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Abstract

Video encoding/decoding is an extremely relevant work-
load in our society today. Video accounts for a significant
percentage of the world’s online traffic, which is expected
only to be growing. Thus, it is important to understand these
workloads to optimize the hardware to handle them better.
There is significant interest in the royalty-free AV1 codec, but
we identify that it consumes a significantly higher runtime
than other popular codecs, such as H.264/AVC, H.265/HEVC,
and VP9. However, the reasons for the slowdown of the AV1
codec are not well-understood by prior work to the best of
our knowledge.

This paper explores the reasons for the large runtimes
taken by AV1 workloads. We first focus on profiling the
microarchitectural characteristics of the SVT-AV1 encoder,
which implements the AV1 codec, to identify acceleration
opportunities with a wide spectrum of encoding parameters.

We discover that the runtime of AV1 encoders is higher
than other encoders because AV1 encoders require a larger
number of instructions to encode the same video, rather than
any significant microarchitectural inefficiencies. Among mi-
croarchitectural components, we observe branch misprediction
to be the component with the most significant impact on
performance. In light of this, we evaluate the performance
of several different branch predictors using Championship
Branch Prediction (CBP) frameworks. From this, we find that
increasing the size of the branch predictor as well as using
a TAGE branch predictor rather than Gshare both had a
significant positive impact on branch predictor performance.

We also compare the scaling of SVT-AV1 against other
codecs by giving each encoder access to an increasing number
of threads. Finally, we observe that SVT-AV1 contains the
highest degree of parallelism of the tested encoders. Because of
this, increasing concurrently running threads and optimizing
branch prediction may help bridge the gap in runtime between
SVT-AV1 and encoders implementing other codecs.

1. Introduction

Video is an extremely popular media format in our
society. In 2017, video accounted for an estimated 74% of
all web traffic [1] and this figure is only growing. According
to the Cisco Visual Networking Index Report [2], the video

will account for 82% of all internet traffic by the year
2022. Additionally, the recent pandemic has placed a new
importance on video in all of our lives as we have adjusted
to use video conferencing for work and to stay connected
with friends and family. Additionally, many workers are
now considering transitioning to a hybrid work model more
permanently. A Mckinsey study [3] reports that globally 53%
of workers would like to continue to work from home at
least three days per week in the future. It is also reported
that 86% of businesses used video as a marketing tool
in 2020, up from 69% three years ago [4]. The massive
volume of video traffic forces video streaming companies
such as Youtube, Netflix, and Facebook to build massive
infrastructures to stream video at such a large scale. Because
of this, these workloads must be optimized to ensure that
our web infrastructure will be able to continue to handle
the demands placed on it while efficiently using resources.
Unfortunately, raw video files tend to take up an

enormous amount of data. For example, streaming a raw
1080p video at just 20 fps would take (1920 x 1080) of
internet bandwidth, much more than is available to most
consumers. Consequently, video codecs have become a
critical part of the video processing flow, as they allow for
a highly compressed version of the raw video content to
be streamed to and from datacenters with relatively little
noticeable degradation in video quality.
Numerous different video codecs exist for video com-

pression, including H.264/AVC [5], H.265/HEVC [6], VP9 [7],
offered by MPEG. Unfortunately, their latest offering, HEVC,
carries a high cost and a great deal of uncertainty in order
to license the patents necessary to implement it. In response,
the Alliance for Open Media (AOM) [8] created a royalty-
free codec, known as AV1, designed to rival the performance
of other state of the art codecs, such as HEVC, while not
violating any of their patents.
However, AV1 codecs overall generally consume signifi-

cantly larger runtime than the other codecs. Fig. 1 shows
the runtime of various encoding runs of the video game
1 at various Constant Rate Factor (CRF) values. CRF is an
encoding parameter that dictates the quality of the encoded
video, and lower CRF values correspond to better quality
but higher runtime. From Fig. 1, we can see that at all
tested CRFs, SVT-AV1 has by far the highest runtime of all
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Figure 1: Execution time comparison between various
codecs (a smaller CRF value indicates better quality video).

tested encoders. The reasons for the order of magnitude
higher runtime are not well-understood. Unfortunately, the
microarchitectural bottlenecks in the AV1 codec have yet
to be identified in order to accelerate workloads using this
codec and maximize their performance. It is critical that this
work be done in order to allow video workloads to continue
to be processed efficiently while avoiding the significant
licensing costs and possible legal fees associated with other
popular video codecs.
In this paper, we aim to discover why AV1 encoders

take more time to encode than other modern encoders, such
as H.264, H.265, or VP9. We perform top-down analysis [9],
as well as a scalability study using SVT-AV1 [10].1 We also
found that branch prediction shows interesting behavior
and perform detailed analysis using microarchitectural
simulations.
This paper makes the following observations.

• Runtime of AV1 encoders such SVT-AV1 is higher
than other encoders such as x264 and x265, largely not
because they have any significant microarchitectural
inefficiencies, but primarily because AV1 encoders
need more work and thus require a larger number
of instructions to encode the same video.

• The AV1 workloads only achieve 50-60% of the poten-
tial throughput achievable by the microarchitecture.
Regardless of CRF and input video, the percentage of
wasted pipeline slots is roughly 40-50 percent.

• As CRF decreases, the runtime of the encoder in-
creases largely because of increasing instruction count.
However, deteriorating microarchitectural inefficiency
contributes to a smaller extent.

• Increasing the number of threads from 1 to 8 can
improve performance by a factor of roughly 6X, making
SVT-AV1 the most parallelizable of the encoders. x265,
on the other hand, is the least parallelizable of the
encoders, only experiencing a maximum speedup of
roughly 1.3X.

• When increasing the number of threads for SVT-
AV1, each core seems to perform roughly the same
work, whereas when increasing the number of threads

1. We chose the SVT-AV1 codec for the analysis because this is the
main codec used by Netflix and it supports various configurations, unlike
rav1e [11].

with x265, backend performance becomes much worse,
which suggests that x265 may spread the workload
among its cores unevenly.

• Increasing CRF causes backend performance to dete-
riorate relative to the performance of the rest of the
pipeline. This happens because increasing at lower
quality causes requires less computation to fall, but
the amount of data movement stays the same, leading
to more stalls due to cache misses.

• Increasing the speed preset from 0 to 8 causes a signif-
icant decrease in runtime and a significant increase in
bitrate but a relatively modest decrease in Peak-Signal-
to-Noise Ratio (PSNR).

2. Background and Motivation

2.1. Video Metrics

This section discusses the key video metrics used within
this study. Peak-Signal-to-Noise Ratio (PSNR) is a widely-
used video quality metric. PSNR is usually calculated per
frame and measures the ratio between the maximum power
of the signal and noise in that frame. Then, typically, the
PSNR of each frame is averaged to find the PSNR of an
entire video sequence [12] so that the quality of video as a
result of using different encoders can be analyzed.

Bitrate is the number of bits per unit of time necessary
to transmit an encoded video signal. All else being equal, it
is desirable for an encoder to have a lower bitrate, as this
means that the video can be transmitted faster, or using a
weaker connection, and takes up less storage space. This
paper measures bitrate in kilo-bits per second (kbps).
For most encoders, Constant Rate Factor (CRF) is a built

in quality control parameter which specifies a certain quality
that the encoder then aims to meet. Bitrate is adjusted up
or down in order to meet the quality target [13]. Decreasing
the value of CRF increases the quality target leading to
increased video quality but at the cost of higher bitrate
and runtime. Due to these adjustments, in order to get a
full picture of the performance of an encoder it must be
analyzed using multiple CRF values.

Bjøntegaard delta rate (BD-Rate) [14] measures the
percent change in bitrate between two encoders or encoder
configurations while maintaining the same video quality.
BD-Rate is always calculated relative to some reference
encoder or encoder configuration, which is treated as the
zero point. In our case for PSNR BD-Rate, a lower PSNR
BD-Rate value on the y-axis for some data points means
that the encoder configuration corresponding to that data
point can encode at the same video quality with a lesser
bitrate. A lower PSNR BD-rate with a lower runtime is
generally the most desirable, but, as can be seen in Fig. 2a,
lower PSNR BD-Rate generally leads to higher runtime.

2.2. Video Encoding Overview

Video files are composed of a huge amount of data,
and video streaming is becoming increasingly popular [15]
[4], already contributing about 34% of consumer workloads

55

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 01,2023 at 15:10:56 UTC from IEEE Xplore.  Restrictions apply. 



(a) PSNR BD-Rate vs Execution Time for game 1

(b) PSNR vs Execution Time for game 1. (Speed preset at 4)
Figure 2: PSNR vs Execution Time

[16]. In order to allow this abundance of video data to be
easily streamed to the average consumer, this data must be
modified to take up less bandwidth, and this is done via
video encoding. Video encoding utilizes several techniques
that aim to compress the size of a video signal to a smaller,
more manageable size. This file compression reduces re-
dundant information within the video data, which results
in reduced video quality, so video encoding methods are
designed to compress as much as possible while minimizing
the loss in quality [17].
For any codec, compared to encoding, video decoding is

a fairly straightforward operation because there exists only
one valid decoding for each encoding method. Encoding is
much more complex because the encoder needs to choose
from many options at each encoding step to determine
video quality (PSNR) and size (Bitrate). To find an acceptable
encoding for meeting user’s requirement, the encoder makes
a number of passes through the video to search over the
possible encoding options. In each new generation of codecs,
the encoder is given more choices at each step, allowing
for higher quality and/or lower bitrate. However, these
improvements come at the cost of significantly increasing
algorithmic complexity as increasing the number of options
available to the encoder at each step exponentially increases
the number of potential combinations of techniques the
encoder can use to get to its final result. For example,
AV1 allows 10 different ways to partition each block when
encoding, whereas it’s predecessor VP9 only allows for 4
[18]. Because of this, AV1 must check against 6 more options
compared to VP9 at every step of encoding. If both were

to investigate every option available to them for 5 steps,
VP9 would have to investigate 1024 unique combinations
of techniqes to encode, while AV1 would have to check
100000.

Any encoder will have a number of options which allow
the user to control the desired Video Quality, Bitrate, and
Runtime [19]. Many encoders allow the user to specify
an input Constant Rate Factor (CRF). This essentially sets
a target quality for the output, which the encoder then
attempts to meet. Decreasing CRF tunes the encoder to
encode for higher quality video output. This increase in
quality lengthens the runtime, and causes the bitrate of the
video output by the encoder to increase, requiring stronger
connections to stream and more room required to store the
output.

2.3. Motivation

AV1 provides an excellent quality and bitrate compared
to other codecs [20], as demonstrated by the plot of PSNR
BD-Rate in Fig. 2a. In the figure, SVT-AV1 is shown to have
the lowest PSNR BD-rate out of all the encoders studied,
and is therefore capable of encoding at a lower bitrate
than any of the other encoders while retaining the same
PSNR. However, it also possesses an order-of-magnitude
or worse higher runtime than x265, x264 and VP9. Despite
this, its high performance has gained AV1 encoders a great
deal of attention, with many studies investigating practical
applications for video codecs including AV1 as a main
contender [21] [22] [23]. In order to investigate methods to
potentially improve the runtime of encoders, while retaining
low bitrates and high quality, this paper investigates which
components of SVT-AV1 cause its high runtimes.

Additionally within SVT-AV1, encoding at better quality
causes further increased runtime [24], as illustrated by the
plot of quality metric PSNR plotted against runtime in
Figure Fig. 2b. This figure shows that for the tested video,
encoding at higher PSNR, and therefore higher quality, leads
to significantly higher runtime with diminishing returns on
quality. This figure only shows the relationship between
PSNR and runtime for encoding the game 1 video, but this
trend held for all but a few videos in vbench [25] which had
significantly lower amount of uncertainty in their encoded
data than their counterparts. Because of this, this paper
also studies the causes of SVT-AV1’s increase in runtime
with video quality with the interest of finding potential
areas to improve upon.

3. Methodology

3.1. Hardware

We use Intel Xeon E5 2650 V4 CPU for all of our
analyses. This processor has 12 physical (24 logical) cores
at 2.8 GHz. Each physical core contains a 32KB L1 I-cache,
a 32KB L1 D-cache, and a 256KB L2 cache. The last-level
cache (LLC) size is 30 MB shared across all cores.
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3.2. Workloads

We use the videos from vbench [25] for our analyses.
Vbench is a video benchmarking suite containing a set of 15
5 second long videos of varying resolutions, framerates, and
complexities (measured as entropy). The videos in vbench
are representative of a set of videos taken from Netflix,
Xiph.org, and SPEC2017. The videos available in vbench
can be seen in Table 1.

3.3. Codecs

Five codecs were used for the various analyses in this
paper; x264, x265, libaom, SVT-AV1 and Libvpx-vp9. The
codecs each used one of two ranges of CRF and presets.
libaom, SVT-AV1 and Libvpx-vp9 used a CRF range from
0-63, with higher values corresponding to lower quality
and runtimes, along with a preset range from 0-8 that
follows the same pattern. x264 and x265 on the other hand
possess a CRF ranging from 0-51 and a preset range from
0-9. However it is important to note that the preset range
of these two are measured in the opposite direction as the
rest, with higher values corresponding to higher quality
and runtimes.

3.4. Tools

We use the following tools for detailed architectural
and microarchitectural analysis of video workloads:
1) Linux perf [26] provides a command line interface
to extract CPU’s performance event counters. Various
microarchitectural statistics, such as the number of
retired instructions, branch misses, and cache misses,
are used for a top-down analysis [9].

2) We use Intel Pin [27], a binary instrumentation tool, to
get instruction mixtures and record instruction traces
for branch analyses.

3) The Championship Branch Prediction (CBP) frame-
work [28] is used to evaluate the efficacy of various
branch prediction units on our tested workloads.

4) GNU gprof [29] is used for a function level profiling, i.e.,
find hot functions, which is used for instruction tracing.

TABLE 1: The list of videos from vbench [25]

Video Resolution FPS Entropy

desktop 720p 30 0.2
presentation 1080p 25 0.2
bike 720p 29 0.92
funny 1080p 30 2.5
bike 720p 29 0.92
cricket 720p 30 3.4
game1 1080p 60 4.6
game2 720p 30 4.9
game3 720p 59 6.1
girl 720p 30 5.9
chicken 2160p 30 5.9
cat 480p 29 6.8
holi 480p 30 7
landscape 1080p 29 7.2
hall 1080p 29 7.7

TABLE 2: Instruction mix in % (preset: 8, CRF: 63).

Video # Insts. Branch Load Store AVX SSE Other

presentation 1.7E+11 6.6 25.8 13.1 33.0 0.9 20.7
landscape 4.4E+11 6.2 26.3 13.6 31.5 0.7 21.7
house 3.4E+11 6.0 26.3 12.9 32.0 0.7 22.1
holi 4.4E+11 3.3 29.4 15.5 33.7 0.2 18.0
hall 3.5E+11 5.7 26.5 13.4 32.6 0.6 21.2
girl 1.2E+11 6.7 25.8 14.3 29.9 0.8 22.5
game2 1.5E+11 6.6 26.2 14.1 29.7 0.8 22.6
game3 2.6E+11 6.6 26.1 13.6 30.4 0.8 22.5
funny 9.5E+11 4.0 28.8 14.8 33.0 0.2 19.1
desktop 9.5E+10 6.9 26.0 14.1 29.6 1.0 22.5
cricket 7.8E+11 3.3 29.2 15.5 34.2 0.2 17.6
cat 7.7E+10 5.9 26.1 13.7 30.3 0.6 23.3
bike 9.9E+10 6.8 26.0 14.3 29.2 0.9 22.8

Figure 3: Op-Mix for each video. CRF increases from left
to right in each cluster of bar graphs.

4. results

4.1. Instruction Mix

Table 2 shows the instruction mix from a number of
runs of the encoder for each video at preset 8 and CRF 63.
From this data, we can see that SVT-AV1 is well vectorized.
This suggests that further vectorization is probably not a
viable approach to speed up the encoder. Additionally, the
encoding workloads contain a relatively small percentage
of branch instructions, ranging from 3.3% to 6.9% branches.
The percentage of load instructions is relatively higher
ranging from 25.8% to 29.4%. The percentage of stores
ranges from 12.9% to 15.5%. CRF was increased from 10 to
60 in Fig. 3 to understand any noticeable change, and indeed,
the AVX instruction mix shows a growing percentage of
instructions, further signifying the important performance
implication of vectorizations.

4.2. CRF Sweep Results

This section examines how runtime and other microar-
chitectural behaviors change as the CRF value increases.

4.2.1. Runtime. As shown in Fig. 1, SVT-AV1 has a signifi-
cantly larger number of instructions for the same CRF than
other codecs, including Libvpx-vp9, x264, and x265. This
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greater number of instructions can be explained by the fact
that AV1 allows for many more options at each encoding
step. These additional options yield performance increases
in terms of PSNR and bitrate, but they exponentially
increase runtime as they exponentially increase the design
space that the encoder is forced to search to find an
acceptable encoding of the video. This observation points
towards a viable area to improve the runtime of SVT-AV1
further.

(a) Instruction count

(b) Runtime

(c) IPC

Figure 4: CRF sweep results (speed preset 4).

Fig. 4 shows changes in the instruction count, execution
time, and instruction per cycle (IPC) as we vary CRF from
10 to 60. The following observations can be made from the
results:
1) The runtime seems to be directly proportional to the
number of instructions.

2) Additionally, Fig. 4c, shows that as CRF is increased
from 10 to 60, IPC hovers around 2 for all of the
videos and increases by at most 10% depending on the
video. This increased IPC, while not insignificant, is not
enough to explain the much larger decrease in runtime
with larger CRFs and the number of instructions
required to perform the encoding fall.

These observations suggest that as CRF increases, the
runtime of the encoder decreases not primarily because
increasing CRF leads to increased microarchitectural effi-
ciency but because increasing CRF simply decreases the
amount of algorithmic work required by the encoder.

4.2.2. Top-down Analysis. Top-down analysis [9] is a
useful method to quickly identify performance bottlenecks
in a processor using performance counters. Pipeline activi-
ties are classified as one for the following four: 1) retiring:
micro-ops (uops) are completed without a problem, 2) bad
speculation: this category is caused by bad speculations, i.e.,
branch misprediction, and includes wrong-path instructions
that are eventually flushed and pipeline stalls due to pipeline
flush, 3) frontend: uops are not sufficiently supplied to the
backend, and 4) backend: because of resource constraints,
such as data cache misses and busy execution units, uops
cannot be issued for execution.
Fig. 5 shows a top-down analysis of videos used in

this study. Note that each video is represented by a cluster
of stacked bar graphs. One trend observed was that the
backend slots account for more wasted pipeline slots than
the frontend and bad-speculation for almost all tested
videos. In addition, increasing CRF tends to increase the
overall proportion of backend-bound slots but decrease the
proportion of frontend-bound slots. Interestingly, the sum
of the percentages of frontend and backend bound slots
stays relatively constant regardless of CRF changes for all
videos.
On the other hand, the percentage of bad-speculation-

bound slots decreases with increasing CRF, causing the
percentage of retiring slots to increase on the whole with
increasing CRF. However, the magnitude of this increase is
fairly limited as the percentage of bad-speculation-bound
slots is relatively small for all videos. Additionally, the
percentage of retiring slots is fairly similar across all videos
ranging from 0.4 to 0.6. As a result, the overall IPC of the
runs was limited to around 22, as shown in Fig. 4c. This
result makes sense as the IPC of the workload is typically
expected to be roughly equivalent to the reciprocal of the
percentage of retiring slots. The falling percentage of bad-
speculation-bound slots with increasing CRF contributes
to IPC improvements. Bad-speculation-bound slots show

2. The maximum IPC of the evaluated machine is 4.
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Figure 5: Top-down analysis for each video. CRF increases
from left to right in each cluster of bar graphs.

the most interesting results in this section, so further
investigation of the branch prediction behavior performed,
as shown in Section 4.4.

4.3. Microarchitectural Analysis

Among wasted slots in Section 4.2.2, backend-bound
slots can be divided into memory-bound and core-bound
slots. Memory-bound slots consist of wasted slots due to
cache misses. Core-bound slots are due to the required
pipeline resources being unavailable. Frontend-bound slots
can typically be divided into latency bound and bandwidth
bound. Bad-speculation-bound slots are generally due to
branch mispredictions, but both of these had a relatively
smaller impact than the backend-bound slots. In order
to investigate these wasted slots further, the inefficiency
within several microarchitectural resources that may be
contributing to these issues was examined. The specific
issues investigated were the inefficiency within the branch
predictor, the cache hierarchy, and some of the pipeline
execution units. Fig. 6 shows all results.
Fig. 6a shows the trend in branch misses per kilo instruc-

tions (MPKI) as CRF increases. It displays as CRF increases,
the number of branch MPKI decreases significantly. This
makes sense as previously we saw that bad-speculation
bound slots tend to decrease with increasing CRF. Fig. 6b,
Fig. 6c, and Fig. 6d show us the trends in L1D, L2, and
LLC MPKI, respectively. From these figures, we can see that
generally speaking as CRF increased, cache performance
tended to deteriorate. These cache misses account for the
majority of the memory bound portion of the workload’s
backend bound slots. This trend was not mirrored by the
LLC, however, the LLC accounted for many fewer misses
per kilo instruction than the L1D and L2 Caches. Figures
Fig. 6e, Fig. 6f, Fig. 6g, and Fig. 6h show us the trends in
inefficiency in the pipeline units as CRF increases. As CRF
increases, performance for these units tended to deteriorate
except for the reorder buffer which accounted for many

fewer stall cycles than the other pipeline units. These are
similar to the trends found in [30].
As suggested in [30], the trends in memory bounded-

ness can be explained using the roofline model [31]. The
roofline model is a performance model which shows the
correlation between performance and operational intensity.
The roofline model justifies this by suggesting that if the
operational intensity is low enough for the workload to
be memory bound, overall performance will increase as
operational intensity increases until the workload becomes
compute bound. This concept is paralleled here, as when
CRF increases, the quality constraint on the encoder is
relaxed, which means that less computation is needed to
encode the video. On the other hand, the total amount of
required data transfer stays the same, which means that
operational intensity decreases, and the workload becomes
more memory bound.
This trend can also explain the decrease in frontend-

boundedness as CRF increases. As Operational intensity
decreases due to the increase in CRF, the CPU spends more
time waiting for memory traffic which causes it to exhaust
pipeline resources. When this happens, the CPU must stop
fetching new instructions, causing it to spend fewer cycles
stalled due to frontend issues.

4.4. Branch Prediction Analysis

As displayed in Fig. 7, despite the encoder’s low branch
MPKI, the branch miss rate of the encoder runs is fairly high,
around 3.5% for some of the tested examples. Additionally,
as displayed in Fig. 6a, and Fig. 4c decreasing branch MPKI
seems to have a strong correlation with increasing IPC. This
suggests that optimizing branch prediction may provide a
significant performance improvement. Because of this, the
effectiveness of various branch predictors on branch traces
taken from encoding runs of each of the videos is analyzed.
Fig. 8, Fig. 9, and Fig. 10 show the branch miss rate

and MPKI of various branch predictors on branch traces
taken from encoding runs of SVT-AV1 on each video within
vbench. These traces were taken from an interval of 1
billion instructions roughly halfway through the encoding
run of each video with CRF set to 63 and preset set to
8. These traces were collected using Pin [27]. The branch
traces were evaluated using the CBP 2016 branch prediction
simulator [28]. With this simulator, 2 Gshare-based branch
predictors were simulated [32], one with a size of 2KB,
and one with a size of 32KB, as well as the 8KB and 64KB
TAGE-based branch predictors detailed in [33]. From this
figure, it can be noticed that increasing the size of the
branch predictor for both TAGE and Gshare significantly
decreased the simulated branch miss rate. Additionally, the
TAGE-based branch predictor performed much better on
the trace than the Gshare-based branch predictor. Along
with other findings, this suggests that optimizing branch
prediction performance by increasing the size of the branch
predictor, as well as opting for a more complicated branch
prediction scheme such as TAGE rather than Gshare may
significantly increase the overall IPC of the workload.
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(a) Branch (b) L1 Data Cache (c) L2 Data Cache (d) Last Level Cache

(e) Resource Stalls Any (f) Reservation Station (g) Store Buffer (h) Re-Order Buffer

Figure 6: Microarchitectural analysis with CRF changes.

Figure 7: Branch Miss Rate vs CRF

4.5. Preset Sweep

Fig. 11b displays the relationship between encoding time,
bitrate, and PSNR as speed preset is varied. Fig. 11a shows
that as speed preset is increased from 0 to 8 with fixed CRF,
runtime fell significantly from over 155k seconds at preset 0
to fewer than 200 seconds at preset 8. Fig. 11b demonstrates
that with a fixed CRF, as preset is increased from 0 to 2
bitrate did not significantly increase, however from preset 3
onward, bitrate raised significantly from roughly 2700 kb/s
to roughly 3200kb/s. PSNR, on the other hand, showed only
a relatively modest decrease as speed preset was increased
from 0 to 8, falling from roughly 45.8dB to roughly 45dB.
This suggests that with fixed CRF, most of the encoding
time reduction is time that was spent reducing the size of
the encoded video rather than increasing the quality. In
Fig. 11c, Fig. 11d, and Fig. 11e, the trends in percentage of
pipeline slot usage, branch/cache MPKI, and resource stalls
as preset is increased with fixed CRF. Unlike in [30], no

Figure 8: Simulated MPKI for each video. Branch traces
were collected using speed preset 8 and CRF 63

noticeable trends were observed in any of these statistics
as preset is increased from 0 to 8 with constant CRF.

4.6. Thread Scalability Study

Most video encoding algorithms have sufficiently large
parallelism. For example, multiple threads can process
different partitions, i.e., macro-blocks, in parallel to speed
up the encoding process. Consequently, thread scalability is
an important aspect of video codecs. This section examines
how multi-threading affects the performance of different
codecs, including x264, x265, libaom, and SVT-AV1.
Fig. 12, Fig. 13, Fig. 14, and Fig. 15 show the thread

scalability results as the number of concurrently running
threads increases from 1 to 8. From one to three threads,
SVT-AV1 shows similar speedup to libaom but significantly
less speedup than x264. However, from four threads and
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Figure 9: Simulated MPKI for each video. Branch traces
were collected using speed preset 4 and CRF 10

Figure 10: Simulated MPKI for each video. Branch traces
were collected using speed preset 4 and CRF 60

onward, SVT-AV1 exhibits by far the best speedup, reaching
roughly 6x speedup compared to the single-core runtime
with 8 threads. Interestingly, x265 shows by far the poorest
speedup of the four encoders, reaching a maximum speedup
of about 1.3x. We conduct a top-down analysis to investigate
why encoders show different scalability behaviors.
Fig. 16 shows that how much percentage of pipeline slots

are wasted by the backend, frontend, and bad-speculation
for all four encoders. For libaom, SVT-AV1, and x264, chang-
ing the maximum number of concurrent threads does
not affect workload characteristics. x265, on the other
hand, becomes significantly more backend bound with
the increased number of the maximum concurrent threads.
This observation suggests that every encoder other than
x265 does a fairly good job of dividing the work amongst
additional threads as new threads become available, whereas
x265 may instead divide it amongst a primary thread which
performs most of the work along with some additional
helper threads.

5. Related Work

Realizing the significance of video workloads, a signifi-
cant set of prior works have been done to profile them and
examine their performance.
Lottarini et al. [34] formulated vbench, a representative

set of video inputs based on their resolution, frame rate,
and entropy. It proposes a set of videos to be used as

a benchmark for transcoding applications and shows its
usefulness by comparing the microarchitectural trends
found when executing the new benchmark suite to existing
video datasets. We use the videos found in vbench to
conduct our analyses. While the paper does investigate
some of the microarchitectural trends of the videos within
the vbench suite, its primary purpose for doing this is
to compare the trends to the those found within the
larger dataset of videos in order to argue that the set of
videos within vbench is representative of the larger set.
The analysis in this paper does not seek to identify any
performance bottlenecks or analyze the differences between
various codecs. We would like to investigate this in our
paper.
Chen et al. [35] uses the videos from vBench to do

microarchitectural performance characterization of video
transcoders. They evaluate the performance of the x264
transcoder by varying its parameters like CRF (constant
rate factor), refs(reference frame number), and presets. The
paper, however, does not mention the AV1 codec which we
would like to investigate.
Mansri et al. [20] tried to compare the performance

of various state of the art codecs with their predecessors.
Additionally, the paper compares the performance of the
emerging AV1 codec with some more established codecs.
While this paper does discuss AV1 performance, it does
not do anything to evaluate any microarchitectural trends
found in the AV1 codec or any of the other codecs that it
examines.
Kossentini et al. [36] discussed various algorithmic

features the SVT-AV1 encoder that implements the AV1
codec and investigates its speed and encoding quality
tradeoffs. The paper compares the speed vs quality tradeoffs
of SVT-AV1 vs. several other encoders implementing various
other codecs for various use cases such as premium VOD,
and general VOD. The paper finds that SVT-AV1’s speed
vs quality characteristics put it on the pareto front of
the set of tested encoders, but the paper does not focus
on the microarchitectural characteristics of any of the
tested encoders. Additionally, the paper does not attempt
to identify any opportunities to increase the performance
of the SVT-AV1 workload.

6. Conclusions

In this paper, we characterize the microarchitectural
performance of AV1 video-encoding workloads using the
AV1 encoder SVT-AV1. We compare the performance of this
encoder against the performance of various other encoders
implementing other popular codecs. We find that SVT-AV1’s
long runtime relative to other popular encoders is not
primarily attributable to its microarchitectural performance
relative to the other encoders but rather its much greater
algorithmic complexity. Similarly, SVT-AV1’s increase in
runtime as the quality constraint is increased is also
largely due to increased algorithmic complexity rather than
deteriorating microarchitectural performance. Additionally,
we find that improving branch prediction performance
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(a) Runtime (b) Bitrate, PSNR (c) % Pipeline Slot Usage

(d) Branch, Cache MPKI (e) Resource Stalls

Figure 11: Preset sweep results for the video game 1.

alone may account for a roughly 10% increase in IPC
for all videos over our CRF sweep. We demonstrate that
increasing the size and complexity of the branch predictor
significantly improves branch-predictor performance on
traces of branch instructions taken directly from SVT-AV1

Figure 12: Thread scalability results For the video game 1.
highest CRF. X264 preset = 0, CRF = 51

Figure 13: Thread scalability results For the video game 1.
highest CRF. X264 preset = 2, CRF = 51

workloads, and therefore may significantly improve SVT-
AV1’s performance. Finally, we show that despite being the
slowest of the tested encoders, SVT-AV1 is also the most
parallelizable, achieving a speedup of roughly 6x as the
maximum number of concurrent threads was increased from

Figure 14: Thread scalability results For the video game 1.
X264 preset = 5, CRF = 50.

Figure 15: Thread scalability results For the video game 1.
X264 preset = 5, CRF = 30.
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(a) libaom (b) SVT-AV1 (c) x264 (d) x265

Figure 16: Top-down analysis with different number of threads for the video game 1.

1 to 8. x265, on the other hand, was found to be the least
parallelizable, achieving a speedup of only roughly 1.3x.
These observations may in the future help to bridge the
gap in CPU runtime between SVT-AV1 and other modern
encoders.
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