
LogGen: A Parameterized Generator for Designing
Floating-Point Logarithm Units for Deep Learning

Pragnesh Patel∗, Aman Arora†, Earl Swartzlander‡, Lizy John§
The University of Texas at Austin, United States

∗prp1998@utexas.edu, †aman.kbm@utexas.edu, ‡eswartzla@utexas.edu , §ljohn@ece.utexas.edu

Abstract—Several applications like Deep Learning (DL), Image
Processing, and Digital Signal Processing (DSP) rely on the fre-
quent and efficient computation of the logarithm function. Many
of these applications use lower precision floating-point datatypes
like IEEE half-precision (FP16), bfloat16 (BF16), tensorfloat32
(TF32) instead of single-precision (FP32) and double-precision
(FP64). This is because lower precision reduces the computational
complexity and memory bandwidth required, albeit with a small
degradation in accuracy. While developing logarithm units for
FP32 and FP64 datatypes has received a lot of attention, not a
lot of effort has been put into the designs of logarithm units for
smaller datatypes. Also, different DL applications have different
area, delay, memory, accuracy, and datatype requirements. A
one-size-fits-all design cannot satisfy all these requirements.
This paper presents an open-source, parameterized generator,
called LogGen, for generating logarithm unit implementations
optimized for smaller floating-point datatypes. LogGen enables
generation of designs by varying multiple knobs - precision, accu-
racy, base of logarithm, storage, and latency. It uses a flexible and
efficient Look-Up Table (LUT) based architecture that leverages
the small size of datatypes to optimize this architecture. Design
space exploration using LogGen is presented. The experimental
results show that LogGen designs can outperform commercial IPs
(Synopsys DesignWare, Xilinx) and open-source IPs (FloPoCo) in
terms of area and delay metrics.

Index Terms—Floating-point Arithmetic, Logarithm, Deep
Learning Hardware, Tools, Generator, FPGA, ASIC

I. INTRODUCTION

Elementary functions like the logarithm find use in many
areas such as Deep Learning (DL), Digital Signal Processing
(DSP), image processing, and bioinformatics.Complex arith-
metic operations like multiplications, divisions, and reciprocals
can be simplified by incorporating a logarithmic arithmetic
circuit. In DL, logarithmic data with arbitrary log-bases has
been used to accelerate convolutional neural networks in
hardware [13]. Efficient hardware implementation of neural
network layers like Softmax requires logarithm units of various
fixed and floating-point datatypes [14]. Thus, for DL and
several other applications, there is an increasing need to design
efficient hardware for computing logarithm.

Most of the DL applications use smaller floating-point
datatypes like half-precision (FP16), bfloat16 (BF16) and
tensorfloat32 (TF32) instead of single-precision (FP32) and
double-precision (FP64). BF16 (or Brain Floating Point) is a
16-bit truncated version of the 32-bit IEEE single-precision
floating-point datatype used in Intel DL processors, FPGAs
and Google TPUs. TF32 is an emerging floating-point datatype
that occupies 19 bits and is used in Nvidia A100 GPUs.

The precision used for DL algorithms impacts the hard-
ware’s area and performance metrics. A lower precision
reduces computational complexity and memory bandwidth

required, but leads to lower accuracy. It has been shown
that a lower internal computational accuracy does not lead
to a significant overall accuracy loss in neural networks [9].
The NPU architecture for Microsoft Brainwave used a narrow
precision datatype called Microsoft Floating-Point (MSFP)
with 5-bit exponents and mantissas as low as 2 to 5 bits with
a negligible impact on accuracy [6]. Thus, hardware for DL
can be optimized for area and delay at the cost of accuracy.

Different DL accelerators require support for different
datatypes and have different budgets for area, delay, memory
and latency. Different applications have different tolerance
for accuracy. Some applications might even require logarithm
computation for arbitrary bases. A one-size-fits-all design
cannot satisfy all the requirements in such a diverse application
space. Thus, in this paper, a tunable generator called LogGen
is presented that can generate different LOG units that are
fine-tuned to fit user requirements (precision, accuracy, base
of logarithm, storage and latency). Ad hoc techniques of
exploration can miss out efficient implementations leading to
inefficient accelerators. Thus, LogGen provides a valuable and
convenient tool to explore the LOG unit design for different
application scenarios and requirements. No such tool currently
exists in the open-source community.

The base architecture of the LOG unit used by LogGen must
accommodate the range of features required by the generator
and deliver satisfactory performance, resource usage, and
accuracy metrics. To achieve this, the base architecture uses a
LUT-based approximation based on a simple formula that is
mentioned in Section II-B. The LUT-based design also enables
efficient mapping to both ASIC and FPGA architectures.

The contributions of this paper are summarized as follows:
• A generator called LogGen that is a tool to dump Verilog

code for the required LOG units. It is controlled by 5
knobs - precision, accuracy, base of logarithm, storage
and latency - that can take different values.

• A base architecture that has been optimized to compute
the logarithm of small floating-point datatypes (like FP16,
BF16 and TF32) and is flexible in terms of area, accuracy,
delay and latency.

• Design space exploration using LogGen and analysis of
trade-offs between area, delay and accuracy. The various
generated LOG unit designs are evaluated, and compared
with commercial (Synopsys DesignWare, Xilinx Floating
Point Operator), open-source (FloPoCo) designs and a
past published implementation [1]. As an application
example, the generated LOG units are integrated into a
Softmax design.



II. BACKGROUND
A. Floating Point

Assume that num is a floating-point number such that
num = (−1)s ∗ 2exp ∗ mant, where s indicates the sign
of the number (with s ∈ {0, 1}), exp indicates the exponent
and mant indicates the mantissa. According to the IEEE-754
standard for floating-point arithmetic, mant is a normalized
mantissa with mant ∈ [1, 2), except for the subnormal
range. The leading bit of the mantissa is excluded in this
representation because it is always a constant one.

Different floating-point datatypes can be created by varying
the number of bits used to represent the exponent and mantissa
parts. For example, the FP16 datatype has a 5-bit exponent and
a 10-bit mantissa, the BF16 datatype has an 8-bit exponent
and a 7-bit mantissa. The more recent TF32 datatype uses the
same 10-bit mantissa and 8-bit exponent as FP16 and BF16
respectively. These 3 datatypes are shown in Fig. 1.

S Exponent (5 bits) Mantissa (10 bits)

S Exponent (8 bits) Mantissa (7 bits)

09101415

1514 7 6 0
a)

b)

S Exponent (8 bits) Mantissa (7 bits)b)S Exponent (8 bits) Mantissa (7 bits)c)
1817 10

Mantissa (10 bits)
09

Fig. 1: Floating point representation of a) FP16, b) BF16 and c) TF32

B. Formula
As seen in the Section II-A, a floating-point number consists

of three fields: the sign, the exponent (exp), and the mantissa
(mant). Since the logarithm function is only defined for
positive numbers, the sign bit can be ignored. The final
value of log(num) can be calculated using the multiplicative
property of the logarithm function as follows:

log(num) = exp× log(2) + log(mant) (1)

In this paper, Equation (1) is used to compute the floating-
point logarithm function. A LUT-based method is used to eval-
uate the terms - exp×log(2) and log(mant) - in hardware. [1]
[5] [10] also use this formula. However, different techniques
are used by them to calculate the terms of the formula. Further
details will be provided in subsequent sections.

III. PREVIOUS WORK

The problem of implementing logarithm has been thor-
oughly explored, although a lot of the published works are not
optimal for the new generation of applications. A lot of work
has been focused on fixed-point datatypes, traditional floating-
point (FP32 and FP64) datatypes [10] [1] and parameterized
log units [5], but no work specifically focuses on optimizing
the designs for small floating-point datatypes.

Certain proprietary IPs like the Synopsys DesignWare Li-
brary [12] and the Xilinx Floating-Point Operator [15] provide
a parameterized logarithm unit. However, in Section VI, it is
shown that the Synopsys DesignWare library logarithm unit is
very slow and requires a lot of area. Also, the Xilinx Floating-
Point Log Operator consumes a lot of resources and only
supports FP16, FP32 and FP64 datatypes.

In [5] and [10], higher order approximations and Taylor
series were used to design logarithm units. However, using
such techniques for small datatypes is inefficient in terms
of resources and latency as it involves several floating-point
multiplications and additions. Moreover, Taylor series can
only be used to calculate natural logarithm while our base
architecture supports any arbitrary logarithm base.

Dinechin, Klein and Pasca presented FloPoCo, an open-
source arithmetic core generator [4]. However, there is a lack
of compliance with the IEEE-754 standard. In Section VI, it
is shown that the FloPoCo LOG units are more accurate, but
slower and larger in comparison to the LogGen designs.

Alachiotis and Stamatakis proposed a logarithm unit for
FPGAs for FP32 and FP64 datatypes [1]. However, their
approach involves additional hardware units like subtractor,
multiplexer, fixed to FP32 datatype conversion logic, and
floating-point multiplier that can be easily avoided for smaller
datatypes using the LUT-based approach shown in this paper.

IV. ARCHITECTURE

The baseline architecture of the LOG unit for FP16, BF16
and TF32 datatypes is shown in Fig. 2. This section describes
the LOG unit architecture for FP16 datatype that has a 5-bit
exponent and 10-bit mantissa. The architecture is physically
divided into 4 blocks as described below.

A. Look-Up Table for the Exponent (LUT-EXP)

For a naive hardware implementation of Equation (1), the
calculation of the first part of the sum: exp× log(2) requires
subtracting the biased 5-bit fixed-point value of the exponent
field with the bias (i.e. 15 for FP16), converting the result
of subtraction from fixed-point to the respective FP16 value,
followed by a floating-point multiplication with log(2). This
design uses a faster and smaller LUT-EXP that directly stores
the 25 FP16 values of the final result of the exp × log(2)
multiplication and requires only 0.5Kb (25 ∗ 16 bits) of
memory.

LUT-EXP with
depth = (d)

LUT-MANT with
depth = (c)

Exception Module

0

1

(b)

(e)

(e)

log(num)

Floating-Point Adder

(e)

(e)
(e)

(e)

MantissaExponentSign (a)

Fig. 2: Proposed Architecture for FP16/BF16/TF32 LOG Units.
a/b/e denote bit widths. a/b/c/d/e take different values for different
datatypes. a = 10/7/10, b = 5/8/8, c = 1024/128/1024, d = 32/256/256,
and e = 16/16/19 for FP16/BF16/TF32 respectively.

B. Look-Up Table for Mantissa (LUT-MANT)

The calculation of log(mant) requires the use of LUT-
MANT. The LUT-MANT is initialized with all the pre-
computed FP16 values for log(mant). Since FP16 has 10 bits
of mantissa, it requires 16Kb (210 ∗ 16 bits) of memory as
compared to the 256Mb (223 ∗ 32 bits) required for a full-size
LUT-MANT for FP32. The small size of the LUT for FP16
makes it unnecessary to use other complex approximation



techniques. The Accuracy knob of LogGen allows the user
to choose the number of most significant bits of mantissa that
are used to index the LUT-MANT. Thus, the user can reduce
the size of the LUT in exchange for a lower accuracy. Section
VI-B, provides a comparison between the accuracy loss, area
reduction and delay for designs with smaller LUT-MANT.

C. Floating-point Adder

The outputs of LUT-EXP and LUT-MANT are added in
the floating-point adder to obtain the final logarithm value.
The Precision and Pipeline knobs of LogGen allow the user
to choose between different implementations of the floating-
point adder.

D. Exception Module

The architecture described here does not support subnor-
mals. The logarithm output for both zero and subnormal inputs
is −inf . An optional exception module can also be added to
map the output for negative inputs to NaN (Not a Number) if
the application requires support for negative inputs. Then the
final result will be obtained by multiplexing the output of the
adder with the output of the exception module.

E. Cancellation Problem

The sum of exp × log(2) and log(mant) in Equation (1)
may result in a massive cancellation when num is approaching
1 but is less than 1 (exp = −1 and mant→ 2). The technique
used to handle this problem leads to a greater resource usage
and more complex design [5] [10]. However, in the base
architecture, since the values of both the terms of the sum
are precomputed with high accuracy and are stored in the 2
LUTs, the stored LUT values are such that cancellation will
only occur when num = 1. Also, the closest number to 1
that can be represented by FP16 datatype (i.e. s = 0, exp = -1
and mant = 8’hFF) is 0.9995. The absolute error between the
expected and observed value of ln(0.9995) is 0.0001. This
error is much less compared to the the maximum absolute
error of the base LOG unit as shown in Section VI-B. Thus,
due to the LUT-based approach and low precision of smaller
datatypes like FP16, the architecture presented in this paper
avoids this cancellation problem. Moreover, this makes the
architecture cheaper in terms of resources as compared to [10]
and [5].

F. Other datatypes

The base architectures of the LOG units for BF16 and TF32
datatypes are similar to that of FP16. The differences in the
architectures for BF16 and TF32 from FP16 are the sizes of
LUT-EXP and LUT-MANT (as shown in Table I) along with
the datatype supported by the floating-point adder.

Table I. Size and memory requirements of LUT-EXP and
LUT-MANT for base LOG units of FP16, BF16 and TF32 datatypes

LUTs in base LOG unit FP16 BF16 TF32

LUT-EXP
No. of entries 32 256 256
Size of memory (Kbits) 0.5 4 4.75

LUT-MANT
No. of entries 1024 128 1024
Size of memory (Kbits) 16 2 19

V. LOGGEN

This section describes the flow, structure and knobs of
LogGen. Fig. 3 provides a top-level view of the generator.

A. Flow and Structure

The inputs to the generator are the values of various
knobs - precision, accuracy, base of logarithm, storage and
pipeline. These knobs control the different aspects of the base
architecture. The outputs of the generator are a set of Verilog
files for the top-level module, LUT-EXP, LUT-MANT and
floating-point adder blocks. The Makefile available can be used
to generate the designs.

Verilog
Templates

LUT generator

Top-level module
generator

Testbench generator

Knobs

1. Precision
2. Accuracy
3. Base of Logarithm
4. Storage
5. Pipeline

Adder generator

Utility Scripts

Generator

Verilog Design
Files

logunit_top.v

lut_exp.v

lut_mant.v

fp_adder.v

Testbench

Fig. 3: Flow and structure of LogGen

There are two components inside the generator: Verilog tem-
plates and Python scripts. The Verilog templates are skeleton
designs with different labels placed at different locations. The
Python scripts process the template, replace the labels with
Verilog code based on the input knobs and dump the Verilog
files. There are separate scripts for the LUT-EXP and LUT-
MANT blocks that are used to pre-compute the LUT values
based on the input knobs.

B. Knobs

Hardware implementation trade-offs for the LOG unit can
be explored using the following 5 knobs:

Precision: This knob defines the floating-point precision
(datatype) supported by the generated design. It controls the
exponent and mantissa width of the floating-point input. For
example, if the input of the knob is {5,10}, then the generated
LOG unit will be for FP16. This knob supports any positive
exponent and mantissa bit-width values as inputs. However, for
datatypes like FP32 and FP64 with large bit-widths, the LUT
sizes of the design will become very large and the generated
designs will not be efficient in terms of area and delay.

Accuracy: This knob controls the number of most signif-
icant bits of mantissa used to index LUT-MANT. Thus, this
knob defines the LUT-MANT size. Positive values less than
or equal to the mantissa width of the Precision knob will be
considered as valid inputs. For example, the mantissa width
for FP16 is 10 but the first 8 bits from the most significant bit
of the mantissa can be used to index LUT-MANT. The last 2



bits are ignored. This reduces the size of LUT-MANT from
210 to 28 entries, but lowers the accuracy of the design.

Base of Logarithm: This knob defines the base of the
logarithm function of the design. The base LOG unit has the
flexibility to support any arbitrary base as the LUT values can
be pre-computed and stored for any given base. All positive
numbers are considered as valid inputs. The default value for
this knob is e and the LOG unit calculates natural logarithm.
Other values like 2 or 10 can be used the generate LOG units
that compute log2(x) or log10(x) respectively. This knob does
not affect any of the area, delay, and latency metrics and is
mainly dependent on the user’s functional requirements.

Storage: The LUT values can either be implemented using
logic gates (LG) or can be stored in hard macro RAMs (RAM)
or flip-flop based memories (FF) for ASIC designs. For FF,
the synchronous single-port, read/write flip-flop based RAM
(DW ram rw s dff) from the Synopsys DesignWare library
was used. The simulation and synthesis models for the hard
macro RAM were obtained using the OpenRAM tool [8].
For FPGA designs, these values can be implemented using
configurable logic blocks (CLB) or stored in Block RAMs
(BRAM). This knob can take 5 values for the storage type -
LG, SRAM, FF, CLB, and BRAM - and allows the user to
choose between an ASIC or FPGA design.

Pipeline: This knob is used to choose between the different
floating-point adder implementations. Currently, this knob is
only valid for ASIC designs and can take two values - pipe
or no pipe. There are two different implementations of the
floating-point adder. The first one has been obtained from
the Synopsys DesignWare IP library called DW fp addsub
and the other one is a custom design called FP AddSub
that has been designed by us. For FP AddSub, we use the
architecture described in [3] (hard multiplier and adder based,
not the soft logic based, not the iterative design; also, we
use a different pipelining scheme). Compared to FP AddSub,
DW fp addsub has a smaller area but is slower as it is
not pipelined. If required, users can easily integrate their
own adders by modifying the floating-point adder module
instantiation in the top-level module of the generated design.
For FPGA implementation, the Xilinx Floating-Point Addition
Operator [15] was used to perform the floating-point addition.

VI. EXPERIMENTAL RESULTS
This section discusses the methodology and observations

of the experiments conducted. Verilog was used to create the
designs and testbenches. For the FPGA evaluation, Xilinx
Vivado 2019.2 was used for simulation and implementation,
with Xilinx Zynq XC7Z020-1CLG400C SoC FPGA. For
the ASIC evaluation, Synopsys VCS and Synopsys Design
Compiler were used for simulation and synthesis respectively.
The area values are post-synthesis and pre-placement/routing
areas. The library used for synthesizing the designs is the
FreePDK45 [11] that uses a 45nm ASIC process. For the
accuracy assessment of the design, the observed output values
of the LOG units were compared to the expected output values
from a Python-based CPU model for 105 randomly generated
inputs.

A. Exploration based on Precision knob

For this experiment, the Precision knob of the generator was
varied. As expected, the BF16 LOG unit has the smallest area
since it has the smallest LUTs. The FP16 LOG unit requires
less area than TF32 LOG unit because it has a smaller LUT-
EXP. The frequencies of all the 3 LOG units are about the
same. This is because the DW fp addsub adder is used. The
total latency of designs with the Pipeline = no pipe is 2 clock
cycles as there is one pipeline stage between the LUTs and
DW fp addsub.

Table II. Area-Delay characteristics of ASIC implementations for
different configurations of Precision knob (Storage=lg,

Pipeline=no pipe) and scaled-down FP16 version of [1]

LOG Unit Area
(µm2)

Freq.
(MHz)

Latency
(cycles)

Design with PR={5,10}, AC=10 9711 201 2
Design with PR={8,7}, AC=7 4538 193 2
Design with PR={8,10}, AC=10 11479 189 2
FP16 version of design in [1] 13602 201 2

Table III shows the FPGA resource utilization for both FP16
and BF16 LOG units with Storage = BRAM. The FP16 LOG
Unit utilizes less CLB resources and more DSP Slices than
BF16 LOG unit because the Xilinx Add/Subtract Floating-
Point Operator IP can be configured to use the DSP slice
resources only for FP16, FP32 and FP64 datatypes. Also, the
difference in latency is due to the different implementations
of FP16 and BF16 adders provided by Xilinx.

Table III. Resource usage for the FPGA implementation of FP16
and BF16 LOG units

Resource PR={5,10},
AC=10,
ST=BRAM

PR={8,7},
AC=7,
ST=BRAM

PR={5,10},
AC=10,
ST=CLB

LUTs in CLBs 92 154 275
LUTRAM 0 9 0
FF 297 278 289
DSP Slice 2 0 2
36 Kb BRAM 1 1 0
Freq. (MHz) 322 333 322
Latency (cycles) 14 11 14

B. Exploration based on Accuracy knob
To see the effect of reducing the mantissa width on the area

and accuracy, the Accuracy knob was varied from 10 to 5. Fig.
4 shows that the average absolute error increases and area
decreases exponentially as the LUT-MANT size decreases.
This is because the LUT-MANT size gets approximately
halved with every reduction in the mantissa bit-width used
to index LUT-MANT. Upon examination, the design with
Accuracy = 8 provides the best balance between area and
accuracy for FP16 LOG units. The design with Accuracy = 8
has 54% less area than the design with Accuracy = 10 while
only having a 17.5% increase in the average absolute error.

C. Exploration based on Storage knob

For ASIC designs, the Storage knob can take 3 values - LG,
FF and RAM. Table IV shows that the least area was utilized
when hard logic gates were used to implement the LUTs. This



0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

0

2000

4000

6000

8000

10000

12000

10 9 8 7 6 5

Er
ro

r

A
re

a 
(µ

m
²)

Values of the Accuracy knob

Area Avg. Abs. Error Max. Error

Fig. 4: Trade-off between area, average absolute error and max
error with varying values of the Accuracy knob (Precision={5,10},
Storage=LG and Pipeline=no pipe)

is because using a flip-flop based memory or hard macro RAM
block to implement LUTs with small table sizes is not optimal
in terms of area and delay [7]. However, hard logic gates are
not optimal for large LUTs used in datatypes like FP32 and
FP64 as they will have a high combinational delay and area
compared to a hard macro RAM.

Table IV. ASIC area comparison for different values of Storage
knob with Precision={5,10}, Accuracy=5 and Pipeline=no pipe

LOG Unit Area (µm2)
Design with ST=LG 2727
Design with ST=RAM 6230
Design with ST=FF 20042

For the FPGA implementation, the Storage knob can be
either BRAM or CLB. The Xilinx 7 series FPGA BRAMs can
store upto 36Kb of data (can be configured as two independent
18Kb blocks too). Table I shows that the largest LUT-EXP
and LUT-MANT for FP16, BF16 and TF32 datatypes can
be fit into the 18Kb BRAM blocks. Hence, the total BRAM
resource required is one irrespective of the Accuracy knob.
LUTs in CLBs can also be used. Table III, shows that there
is an increase of 183 in LUT usage when CLBs were used
to implement the LUT-EXP and LUT-MANT. The user can
decide the Storage knob value based on the BRAMs and CLBs
availability. The frequency and latency remained same for both
designs with BRAM and CLB as those values are dependent
on the Xilinx Floating-Point Adder Operator.

D. Exploration based on Pipeline knob
For the ASIC implementation, either the DW fp addsub

or the FP AddSub adder can be used. As expected, Table
V shows that the designs with the the pipelined FP AddSub
adder (Pipeline = pipe) have higher frequency and latency.
However, they are less accurate and consumes more area than
designs with the DW fp addsub adder (Pipeline = no pipe).

Table V shows that the frequency of the generated designs
with Pipeline = no pipe is the same. This is because the critical
path delay and the frequency of the design is always decided
by the DW fp addsub.

However, the frequencies for the designs with Pipeline =
pipe are different. This is because the critical path of the

designs can either be LUT-MANT or FP AddSub adder. For
FP16 designs with Pipeline = pipe, the frequency is decided
by LUT-MANT for Accuracy = 9 or 10 and by FP AddSub
for Accuracy <= 8.

Table V. Comparing various metrics between ASIC
implementations of generated designs (Precision={5,10},

Storage=lg), DW fp ln, and FloPoCo LOG unit

LOG Unit Area
(µm2)

Freq.
(MHz)

Latency
(cycles)

Avg. Abs.
Error

AC=10, P=no pipe 9711 201 2 4.45E-04
AC=10, P=pipe 13067 500 11 7.85E-04
AC=8, P=no pipe 4503 201 2 1.38E-03
AC=8, P=pipe 7859 885 11 1.87E-03
DW fp ln 6201 144 1 7.42E-04
FloPoCo 11479 333 9 2.92E-04

E. Comparison with other ASIC implementations

The LOG unit architecture mentioned in [1] has been
designed for FP32 and FP64 datatypes. Hence, for a fair
comparison their LOG unit was scaled down to FP16 using the
same Synopsys DesignWare Library blocks as the base LOG
unit. Table II, shows that the generated design (Accuracy = 10,
Storage = LG and Pipeline = no pipe) has a 1.4 times smaller
area than the scaled down version. The frequency and latency
is the same because DW fp addsub is the critical path.

DW fp ln is the parameterized LOG unit available in
the Synopsys DesignWare library. Table V, shows that the
DW fp ln design has the lowest frequency among all the
designs. This is because it is not pipelined. The generated
design with Accuracy = 8 and Pipeline = no pipe is faster
and consumes lesser area but is less accurate than DW fp ln.
The generated design with Accuracy = 8 and Pipeline = pipe
has a 6.1 times higher frequency at the cost of 1.2 times the
area of DW fp ln.

The FloPoCo LOG unit requires the largest area among
all the designs. However, it is the most accurate design. The
generated FP16 design (Accuracy = 8, Storage = LG) with
Pipeline = pipe has a 2.65 times higher frequency and 1.46
times lesser area. Thus, the user can generate LOG units using
LogGen that provide metrics as good as if not better than the
existing commercial and open-source LOG units.

F. Comparison with other FPGA implementations

Both Xilinx Vivado HLS and IP Generator can be used
to generate the FP16 log unit. However, the HLS design
internally used the same log unit as the IP Generator. The IP
Generator only supports FP16, FP32, and FP64 datatypes for
the log unit. Thus, it doesn’t have support for custom datatypes
like like LogGen. Table VI shows that the Xilinx FP16 log unit
is more accurate, but utilizes more resources than the generated
FP16 design with Accuracy = 8 and Storage = CLB. Even
though it can operate at a slightly higher frequency, it has a
higher latency than the generated design. Table VI also shows
that the FloPoCo LOG unit consumes the highest amount of
FPGA resources, is the slowest among all the 3 designs, and
has nearly the same accuracy as the Xilinx FP16 Log Unit.



Table VI. Various metrics for FPGA implementations of Xilinx IP,
FloPoCo and the generated LOG unit (PR={5,10}, AC=8, ST=CLB)

Resource Xilinx IP FloPoCo LogGen
LUTs in CLBs 292 470 146
LUTRAM 25 35 0
FF 451 361 289
DSP Slice 2 1 2
36 Kb BRAM 0 0 0
Freq. (MHz) 344 123 322
Latency (cycles) 18 9 14
Avg. Abs. Error 2.93E-04 2.92E-04 1.42E-03

G. Application Level Evaluation - Softmax

The Softmax function is used in several neural network-
sRecent state-of-the-art hardware implementations of Softmax
use logarithm to avoid large area consumption and accuracy
loss caused by division units [14]. For proof of concept and
to demonstrate the trade-off between area and accuracy at an
application level, a Softmax design based on [14] was created
with LogGen LOG units integrated into it. This design is also
part of the Koios benchmark suite [2].

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

1.40E-04

30000

32000

34000

36000

38000

40000

42000

44000

46000

48000

10 8 6

Er
ro

r

A
re

a 
(µ

m
²)

Values of the Accuracy knob

Area Avg. Abs. Error Max. Error

Fig. 5: Area-Accuracy trade-off for Softmax units with different LOG
units (Precision={5,10}, Storage=LG, Pipeline=no pipe)

Fig. 5 shows that the area of design that used the LOG unit
with Accuracy = 8 was 16.3% less than the design that used
the LOG unit with Accuracy = 10. There was a slight increase
in the average absolute error of the design while the maximum
error stayed the same. In comparison, the area of design that
used the LOG unit with Accuracy = 6 was 20.5% less than
the design that used the LOG unit with Accuracy = 10. There
was an increase in both average absolute and maximum error
as well. This observation is in-line with the observation in
Section VI-B, that the design with Accuracy = 8 provides the
best balance between area and accuracy for FP16 LOG units.
The frequency of all three designs was the same as the critical
path was not in the LOG unit.

VII. CONCLUSION

This paper presents an open-source generator called LogGen
that can create LOG unit designs by varying 5 aspects
(precision, accuracy, base of logarithm, storage & pipeline)
of a flexible base architecture. LogGen is available at:
(https://github.com/pragneshp7/LogGen). The base architec-
ture has been optimized for small floating-point datatypes.

The goal of LogGen is to enable evaluation of trade-offs
between area, delay, latency, and accuracy of the LOG unit.
With new datatypes (like TF32 in Nvidia GPUs and MSFP
in Microsoft Brainwave) constantly emerging and becoming
increasingly popular in DL, LogGen can be useful to quickly
generate efficient LOG units for these emerging datatypes.
In addition to user-defined datatype, LogGen can be used to
generate LOG units for a user-defined logarithm base.

The generated designs were compared to commercial and
open-source IPs along with a past implementation. Based on
the comparisons, it can be concluded that the LogGen designs
are adequately accurate, and the area and delay metrics are as
good as if not better compared to the other existing designs.

VIII. ACKNOWLEDGEMENT

This research was supported in part by NSF grant number
1763848. We thank anonymous reviewers for the detailed
comments on the paper. Authors would also like to acknowl-
edge computational resources from Texas Advanced Com-
puting Center (TACC). Any opinions, findings, conclusions
or recommendations are those of the authors and not of the
National Science Foundation or other sponsors.

REFERENCES

[1] N. Alachiotis and A. Stamatakis, “A vector-like reconfigurable floating-
point unit for the logarithm,” International Journal of Reconfigurable
Computing, vol. 2011, 2011.

[2] A. Arora, A. Boutros, D. Rauch, A. Rajen, A. Borda, S. A. Damghani,
S. Mehta, S. Kate, P. Patel, K. B. Kent, V. Betz, and L. K. John, “Koios:
A deep learning benchmark suite for fpga architecture and cad research,”
in 2021 31st International Conference on Field-Programmable Logic
and Applications (FPL), 2021, pp. 355–362.

[3] F. Brosser, H. Y. Cheah, and S. A. Fahmy, “Iterative floating point com-
putation using fpga dsp blocks,” in 2013 23rd International Conference
on Field programmable Logic and Applications, 2013, pp. 1–6.

[4] F. De Dinechin, C. Klein, and B. Pasca, “Generating high-performance
custom floating-point pipelines,” in 2009 International Conference on
Field Programmable Logic and Applications. IEEE, 2009, pp. 59–64.

[5] J. Detrey and F. de Dinechin, “A parameterizable floating-point loga-
rithm operator for FPGAs,” in Conference Record of the Thirty-Ninth
Asilomar Conference on Signals, Systems and Computers, 2005., 2005,
pp. 1186–1190.

[6] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel,
A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M.
Caulfield, E. S. Chung, and D. Burger, “A Configurable Cloud-Scale
DNN Processor for Real-Time AI,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), 2018, pp.
1–14.

[7] X. Geng, J. Lin, B. Zhao, A. Kong, M. M. S. Aly, and V. Chandrasekhar,
“Hardware-Aware Softmax Approximation for Deep Neural Networks,”
in Asian Conference on Computer Vision. Springer, 2018, pp. 107–122.

[8] M. R. Guthaus, J. E. Stine, S. Ataei, Brian Chen, Bin Wu, and M. Sarwar,
“OpenRAM: An open-source memory compiler,” in 2016 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2016,
pp. 1–6.

[9] J. Johnson, “Rethinking floating point for deep learning,” arXiv preprint
arXiv:1811.01721, 2018.

[10] M. Langhammer and B. Pasca, “Single precision logarithm and ex-
ponential architectures for hard floating-point enabled FPGAs,” IEEE
Transactions on Computers, vol. 66, no. 12, pp. 2031–2043, 2017.

[11] NCSU. (2018) Freepdk45. [Online]. Available: https://www.eda.ncsu.
edu/wiki/FreePDK45:Contents

[12] Synopsys. (2018) DesignWare Library - Datapath and Building Block IP.
[Online]. Available: https://www.synopsys.com/dw/buildingblock.php



[13] S. Vogel, M. Liang, A. Guntoro, W. Stechele, and G. Ascheid,
“Efficient Hardware Acceleration of CNNs Using Logarithmic Data
Representation with Arbitrary Log-Base,” in Proceedings of the
International Conference on Computer-Aided Design, ser. ICCAD ’18.
New York, NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3240765.3240803

[14] Z. Wei, A. Arora, P. Patel, and L. John, “Design Space Exploration for
Softmax Implementations,” in 2020 IEEE 31st International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
2020, pp. 45–52.

[15] Xilinx, “Floating Point Operator v7.1,” https://www.xilinx.com/
support/documentation/ip documentation/floating point/v7 1/
pg060-floating-point.pdf, 2019.


