlights nodes that
share an adjacency with the specific node in focus. The identified adjacent nodes, along with the
“NodeProc” information, are stored within the Update Index register to serve as aggregation candi-
dates. The aggregation array, with indexing based on the Update Index register content, undergoes
immediate updates. This update involves the accumulation of the existing aggregation array val-
ues with the incoming combination vector through the utilization of a set of adders. This approach,
characterized by simultaneous computation whenever data is ready, is known as the CAR strategy.
The incoming combination vector is broadcasted to the aggregation candidates, allowing them to
accumulate the combination vector concurrently. This mechanism facilitates “aggregation-vector”
level parallelism. Figure 7 shows that node 5 is the NodeProc by the combination datapath. We iden-
tify that node 5 is connected to nodes 1 and 3 from the read-out of the adjacency matrix. Therefore,
the Update Index register shows that nodes 5 (for self-loop), 1, and 3 are the aggregation candidates.
Hence, the aggregation array entries of nodes 5, 1, and 3 are added with the incoming combination
vector “C51, C52, C53” in step 2.

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 39. Publication date: May 2024.



NEM-GNN 39:15

Fig. 7. Incoming graphs are mapped onto different engines based on graph connectivity (graph-aware) and
read-out of the adjacency matrix (stored in Compressed Sparse Row Format) to eliminate unnecessary com-
pute (sparsity-aware). UWC engine: Aggregation of unweighted graphs by reading the adjacency matrix and
NodeProc register (indicating the node being processed by combination) to fill the update index register
in step 1 and updating the aggregation array using adders in step 2. Node 5 (self-loop), node 1, and node
3 are aggregated with an incoming combination vector for node 5, by broadcasting the vector (C51) to the
aggregation array. The aggregation array is updated immediately with C51 once the combination result for
a particular node is available, enabling the CAR approach.

For the aggregation of directed, unweighted graphs, the adjacency matrix has an extra bit that
shows the direction of interaction with the neighbors. ‘0’/‘1’ indicates an outgoing/incoming edge
from/to a node. This is done so that only nodes having an outgoing edge from “NodeProc” are
aggregated. Post-read-out of the adjacency matrix in step 1, CAM with the direction bit for the
NodeProc is done to identify nodes that are to be aggregated in step 2 in Figure 8(a). We utilize
“CAR” and “broadcast” to improve performance in NEM-C3 as well. When NodeProc = 5, since
node 5 has an outgoing edge to node 3 alone, the combination vector for node 5 is added with
entries corresponding to nodes 5 and 3 of the aggregation array, using adders in step 3.

This approach eliminates redundant multiplications between the incoming combination vector
and the adjacency vector when nodes are not adjacent. This refinement makes the design sensi-
tive to sparsity, meaning the aggregation process no longer includes aggregation with a “0” weight
for non-neighboring nodes. In Figure 8(b), there is an evident overlap between aggregation and
combination. This is achieved by concurrently reading the adjacency vector of the nth node for
aggregation while simultaneously calculating the dot product for the (n+1)th node’s combination.
This overlap continues with the generation of partial products and the filling of the combination ar-
ray for the (n+1)th node, all while the aggregation process for the nth node is under way. Due to the
complete pipelining of both aggregation and combination, the latency introduced by aggregation
is effectively hidden, resulting in improved performance.

6.2 Graph and Sparsity-Aware WC Engine for Weighted Graphs

For weighted graphs, the adjacency matrix (A) is repurposed to store the weight of interaction
between two adjacent nodes. For compute of directed graphs, post-read-out of A in step 1, we find
the outgoing nodes of the NodeProc in step 2 to find the update index and weights (indicated as
Weight_G). Multipliers are used to perform the dot products between the incoming combination
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Fig. 8. (a) UWC engine: Aggregation for an unweighted, directed graph begins with reading the adjacency
vector corresponding to Node Proc in step 1, identifying outgoing nodes in step 2, and storing in Update
Index register, using adders to aggregate the incoming combination vector onto the nodes in Update Index
register in step 3. Each adjacency matrix element is of the form (i,j), where i/j represents the neighboring
node/direction of interaction with the neighbor. (b) Timing diagram to show that the dot product PIM for

combination/read of the adjacency matrix of (n+1)th/(n)th node overlap; filling of combination/aggregation

array for (n+1)th/(n)th node overlap, hiding aggregation latency.

vector and the weight corresponding to the edges. Similar to the unweighted graphs, the incom-
ing combination vector is “broadcasted” to accumulate onto the aggregation array corresponding
to the update indices using adders in step 3. Figure 9(a) shows that there is an outgoing edge of
weight=7 from node 5 to 3, which is multiplied with the incoming combination vector and aggre-
gated onto node 3. For compute of undirected graphs, the adjacency matrix has additional bits
(see Figure 9(b)) for storing the weight of the edge with no peripheral direction detection logic.
The adjacency matrix is read in step 1, to identify the adjacent nodes, which is followed by the
“broadcasted” incoming combination vector using the “CAR” approach in step 2. Apart from the
UWC engine’s advantages, the WC engine consumes less power than ReFLIP, due to absence of
power-hungry DACs/ADCs.

6.3 Sparsity-Aware D Generator and Control Logic

The key observation is that D–1 is sparse, and that multiplication of D–1 with aggregation
array results in unnecessary computations. Therefore, we propose a sparsity-aware approach that
consists of two main facets. First, the approach involves exclusively storing the non-zero elements,
specifically the diagonal elements, of the degree matrix (D–1). This curtails the required area by
a factor of n. Second, multiplying the aggregation array with D–1 is realized as element-by-vector
multiplication for every row, reducing the number of computations by a factor of 2n, for D–1 of
n*n and the aggregation arrays of n*n. This is because when two arrays each of size n*n array are
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Fig. 9. (a) Weighted, directed aggregation, with the adjacency matrix storing the weights of graphs and the
direction in the case of directed graphs. The direction is read out in step 1 to check for outgoing nodes in
step 2, and aggregation with the incoming combination vector is achieved using near-memory multipliers
and adders in step 3. (b) Weighted, undirected aggregation follows the same datapath as the directed one,
but without the notion of direction, making it a two-step operation.

multiplied with each other, the total number of MAC operations would be ∼ 2*n*n*n, assuming
one operation each for multiplication and addition. However, the proposed approach necessitates
only n*n multiplication operations without any accumulation operations. This is achieved by capi-
talizing on the characteristic of multiplication of a diagonal matrix (D–1) with an adjacency matrix.
This involves multiplying each row in the adjacency matrix with the corresponding non-zero ele-
ment in the same row of D–1, thereby converting a vector-by-vector product to element-by-vector
multiplication. Figure 10 shows that D–1

11 (1/3) (element) is multiplied with the first row of the
aggregation array, instead of the first row of D–1 (like in ReFLIP). Furthermore, during compute,
the degree matrix is generated in parallel with the first step of aggregation, followed by multipliers
that perform multiplication between the non-zero D–1 element and result of aggregation.

The advantages of this approach are that (i) D matrix is reused across different layers and
(ii) D-generator is power-gated, once D-matrix is computed the 1st time. This helps achieve im-
proved power/performance while reducing the number of unnecessary sparse computations. The
auxiliary control logic consists of (i) ReLU to identify the sign of elements and update the final
aggregation array, and (ii) softmax control logic employing exponential/summation to generate
classification output.

7 ISA SUPPORT

NEM-GNN’s reconfigurability (L1/L2 cache used for compute/storage) helps repurpose CPU in-
structions like load/store to read/write data onto the L1 cache for compute. Since the L1 cache
can operate in two modes (i.e., normal and compute mode), LCONF instruction configures L1 in
compute mode by programming a special purpose register. Additional instructions for perform-
ing combination/aggregation are proposed. The instruction MACC Vx, VH, VW carries out an
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Fig. 10. D-generator and control logic: Degree matrix generator for generating D–1 using a sparsity-aware

approach that (i) performs element-by-vector (instead of vector-by-vector) multiplication for every row and
(ii) reduces the number of computations/area by a factor of 2n/n. Auxiliary control for ReLU and softmax is
shown in the rightmost figure.

Fig. 11. Benchmarks: Datasets for GNNs, the number of nodes/edges/features in each of them, and the net-
work used for GCN/GAT/GraphSage networks. Micro-architecture of NEM-GNN with the additional near-
memory logic requiring 2% of AMD’s Zen3 CPU per-core area.

in-memory dot product, followed by near-memory accumulation. This process accomplishes com-
bination between a row of weights (VW) and a feature vector (VH), ultimately storing the outcome
in Vx. MACA Vagg, Va, Vx performs near-memory aggregation using the incoming combination
vector (Vx) and adjacency vector stored in Va to store the aggregation result in Vagg.

8 EXPERIMENTAL METHODOLOGY

Benchmarks. A GNN model consisting of two graph convolutional layers with 128 hidden dimen-
sions, similar to that of ReFLIP/AWB-GCN [7, 8] is used as the underlying network to ensure a
fair comparison between the proposed and existing designs. The quantization of GNN network
weights, feature matrix, and weights of the input graphs (for weighted graphs) is done using Py-
Torch. The evaluated datasets and their properties are tabulated in Figure 11.

Microarchitecture. The compute array, repurposing the 8T SRAM L1 cache, is organized as 32
tiles/256 banks, matching the L1 cache size of an Intel Xeon E5-2680 v3. In the following, we in-
tegrate NEM-GNN’s near-memory architecture to Intel Xeon E5-2680 v3’s architecture (wherever
available) to ensure fair comparison, with a banking strategy. The combination and aggregation
arrays are implemented as registers, with the size of the combination array accommodating 128
W*H dot products each of 32 bits. The aggregation array is organized as banks, with banks dif-
ferentiated by node number (e.g., Bank0: 0–255 nodes, Bank1: 256–511 nodes). The near-memory

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 39. Publication date: May 2024.



NEM-GNN 39:19

logic like shifters/adders are present at 1 per eight columns and adder reduction/multiplier at
1 per bank.

Performance/Power/Area Evaluation. Microarchitecture of digital components is specified us-
ing System Verilog, and synthesized with FreePDK 45-nm [22] technology, operating voltage of 1
V, and clock latency of 2 ns to identify the power and area tradeoffs. For the SRAM compute array
and its peripheral circuits, power and area are estimated using Cadence Virtuoso. SRAM compute

energy is measured using an SRAM array of size 32*256, with the sense amplifier offset voltage set
to 100 mV, RBL capacitance of 35 fF, as measured from layout extraction with read/write latency of
SRAM ∼2 ns, and operating voltage of 1 V. We use a custom performance simulator that accounts
for the microarchitecture and the workload, to quantify the performance tradeoffs for combination
and aggregation. For large-sized graphs not fitting on-chip, the overheads of (i) write latency of
compute array is amortized by leveraging separate decoding circuits for write and read logic in
8T SRAM on the periphery, allowing write onto the nth row, when the mth row is computed, and
(ii) data movement from DRAM to storage/compute array is amortized by data prefetching. The
data movement energy is 1 pJ/bit (∼800x addition energy) [11].

Comparison Methodology. NEM-GNN is compared against PyG-CPU and PyG-GPU (software
optimized frameworks of PyG on CPU/GPU), AWB-GCN (non-PIM hardware accelerator), and
ReFLIP (PIM hardware accelerator). PyG-CPU is PyG [6], a Python-based GCN-optimized library
implementation of the GCN network on an Intel Xeon E5-2680 v3, with 12 cores per socket and
operating frequency of 2.5 GHz, with an L1 cache size of 64 KB, an L2 cache size of 256 KB, and an
L3 cache size of 2.5 GB, along with DDR4 capacity of 256 GB. Similarly, PyG-GPU is implemented
on an NVIDIA Tesla v100, with 64 CUDA cores per streaming multiprocessor and an operating
frequency of 1.5 GHz, with a 96-KB L1 cache per streaming multiprocessor, a 6-MB L2 cache, and
a 16-GB HBM2. AWB-GCN ’s performance is obtained from its implementation on an Intel D5005
FPGA with DRAM capacity of 32 GB and 4096 PEs, with frequency of 0.3 GHz [7]. The performance
of ReFLIP for combination is dependent on (i) the write latency of ReRAM (50.88 ns [8]), (ii) the
number of banks, and (iii) the number of dot products computed per bank (16,384), limited by the
number of DACs/ADCs per bank—1 per bank in the work of Huang et al. [8]. Aggregation needs to
wait until combination completes and is further split into (i) A and (ii) D–1 matrix. Multiplication
with A and D–1 needs to be done serially in a PIM array in GCN/GAT, and multiplication with
D–1 cannot be done in a PIM array for GraphSage because of the exponential function. The overall
clock latency is limited by write latency of 50 ns and operating voltage of 1 V. DRAM prefetching
is assumed for large-sized graphs, even in ReFLIP (for fairness). Power is obtained for (i) PyG-CPU
using power-stat, (ii) PyG-GPU from NVIDIA’s system management interface, (iii) using the same
configuration mentioned in the work of Geng et al. [7] for AWB-GCN with rebalancing/distribution
smoothing, and (iv) using the power estimated in the work of Huang et al. [8] for ReFLIP for
DAC/ADC/ReRAM. The additional write costs onto PIM for aggregation, and data movement costs
for large-sized graphs are also included. Energy is identified by multiplying the execution time with
the power. For NEM-GNN, UWC/WC engine uses unweighted/weighted graphs for aggregation,
and NEM-C1,NEM-C2,NEM-C3 are for combination.

9 RESULTS

Performance. The performance of NEM-GNN (Figure 12) is better for GCN than PyG-CPU be-
cause the cost of the increased data movement with increased graph size in CPUs is amortized
by performing PIM. For PyG-GPU, the irregular memory accesses and limited on-chip memory
restrict the performance of the GPUs for larger workloads. For smaller workloads, the ineffective
utilization of GPUs due to sparsity limits the performance of GPUs. This is reflected by the in-
creased speedups, as high as ∼104 for PubMed (large graph) and ∼103 for Cora (small graph). To
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Fig. 12. Performance comparison normalized to NEM-C3 for GCN, GAT, and GraphSage. The UWC engine
is used for aggregation, and NEM-C1, NEM-C2, and NEM-C3 are used for combination.

summarize, concerning CPUs/GPUs, apart from in/near-memory compute, ECT/pre-the compute
strategy, along with hiding latency using CAR and broadcast approaches for aggregation, helps
achieve improved performance for NEM-GNN. For AWB-GCN, performance is limited by stalls
arising from dynamic adjustment of workloads among 4096 PEs (by performing runtime optimiza-
tion) and growth in the number of off-chip memory accesses. Furthermore, the multi-stage network
(omega) coupled with the control logic necessary for distribution smoothing leads to performance
bottlenecks, as it limits the parallelism obtainable across PEs. In NEM-GNN, PIM enables fast mem-
ory accesses with high parallelism across all columns/banks, without additional control logic for
distribution smoothing, resulting in a speedup of 104, compared to AWB-GCN in PubMed. In Re-
FLIP, the major performance limiters are (i) one DAC/ADC per bank limiting the number of dot
products per bank to 1, (ii) serialization of combination and aggregation, and (iii) high access laten-
cies of ReRAM limiting the cycle time for a single dot product compute. The major advantages of
NEM-GNN are (i) for combination, the dot product between a row of weights in a bank and a single
H element mapped onto the bank is computed in parallel; (ii) the CAR scheme hides the latency
of aggregation completely, making the overall latency effectively the time taken to perform com-
bination alone; and (iii) lower SRAM access latencies, resulting in speedups of ∼80–200x in almost
all workloads. In particular, NEM-GNN performs well when the ratio of the number of H to the
number of nodes is low (observed in PubMed), as the parallelism across the number of Hs/nodes
is dependent on the number of banks/tiles. Among NEM-C* designs, NEM-C1’s performance is
lower due to the limited parallelism across nodes, NEM-C2’s performance is limited by the time
to compute one node’s combination array (as this is data dependent), and NEM-C3 combines the
advantages of both NEM-C1 and NEM-C2 for better performance. For GAT, the number of com-
putations is lower (assuming a fixed number of neighbors are predetermined), and NEM-GNN
offers better performance (∼75–140x) than ReFLIP. For GraphSage, NEM-GNN achieves speedups
of ∼230x.

Throughput. Throughput (see Figure 13) captures the scalability of different designs. PyG-CPU is
limited by the number of execution units capable of performing dot products. PyG-GPU is limited
by the ability to handle sparse data. AWB-GCN is limited by the number of processing elements
and workload rebalancing. ReFLIP’s scalability is limited by the number of DAC/ADCs per bank,
serial nature of combination and aggregation, and data movement onto the PIM array for initiating
aggregation. NEM-GNN overcomes these by performing bit-serial computation, complete use of
available throughput from the different columns in a bank (parallel dot product between a row of
weights and incoming H element), pre-compute/ECT, parallel combination and aggregation, and
sparsity-aware compute leading to ∼80–300x higher throughput than ReFLIP.
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Fig. 13. Throughput comparison measured in GOPS for GCN, GAT, and GraphSage. The UWC engine is
used for aggregation, and NEM-C1, NEM-C2, and NEM-C3 are used for combination.

Fig. 14. Energy comparison for GCN, GAT, and GraphSage. UWC engine is used for aggregation, NEM-C1,
NEM-C2, and NEM-C3 are used for combination.

Fig. 15. Energy efficiency comparison for GCN, GAT, and GraphSage. The UWC engine is used for aggrega-
tion, and NEM-C1, NEM-C2, and NEM-C3 are used for combination.

Energy. The overall power of NEM-GNN is divided into the power for (i) combination control
logic (ECT datapath, dot product datapath)/arrays (combination/dot product array), (ii) UWC en-
gine (adder)/arrays (adjacency matrix, aggregation array), (iii) auxiliary control logic, (iv) SRAM
power across banks/tiles, (v) dot product array and multipliers in the WC engine, and (vi) ECT
datapath. The overall estimated power from (i) is ∼3 W, (ii) is ∼6 W, (iii) is ∼1 W, and (iv) is ∼2 W.
Additionally, (v) and (vi) in NEM-C2 costs additional 1.5 W power (see Figure 12). Among NEM-
GNN designs, NEM-C3 shows the least amount of energy (see Figure 12) because the improved
performance compensates for the power overhead. NEM-C2 has a slightly higher energy because
of the lower performance and increased power from the additional ECT datapath, as opposed to
NEM-C3. Although NEM-C1 has the least power, the overall energy is higher because the decreased
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Fig. 16. (a) Compute density comparison across PIM designs. (b) NEM-C2 performance variation with number
of Hs. (c) NEM-C2 energy variation with bit resolution and average bit-position for first ‘1.’ (d) Compute density

and area for CS1, CS2, and CS3. (e) Energy and efficiency for CS1, CS2, and CS3.

performance overcompensates for the lower power. In comparison to ReFLIP, NEM-GNN has the
following advantages: (i) no power-hungry DAC/ADC requirementsn (ii) lower write/read voltages
for SRAM than ReRAM, and (iii) no additional write required to store back into the compute ar-
ray post combination resulting in energy improvements of 102–3 in NEM-GNN (GCN ). PyG-CPU,
PyG-GPU, and AWB-GCN suffer from irregular memory accesses and frequent data movement,
costing energy. Furthermore, there is no rebalancing of workloads like in AWB-GCN. In GAT, the
energy improvement is higher because of the low power requirement in NEM-GNN, from lesser
computations, along with the advantage from improved performance. In GraphSage, the power
dissipated is higher (increased number of computations) with similar latency (latency of M matrix
generation is completely hidden).

Efficiency. Efficiency is calculated by dividing the throughput by power (see Figure 12). CPUs
have limited on-chip memory and throughput, with the least efficiency. GPUs have higher through-
put with many on-chip processing cores and improved on-chip memory capacity, indicating better
energy efficiency as opposed to CPUs. AWB-GCN’s decreased throughput is compensated by better
energy, improving the efficiency over CPUs. ReFLIP performs PIM-based compute with a higher
degree of parallelism, improving throughput and energy. NEM-GNN has the highest amount of par-
allelism leading to increased throughput and decreased energy. Bit-serial PIM combination with
pre-compute and near-memory aggregation results in ∼850–1,134x improvement over ReFLIP.

Utilization. Figure 16(a) tracks the resource utilization efficiency in terms of the compute density,
which is equal to the number of computations (dot products) per unit area. The overall additional
near-memory logic area required per CPU core is tabulated in Figure 11 and sums to 0.47 mm2,
which is 2% of AMDs Zen3-CPU area. UWC and WC engines share most of their datapaths, thereby
saving area. The NEM-C1+UWC/WC engine has an area requirement of 0.27 mm2. The NEM-
C2+UWC/WC engine has an additional 0.2 mm2 due to the presence of the ECT datapath compared
to NEM-C1-based design. NEM-C3 has negligible area increase due to the presence of an extra AND
gate compared to NEM-C1-based design. The compute density is ∼7–8x that of ReFLIP, due to the
elimination of bulky DACs/ADCs, no data replication, and sparsity-aware compute.

Design Space Exploration. The performance of NEM-C2 varies roughly linearly with (i) the aver-
age position of the first ‘1’ of the incoming H vector, and (ii) the number of Hs, as they determine
the average time for combination per node and the required number of dot products (see Fig-
ure 16(b)). For energy (see Figure 16(c)), (i) lower bit-resolution causes fewer RBLs to discharge,
implying less power (for a fixed number of nodes/Hs) and (ii) a decrease in the number of bits to
obtain first ‘1,’ implying better performance. Both of these factors combined show less energy for
low resolution (e.g., 8-bit over 16-bit) and decreased number of bits to obtain the first ‘1’ (e.g., 2-bit
over 4-bit). The area (see Figure 16(d)) required for evaluating CS1, CS2, and CS3 is more than
CS, because of the additional multipliers for processing weighted edges and the associated control
logic for restricting the computation to outgoing edges. The compute density is the highest for
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Fig. 17. (a, b) Performance/energy improvement of NEM-C3 relative to PIM-GCN. (c) Speedup/energy im-
provement relative to Challapalle et al. (d) Speedup. (e) Energy of NEM-C3 relative to PEDAL.

evaluating CS2, because increase in area is compensated by increased numbers of computations.
Figure 16(e) shows that the energy (Power*Performance) for CS1 is the highest, as there is a power
increase from the multiplier and control logic (even when MAC for weighted edges is performed
in a single clock cycle). The energy efficiency is the highest for CS1, as the energy increase is
compensated by the increased number of computations.

10 ADDITIONAL COMPARISON RESULTS

In this section, we compare NEM-GNN’s design, utilizing NEM-C3 for combination and the UWC
engine for aggregation, against other ReRAM-based PIM designs like PIM-GCN [29], Challapalle
et al. [3], FlowGNN (state-of-the-art von Neumann accelerator), and PEDAL, focusing on GCN and
GraphSage performance/energy metrics. As absolute throughput values are not provided, a direct
energy efficiency/throughput comparison is not feasible, and GAT results are not included.

PIM-GCN demonstrates speedups compared to PyG-CPU running on an Intel Xeon E5-2680
v3 (the same hardware used in our simulations). Therefore, we employ the speedup/energy effi-
ciency metrics reported in the work of Yang et al. [29] for comparison. Our focus is limited to
GCN and GraphSage for PIM-GCN, as the execution methodology for GAT is not detailed in the
article. While the disadvantages of ReFLIP are applicable to PIM-GCN, NEM-GNN designs achieve
higher speedups. However, the achieved speedup is slightly greater compared to ReFLIP in smaller
datasets like Cora/CiteSeer, mainly because PIM-GCN faces challenges in hiding additional latency
for performing CAM to identify neighbors in the scheduling policy, whereas it performs better for
larger datasets. This results in speedups of∼76–105x, as depicted in Figure 17(a). Similarly, in terms
of energy efficiency, enhancements of ∼840–940x are observed for GCN/GraphSage, as shown in
Figure 17(b).

Challapalle’s provided absolute performance/energy figures guide the comparison. Unlike Re-
FLIP, this architecture has distinct engines for traversal, combination, and aggregation, poten-
tially enabling faster aggregation. However, NEM-GNN demonstrates speedups of ∼45–53x and
energy enhancements of ∼430–570x, detailed in Figure 17(c). These gains stem mainly from high
ReRAM write latency/power and challenges in completely concealing latency due to PIM com-
pute. The combination engine must write results into the aggregation engine before in-memory
computation, and all neighboring nodes’ combination vectors must be available before initiating
aggregation for a node. Otherwise, frequent data transfers between the main memory and ReRAM
array incur power/latency costs. Moreover, lacking sparsity-aware compute, aside from CSR/CSC
data representation, limits potential computational reductions, unlike NEM-GNN’s approach, lead-
ing to increased energy consumption in the UWC engine. It is important to note that PIM-GCN
and Challapalle et al.’s modeling does not take into account the additional data movement cost
associated with movement from host CPU to ReRAM-based memory array, and that would fur-
ther improve speedup/energy associated with NEM-GNN.

We compare using latency/energy data from FlowGNN. While FlowGNN introduces the capabil-
ity to compute graphs with edge embeddings, its performance remains nearly on par with previous
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Fig. 18. Execution time/energy requirement/energy inefficiency of designs relative to NEM-C3 for the Reddit
dataset (a) and the Twitter dataset (b). UA means unavailable.

accelerators for unweighted/undirected graphs when normalized to DSP usage. Hence, the energy
efficiency improvements/speedups mirrored in NEM-GNN designs would resemble those seen in
AWB-GCN, as depicted in Figure 12 and Figure 14 for GCN.

For PEDAL, we calculate latencies by multiplying workload cycles by clock frequency and
determine energy by multiplying average power with latency. The highest performance across
IP-AC, RW-AC, and RW-CA dataflows is reported. We observe ∼200–230x/∼190–205x perfor-
mance improvement in GCN/GraphSage and ∼960–1,030x/∼980–1,000x energy improvement in
GCN/GraphSage. These enhancements stem from factors like periodic host-accelerator interaction,
constrained throughput from processing engines, and limited opportunities to conceal aggregation
latency, owing to inherent von Neumann architecture constraints compared to PIM.

We compare prior works for the Reddit dataset in terms of execution time, energy, and energy
inefficiency (wherever applicable). Similarly, comparison against the Twitter dataset is performed
against ReFLIP and PyG-CPU, as other designs have not reported their values. PyG-GPU has out-of-
memory errors for both of these datasets. Such large datasets show the scalability potential of NEM-
GNN designs. The speedup reason for von Neumann architecture designs is the same as mentioned
in Section 9. Comparing NEM-GNN designs with other ReRAM-based PIM designs, the advantages
are as follows. In large datasets like Reddit or Twitter, because we rely on the combination result
to broadcast the data to the aggregation array (instead of aggregation process involving search for
combination vectors corresponding to neighboring nodes to be aggregated for every node, like in
ReFLIP), the possibility of the combination vector getting broadcasted to more candidates increases.
Since the adjacency matrix is read in parallel to dot product compute for combination, the broad-
cast approach can broadcast the combination vector to potentially larger numbers of aggregation
candidates/nodes. Therefore, NEM-GNN is efficient for larger workloads as well. Furthermore, this
is not possible in other PIM designs, as combination vector results need to be written before initi-
ating aggregation. These features enable improved performance/energy/efficiency of NEM-GNN,
as shown in Figure 18.

NEM-GNN can integrate memory-compiled 8T SRAM arrays, improving compute performance
and reducing production cycle time. Scaled to 65 nm [26], our custom array is 1.5x larger with 1.4x
slower read/write latency and 1.6x higher power consumption than compiled memory, attributed
to optimized layout reducing BL/WL capacitance. This boosts performance and power efficiency,
and reduces footprint, resulting in 1.3x, 1.33x, and 1.35x performance benefits in GCNs, GATs, and
GraphSage for NEM-GNN compared to the custom array. Energy efficiency improves up to 1.4x,
1.45x, and 1.47x for GCNs, GATs, and GraphSage compared to the custom array NEM-GNN.

11 CONCLUSION

We propose a scalable, reconfigurable, DAC, ADC-less, energy-efficient, high-performance GNN
accelerator that reconfigures the L1 cache to realize PIM architecture for performing combina-
tion and a near-memory approach for performing aggregation. For combination, bit-serial PIM
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designs with ECT and pre-compute are proposed to make the design scalable, without requiring
data replication and DAC/ADC. For aggregation, graph and sparsity-aware approaches leveraging
the underlying graph connectivity and sparsity combined eith CAR and “broadcast” approaches
hide the aggregation latency to improve performance.
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