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Abstract—Weightless neural networks (WNNs) are an alterna-
tive pattern recognition technique where RAM nodes function
as neurons. As both training and inference require mostly table
lookups, few additions, and no multiplications, WNNs are suitable
for high-performance and low-power embedded applications.
This work introduces a novel approach to implement WiSARD,
the leading WNN state-of-the-art architecture, completely elimi-
nating memories and arithmetic circuits and utilizing only logic
functions. The approach creates compressed minimized imple-
mentations by converting trained WNN nodes from lookup tables
to logic functions. The proposed LogicWiSARD is implemented in
FPGA and ASIC technologies to illustrate its suitability for edge
inference. Experimental results show more than 80% reduction
in energy consumption when the proposed LogicWiSARD model
is compared with a multilayer perceptron network (MLP) of
equivalent accuracy. Compared to previous work on FPGA
implementations for WNNs, convolutional neural networks, and
binary neural networks, the energy savings of LogicWiSARD
range between 32.2% and 99.6%.

Index Terms—Weightless neural networks, WiSARD, FPGA,
VLSI

I. INTRODUCTION

Deep Neural Network (DNN) [1] is a disruptive machine
learning (ML) technique that has revitalized the Artificial
Intelligence research field and its applications, notwithstanding
its computation and energy-intensive profile [2]. These charac-
teristics can hinder the deployment of ML-based IoT solutions,
given the resource constraints on edge devices [3]–[5]. As a
consequence, current edge implementations typically use DNN
models that are smaller and less accurate when compared with
state-of-the-art architectures.

Weightless Neural Networks (WNNs) are an alternative
neural model, inspired by the decode processing of input sig-
nals received by the dendritic trees of biological neurons [6].
WNNs use sets of random access memory (RAM) nodes in
such a way that it avoids complex arithmetic operations during
inference [7], [8]. The RAM nodes serve as WNN neurons and
do not store weights, but instead represent boolean functions.
The inputs (usually binary) are reorganized as tuples to serve
as addresses for the RAM nodes, and a lookup is performed to
determine their response. Training a WNN involves learning
logical functions in the component RAM nodes. Each input in
the training set only needs to be presented to the WNN once,
as opposed to DNNs which involve iterative weight updates.

A relevant WNN-based classifier is the Wilkie, Stonham,
and Aleksander recognition device (WiSARD) [9], which has
been successfully used since 1984 where low computational
load and low inference latency are required. In recent years,
there has been an increased interest in exploring WiSARD
methods for various applications since new criteria were
recently devised to overcome many of its shortcomings, es-
pecially in dealing with large datasets [10].

A drawback of WiSARD models is the memory requirement
to store the RAM nodes, which is directly affected by the input
size and the dataset statistics. To reduce the memory footprint,
dictionary/hash structures are commonly used to implement
the RAM nodes, providing significant memory reduction [11],
[12]. Santiago et al. [13] applied an approximate membership
query structure such as Bloom filters to obtain a further
memory reduction.

Although the WiSARD classification performance is still
not as competitive as recent DNN models, its low complexity
inference may allow attractive low-power implementation of
ML on edge devices. In a debut study, Ferreira et al. [14]
deployed Hash-based WiSARD models capable of performing
both training and inference on an FPGA using high-level
synthesis (HLS). Existing implementations [13], [14] either
suffer from low accuracy or high power/energy costs. Further
investigation is still necessary to conceive efficient hardware
architectures for WiSARD classifiers.

This work introduces a novel approach to represent WiS-
ARD models using only logic functions, completely avoiding
memories and arithmetic circuits. With this, we derive a new
class of low-latency power-efficient VLSI architectures for
WiSARD models. The strategy considers generating a register-
transfer level (RTL) design in such a way as to leverage the
synthesis tool to perform Boolean optimizations, leading to
lower hardware requirements. FPGAs are particularly well
suited for our proposal, because of the abundance of config-
urable logic blocks that can easily implement logic functions.
We demonstrate the proposed method by implementing it on
Xilinx FPGAs, as well as using an ASIC flow with a standard
cell library. Our evaluations show significant reduction in
inference time and energy consumption compared to other
approaches of equivalent accuracy, demonstrating that Logic
WiSARD based classifiers are suitable for latency and power



constrained extreme edge applications.
Our contributions in this paper are the following:
1) A novel approach to WiSARD models using only logic

functions (no arithmetic, no memory). This leads to
efficient hardware implementations. We call this archi-
tecture, the LogicWiSARD;

2) An open-source tool chain to generate these
models. This tool chain is available at:
https://github.com/igordsm83/LogicWiSARD/ ;

3) Implementation of LogicWiSARD in both FPGA and
ASIC technologies. This shows that our approach is
versatile and technology independent;

4) Comparison of the LogicWiSARD implementation with
existing state-of-the-art WNN, and also with multi-
layer perceptron networks (MLP), convolutional neural
networks (CNN), and binary neural networks (BNN)
models of similar accuracy.

The remainder of this paper is structured as follows. Sec-
tion II presents a broad overview of the WiSARD technique
and its characteristics. In Section III, we present our proposed
solution and discuss our design principles. Section IV shows
the experimental environment and evaluation results. Finally,
Section V concludes the paper and introduces future research
directions.

II. BACKGROUND AND RELATED WORK

A WiSARD classifier performs its task by employing mul-
tiple submodels called discriminators. One discriminator is
associated with one classification class. For a WiSARD model
with I 1-bit elements in each input and O output classes,
there are O discriminators. Each discriminator is composed
of N ≡ I/n RAM nodes containing 2n entries each. The n-
bit chunks of the input presented to each RAM node are also
referred to as tuples.

Inputs (e.g., image pixel bits) are shuffled via a mapping
function that is randomly defined during training initialization.
The same function is used in both the training and inference
phases. An example of a mapping function is illustrated in
Fig. 1.

All RAMs positions are initialized to 0. During training,
inputs are presented only to the discriminator corresponding
to the correct output class, and its RAM nodes are updated
by setting an entry to 1 whenever the address of that entry
occurs in the tuple. During inference, inputs are presented to
all discriminators and each discriminator produces an output
which is the sum of the output of all its RAM nodes.
The discriminator output scores (also called responses) are
compared and the one with the largest score indicates the
winner class. Fig. 1 also illustrates the basic functionality of a
WiSARD classifier.

During inference, if an input seen is identical to one seen
during training, then all RAM nodes of the corresponding dis-
criminator will output a 1, resulting in the maximum possible
response. If the input is similar but not identical, then some of
the RAM nodes may produce a 0, but many will still output
a 1. As long as the response of the correct discriminator is
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Fig. 1: (a) Example of a mapping function associating tuples
to RAM nodes and a WiSARD discriminator that is trained to
recognize a single class. (b) A WiSARD classifier, composed
of 10 discriminators, designed to recognize digits 0-9 in an
input image. In this example, the input image has a 1 and
the discriminator corresponding to the digit 1 has the highest
response.
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Fig. 2: Example of a two-class WiSARD classifier with
bleaching algorithm during inference for I = 16, n = 4, and
N = 4. Colors indicate the association between input tuples
and RAMs.

stronger than the responses of other discriminators, WiSARD
will generate the correct prediction.

Despite its moderate performance, this strategy is prone to
overtraining (also called overfitting or saturation) as addresses
with few occurrences have the same relevance as others
with several occurrences. The B-bleaching [15] algorithm was
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Fig. 3: Example of training, binarization, and minterm conversion of a LogicWiSARD discriminator using the proposed method.
Inputs 1-N represent the input samples of the training set. Colors indicate the association between input tuples and RAMs,
and the gray elements are positions whose addresses occurred in the training set. A threshold of 25 was used for binarization
in this example.

introduced to WiSARD models to overcome overtraining. In
this approach, RAM values are incremented by one (instead of
setting to 1) whenever their addresses occur in the associated
tuples across training samples. The RAMs of a trained model
contain the number of occurrences of each address, again
considering the association with tuples and classes. During
inference, a dynamically adjustable threshold is applied to the
RAM output before addition. The bleaching threshold starts
with a small value for each input and increases until there
are no ties among discriminators. The WiSARD classifier for
I = 16, n = 4, and N = 4 with bleaching is depicted in
Fig. 2.

As mentioned earlier, a critical issue with the WiSARD
classifier is the memory requirement that grows exponentially
with n. For instance, a model to classify 1024-point inputs
with n = 32 and N = 32 would require 128 billion memory
positions. Two successful strategies to reduce the memory
footprint use dictionary/hash table structures [16] and Bloom
Filters [13] to implement the RAMs. Ferreira et. al. [16]
implemented a WiSARD model on a Xilinx Zynq FPGA.
Although accuracies up to 92.56% could be achieved for very
large model sizes, the practical model implemented on the
FPGA had an accuracy of 90.73%.

III. PROPOSAL: LOGICWISARD

In this paper we propose a method for converting trained
WiSARD RAMs to Boolean functions to replace memories
with logic circuits. The following sections describe each step
of the proposed method.

A. Conversion of RAMs to Boolean functions
The following steps are performed to convert discriminators’

RAMs to Boolean functions:
• A WiSARD model is trained;
• A suitable binarization threshold is searched;
• The model is binarized;
• Binarized RAMs are converted to Boolean functions.
This process is detailed below.
As described in Section II, a WiSARD model may be

trained by sequentially presenting samples from a training set
to their corresponding discriminator, according to the label of
the sample. Each tuple increments a specific position at the
RAM it was mapped to, producing a model that has non-
binary content on its memories. Afterward, the trained model
is binarized using a threshold to set RAMs’ values to either
0 or 1. A single threshold value is adopted for all RAMs and
discriminators.

The search for a suitable binarization threshold starts with
an iterative process that increments the threshold until the peak
accuracy is found. Accuracy is measured using a validation
set, and we assume that there is only one accuracy peak in
the evaluated range of threshold values. The highest threshold
value that produces an accuracy close to the peak accuracy
is selected. A higher threshold means more positions in the
RAMs will be set to 0, which implies that the size of the model
will be smaller. Hence, we always choose a higher threshold
from the available options. A pre-defined tolerance is used to
determine the minimum accuracy below the peak.

The binarization of a model is performed during training
(different than bleaching), setting to 1 the most frequent RAM
positions while zeroing the others. It allows the proposed
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Fig. 4: Illustration of the grouping strategy for the LogicWiSARD. Multiple occurrences of a minterm across classes for the
same node index (same color) are grouped into a single row of the corresponding minterm group.

method to avoid overtraining while significantly reducing
memory as several RAM positions are set to zero. Because the
bleaching search is avoided during inference, the final circuitry
is simplified and the latency is reduced. The performance of
the WiSARD with binarization is slightly higher than that of
WiSARD with bleaching, as will be shown in Section IV.

To convert a binarized RAM to a Boolean function, we
build a sum-of-minterms expression using the RAM addresses
whose content is set to 1 as minterms. This can be seen as
an opposite process of building a truth table. An extra step
of grouping the minterms is described in Section III-B. The
conversion to minterms and the grouping does not change the
model functionality.

An example of this conversion is illustrated in Fig. 3 for
a single discriminator. For instance, the value 33 at position
00112 of the RAM node R0 indicates the number of training
samples whose first tuple value (in green) is 00112. For a
threshold of 25, only positions 00112, 10102, and 11012 are
set to 1 in the binarized RAM node B0 after binarization while
the others are set to 0. The addresses of these three remaining
positions are used as entries for truth tables which represent
equivalent minterms for RAM node R0.

B. Minterms Grouping

The minterms representation described in Section III-A is
compact and can be used to implement a WiSARD model
only based on Boolean functions. However, it is possible to
further optimize the design by rearranging the minterms to
leverage the synthesis tools to perform additional Boolean
optimizations.

Our grouping strategy is to build truth tables gathering
coincident minterms from different classes related to the same

RAM node index. The merged truth tables must have multi-
bit outputs to indicate which classes contain the referred
minterms. Fig. 4 shows an example of this grouping strategy.

In our experiments, a 5% reduction in hardware resources
was observed by using minterms grouping before running
synthesis, compared to just letting the synthesis tool perform
optimizations on an ungrouped hardware implementation. We
also observed that the improvement was lower for smaller
models compared to larger models. Even though the com-
paction is low for small models, we used the grouping for
all experiments presented in this work.

C. Model selection and HDL generation

Our experiments show that accuracy and model size after
binarization could vary in a wide range as the mapping func-
tion is changed (a different mapping function means shuffling
the bits in the input differently to obtain new tuples). Results
for these experiments are presented in Section IV. Due to this
variability, we select the best model for hardware implemen-
tation among others, with different mapping functions.

For each mapping function, a model is trained, binarized,
and converted to minterms, as described in Section III-A.
Afterward, the accuracy is computed for the test set. The
model selection criteria is to choose the smallest model that
meets a minimum accuracy requirement among all generated
models. If none of the models meets the accuracy requirement,
the smallest model among the 25% most accurate ones is
picked. Also, a model size requirement is defined to stop
creating the models early.

Once the model is chosen, RTL code is generated and syn-
thesized for the target platform. Fig. 5 depicts the full process-
ing flow for LogicWiSARD, from training to HDL generation.



We develop an open-source Python library to implement this
processing flow, except for the logic synthesis step, which is
available at: https://github.com/igordsm83/LogicWiSARD/.

The hardware architecture of the generated HDL is shown in
Fig. 6. The LogicWiSARD takes one tuple every clock which
is sent to the truth table associated with its index. Popcount
logic is used to register minterms occurrences for each class
discriminator. After all tuples are presented, the discriminator
with the highest score defines the predicted class.

Several design choices are available regarding throughput,
latency, and resource requirements. In our experiments, we opt
to reduce the area as much as possible.
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Fig. 5: Full processing flow from training to HDL generation
of LogicWiSARD.
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Fig. 6: The hardware architecture for LogicWiSARD. Note
that full Truth tables are not stored.

IV. EXPERIMENTS AND EVALUATION

A. Experimental Setup

For FPGA, we target the Xilinx XC7Z010-1CLG400 and
XC7Z045-FFG900 FPGA devices and used Xilinx Vivado
2019.2 for synthesis and implementation. For ASIC, we tar-
geted 45 nm technology node using the FreePDK45 [17]
standard cell library and used Cadence Genus 15.20 for syn-
thesis. Also, the memory compiler OpenRAM [18] is used for
memories (to store the weights of the MLP that we compare

against). The timing, power, and area numbers supplied by
these tools are used for comparison and evaluation. All the
FPGA results in this section are post-implementation (i.e. after
placement and routing). All the ASIC results in this section
are post-synthesis.

We use the well-known MNIST dataset [19] for our evalua-
tions as it poses a typical edge ML task. This dataset contains
60k samples in the training set and 10k samples in the test set.
In our experiments, we move 5k samples from the training set
to a validation set that is used to find the binarization threshold.
Since the MNIST images contains 8-bit pixels, we used the
thermometer encoding [20] to reduce pixel resolution. This
reduction in resolution may affect performance, but helps to
produce feasible models for FPGA implementation.

We adjust the hyperparameters (tuple size, n ∈ {14, 28},
and the thermometer resolution, T ∈ {1, 2}) of the proposed
method to produce four models with different classification
performances and sizes. Each model is selected among others
with the same set of hyperparameters but different random
mapping functions, through the methodology described in
Section III and shown in Fig. 5.

We compare the proposed method with a multilayer per-
ceptron (MLP) hardware implementation as it still has the
best tradeoff between accuracy and hardware requirements
in comparison with other state-of-the-art techniques for the
current edge technologies. We choose an MLP size to produce
an accuracy that is equivalent to our WiSARD models so that
resource requirements can be fairly compared. The chosen
model is an 1-hidden layer MLP with configuration of 784-
16-10 and rectified linear unit (ReLU) activation function.

Tensorflow is used for training the MLP. The trained model
is then quantized (to 8-bit precision) to generate a TensorFlow
Lite model. Hardware is generated using the hls4ml tool
[21]. hls4ml takes 4 inputs: (1) the weights generated
by TensorFlow (.h5 format), (2) the structure of the model
generated by TensorFlow (.json format), (3) the precision to be
used for the hardware, and (4) the FPGA part being targeted.
It generates C++ code corresponding to the model, and then
invokes Xilinx Vivado HLS to generate the hardware design.

We modified the generated C++ code such that the I/O in-
terface width matched that of the hardware design for WNNs,
for a fair comparison. We also updated HLS pragmas in the
generated C++ code to reduce parallelization to ensure that the
design fits the target FPGA. The hardware design generated
by Vivado HLS (invoked by hls4ml) is then synthesized
and implemented using Xilinx Vivado and Cadence Genus to
obtain metrics such as resource usage and power consumed
for FPGA and ASIC, respectively.

Additionally, we compare the LogicWiSARD with previous
work on FPGA implementations for MNIST digit classifica-
tion, a hashed WNN model [14], two CNN models based
on the LeNet architecture [22], and a binary neural network
(BNN) architecture [23]. Since these works did not present
ASIC implementations for their designs, they were not in-
cluded in the ASIC implementation evaluation.
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B. Binarization in LogicWiSARD

Fig. 7 summarizes the effects on accuracy and required
memory that are obtained by exploring 100 different mapping
functions (n = 28 and T = 1) while using binarization and
bleaching approaches. Our implementation of bleaching has a
performance that is similar to the bleaching implementation
reported by Santiago et al. [13], which also used n = 28 and
T = 1.

As expected, the binarization provides a significant model
size reduction, suggesting high effectiveness of the synthe-
sis optimization proposed in Section III. A 4x reduction is
achieved for this experiment, but it may range from 2x to
8x, depending on the model size. The observed results also
indicate improved accuracy from the use of binarization for the
MNIST digit classification dataset. This accuracy is achieved
at reduced memory requirements.

An important observation from Fig. 7 is that, as the mapping
changes, memory requirement may vary in a wide range
for binarized models. Plus, there is no strong correlation
between the model size and the accuracy after binarization.
This relationship is not fully understood yet and deserves
further exploration, as memory sizes seem to be clustered
for binarized models shown in Fig. 7. However, this is used
as a design opportunity as it expands the search space for
a reasonable model in terms of accuracy and size. Smaller
binarized models are desired as they imply fewer minterms
after conversion.

In summary, binarization reduces the model size, improves
accuracy, and allows model conversion from memories to logic
functions. However, it increases the variance of the model size
across mapping functions, hindering the model selection. Our
training goal, described in Section III, is to find a binarized
model near the upper-left corner of the search space depicted
in Fig. 7.

C. Implementation Results and Comparison

TABLE I shows the FPGA implementation results of some
variations of LogicWiSARD for MNIST digit classification.
They are labeled as LogicWiSARD A, B, C, D, and E. The
multiple variations illustrate how accuracy, latency, resource
requirements (in LUTs, FF), and energy consumption are
affected by the LogicWiSARD hyperparameters n and T .
Variation E is the most costly in terms of resources and energy
but provides the best classification performance. The latency
ranges from 28 to 112 cycles across the five variations. Note
that the LogicWiSARD implementations eliminate the need
for memories (LUTRAMs and BRAMs).

The table shows results for hardware implementations of
an MLP, two CNNs, and a BNN with accuracies comparable
to WNNs. For the CNNs, we used the latency and resource
usage numbers for optimized implementations reported by
Arish et al. [22]. Power results were approximated by feeding
the resource usage into the Xilinx Power Estimator (XPE) [24].
The BNN results are taken from the FINN/SFC architecture
described in [23]. Also shown in TABLE I are the hardware
implementation results of a state-of-the-art hashed WNN from
[16].

To provide a fair comparison, the LogicWiSARDs A, B, C,
and D as well as the MLP were implemented for the Xilinx
XC7Z010-1CLG400 FPGA device running at 100 MHz clock,
the same configuration in which the hashed WNN and the
two CNNs were implemented. Likewise, the LogicWiSARD
E were implemented for the Xilinx XC7Z045-FFG900 FPGA
device running at 200 MHz clock, seeking to compare it
with the BNN architecture. The comparisons below are made
between iso-accuracy models.

We observe that LogicWiSARD A has similar accuracy
to the Hashed WNN, but consumes 92.0% (53.8%) less
dynamic (total) energy per inference and much fewer hardware
resources. In contrast, LogicWiSARD A needs two times more
cycles than hashed WNN. If a latency equivalence is desirable,
the LogicWiSARD C can be compared with the hashed WNN,
providing less resource utilization, less energy consumption,
and more accuracy. Note that the latency of the hashed WNN
design mentioned in TABLE I is the lower bound of latency
based on the architecture described in [16] and assuming that
it’s a fully pipelined design (the latency is not provided in
their paper).

Comparing the LogicWiSARD B and the CNN-2, the
proposed method shows a substantial improvement in re-
source utilization, latency, and energy consumption. More
than 99% reduction can be observed for latency and energy
per inference. A comparison for hardware utilization is not
straightforward in this case as the CNN-2 uses BRAMs and
DSPs, but the overall reduction of the proposed method is
noticeable.

The LogicWiSARD D provides a reduction in dynamic
(total) energy of 63.8% (83.3%) and 99.2% (99.6%) in com-
parison with the evaluated MLP and the CNN-1 models,
respectively. The latency reductions provided by the proposed



TABLE I: Implementation results of LogicWiSARD (proposed), MLP, WNN, CNN, and BNN (FINN/SFC) models of
comparable accuracy on a Xilinx Zynq FPGA devices for MNIST digit classification

Model Accuracy
(%age)

Latency
(cycles)

LUTs LUT
RAMs

FFs 36-Kbit
BRAMs

DSP
Blocks

Dynamic Power
(Total Power)

(mW)

Dynamic Energy
(Total Energy)
(nJ/Inference)

LogicWiSARD A (n=14, T=1)∗ 91.0 56 2142 0 163 0 0 17.0 (122.0) 9.5 (68.3)

LogicWiSARD B (n=14, T=2)∗ 92.1 112 4530 0 184 0 0 38.0 (142.0) 42.6 (159.0)

LogicWiSARD C (n=28, T=1)∗ 93.3 28 12134 0 142 0 0 100.0 (206.0) 28.0 (57.7)

LogicWiSARD D (n=28, T=2)∗ 94.5 56 37097 0 163 0 0 295.0 (404.0) 165.2 (226.2)

LogicWiSARD E (n=28, T=3)∗∗ 95.0 84 79511 0 184 0 0 1615.0 (1826.0) 1356.6 (1533.8)

MLP 784x16x10∗ 94.6 846 2163 0 3007 8 28 54.0 (160.0) 456.8 (1353.6)

Hashed WNN [14]∗ 90.7 28 9286 350 4568 128.5 5 423.0 (528.0) 118.4 (147.8)

CNN-1 (LeNet variation) [22]∗ 94.7 33615 5753 0 3115 7 18 58.0 (163.0) 19497.0 (54792.0)

CNN-2 (LeNet variation) [22]∗ 92.0 33555 3718 0 2208 5 10 43.0 (148.0) 14429.0 (49661.0)

BNN (FINN/SFC) [23]∗∗ 95.8 62 91131 - - 4.5 - - (7300.0) - (2263.0)
∗ Synthesized for XC7Z010-1CLG400 @ 100MHz, ∗∗ Synthesized for XC7Z045-FFG900 @ 200MHz

TABLE II: Implementation results of LogicWiSARD (proposed) and an MLP model of similar accuracy on 45nm ASIC
technology node for MNIST digit classification

Model Accuracy
(%age)

Latency
(cycles)

Gate
Count

SRAM
(bits)

Area
(µm2)

Dynamic Power
(Total Power) (mW)

Dynamic Energy
(Total Energy)
(nJ/Inference)

LogicWiSARD A (n=14, T=1) 91.0 56 9432 0 41317 1.397 (1.537) 0.782 (0.861)

LogicWiSARD B (n=14, T=2) 92.1 112 18819 0 81763 2.287 (2.552) 2.561 (2.858)

LogicWiSARD C (n=28, T=1) 93.3 28 42383 0 182073 4.772 (5.339) 1.336 (1.495)

LogicWiSARD D (n=28, T=2) 94.5 56 122128 0 520181 10.352 (11.971) 5.797 (6.704)

LogicWiSARD E (n=28, T=3) 95.0 84 282258 0 1193446 27.487 (31.130) 23.089 (26.149)

MLP 784x16x10 94.6 846 16833 39760 258795 3.802 (4.171) 32.165 (35.287)

method are 93.4% and 99.8% for MLP and CNN-1. Again,
hardware utilization comparison is not simple for designs that
use multiple FPGA resources. However, the proposed method
does not seem to provide a better implementation than the
compared methods in this case.

In the 95% accuracy range, we compare the LogicWiSARD
E and the BNN models. The proposed method provides a
32.2% reduction in total energy consumption per inference
and uses 12.8% fewer LUTs. Additionally, the BNN uses 4.5
BRAMs, while LogicWiSARD E does not use any. Latency,
however, increases by 35.5% in the proposed method. Al-
though the difference between the models’ accuracies can not
be ignored, the comparison is still valuable because there are
many inference applications at the edge that can tolerate a
slightly lower accuracy (0.8%), but benefit from significantly
low energy and low hardware requirement.

TABLE II shows the comparison of the ASIC implemen-
tation (at 45nm technology node) of the four LogicWiSARD
variations along with an MLP of comparable accuracy. The
LogicWiSARD variations A, B, and C have smaller areas
than MLP design, while variations D and E have larger areas.
However, the reduction in energy consumption per inference

ranges from 28.2% to 97.6%, for dynamic energy, and from
25.9% to 97.6%, for total energy. These results show that the
LogicWiSARD approach can also be more energy efficient in
ASIC technology. Although only dynamic power is explictly
compared, the area consumed by a hardware implementation
can be used as a proxy of the static power consumption.

Moreover, the ASIC implementation demonstrates that our
approach provides a memoryless representation of WiSARD
models implemented exclusively using logic functions.

V. CONCLUSION AND FUTURE WORK

Weightless Neural Networks are a class of neural models
that learn patterns without using weights. We present Log-
icWiSARD, a weightless neural network model that, to the
best of our knowledge, is the first work that implements WiS-
ARD models using only logic functions, completely avoiding
memories and arithmetic circuits. We also present a method-
ology/tool flow that can be used to generate such models.
This approach to designing WNN accelerators has shown
much promise for achieving area- and energy-efficient designs.
Compared to previous work on FPGA implementations for
WNNs, CNN, and BNNs, the LogicWiSARD can produce



competitive models in terms of energy consumption, latency
or hardware utilization.

By allowing trade-offs between the desired accuracy and
costs of each design, our design flow provides designers with
an efficient tool to search for design alternatives best suited to
the project objectives. Our investigation has also uncovered in-
teresting research paths to be explored in future work regarding
the input mapping function, which may provide further model
size reduction with minimal impact to accuracy.

Although WNNs trail recent machine learning algorithms
in accuracy, LogicWiSARD can be deployed for several low-
power latency-constrained edge applications where lower ac-
curacy is acceptable.

ACKNOWLEDGMENT

This work was supported by the Serrapilheira Institute
grant number Serra – 1912-32159 and the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES),
Brazil - Finance Code 001. The authors would also like to
thank the Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico (CNPq), Brazil.

REFERENCES

[1] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A
survey of accelerator architectures for deep neural networks,”
Engineering, vol. 6, no. 3, pp. 264–274, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2095809919306356

[2] M. Capra, B. Bussolino, A. Marchisio, G. Masera, M. Martina, and
M. Shafique, “Hardware and software optimizations for accelerating
deep neural networks: Survey of current trends, challenges, and the road
ahead,” IEEE Access, vol. 8, pp. 225 134–225 180, 2020.

[3] D. L. Dutta and S. Bharali, “Tinyml meets iot: A comprehensive survey,”
Internet of Things, vol. 16, p. 100461, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2542660521001025

[4] M. de Prado, M. Rusci, A. Capotondi, R. Donze, L. Benini,
and N. Pazos, “Robustifying the deployment of tinyml models for
autonomous mini-vehicles,” Sensors, vol. 21, no. 4, 2021. [Online].
Available: https://www.mdpi.com/1424-8220/21/4/1339

[5] R. Sanchez-Iborra and A. F. Skarmeta, “Tinyml-enabled frugal smart
objects: Challenges and opportunities,” IEEE Circuits and Systems
Magazine, vol. 20, no. 3, pp. 4–18, 2020.

[6] I. Aleksander, M. De Gregorio, F. França, P. Lima, and H. Morton,
“A brief introduction to weightless neural systems,” in 17th European
Symposium on Artificial Neural Networks (ESANN), 04 2009, pp. 299–
305.

[7] W. W. Bledsoe and I. Browning, “Pattern recognition and reading
by machine,” in Papers Presented at the December 1-3, 1959,
Eastern Joint IRE-AIEE-ACM Computer Conference, ser. IRE-
AIEE-ACM ’59 (Eastern). New York, NY, USA: Association
for Computing Machinery, 1959, p. 225–232. [Online]. Available:
https://doi.org/10.1145/1460299.1460326

[8] I. Aleksander, M. De Gregorio, F. M. G. França, P. M. V. Lima, and
H. Morton, “A brief introduction to weightless neural systems.” in
ESANN. Citeseer, 2009, pp. 299–305.

[9] I. Aleksander, W. Thomas, and P. Bowden, “WISARD·a
radical step forward in image recognition,” Sensor Review,
vol. 4, no. 3, pp. 120–124, 1984. [Online]. Available:
https://www.emerald.com/insight/content/doi/10.1108/eb007637/full/html

[10] B. P. Grieco, P. M. Lima, M. De Gregorio, and F. M.
França, “Producing pattern examples from “mental” images,”
Neurocomputing, vol. 73, no. 7, pp. 1057–1064, 2010, advances
in Computational Intelligence and Learning. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231210000159

[11] H. C. C. Carneiro, F. M. G. França, and P. M. V. Lima, “Multilingual
part-of-speech tagging with weightless neural networks,” Neural Net-
works, vol. 66, p. 11–21, June 2015.

[12] A. S. Lima Filho, G. P. Guarisa, L. A. Lusquino Filho, L. F. Oliveira,
F. M. Franca, and P. Lima, “wisardpkg–a library for wisard-based
models,” arXiv e-prints, pp. arXiv–2005, 2020.

[13] L. Santiago, L. Verona, F. Rangel, F. Firmino, D. S. Menasché,
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