
Wave-PIM: Accelerating Wave Simulation Using
Processing-in-Memory

Bagus Hanindhito∗
Ruihao Li∗

Dimitrios Gourounas
hanindhito@bagus.my.id
liruihao@utexas.edu

dimitrisgrn@utexas.edu
The University of Texas at Austin

Austin, TX, USA

Arash Fathi
Karan Govil

Dimitar Trenev
arash.fathi@exxonmobil.com
karan.govil@exxonmobil.com

dimitar.trenev@exxonmobil.com
ExxonMobil Research and

Engineering
Annandale, NJ, USA

Andreas Gerstlauer
Lizy K. John

gerstl@ece.utexas.edu
ljohn@ece.utexas.edu

The University of Texas at Austin
Austin, TX, USA

ABSTRACT
Wave simulations are used in many applications: medical imag-

ing, oil and gas exploration, earthquake hazard mitigation, and
defense systems, among others. Most of these applications require
repeated solutions of the wave equation on supercomputers. Mini-
mizing time to solution and energy consumption are very beneficial
in this domain. Data movement overhead is one of the key bottle-
necks that affect energy consumption.

Processing-in-Memory (PIM) has been a popular choice for de-
ploying data-intensive applications, as a result of its high paral-
lelism, low off-chip data movement and low energy consumption.
In this paper, we propose an ISA-based, digital PIM system, to accel-
erate wave simulations. We fully explore the parallelism inside the
algorithm, based on the size of the model and the availability of the
PIM resources. We also examine the interconnections to optimize
the inter-block data transfer. OurWave-PIM can achieve an average
of 41.98× speedup, as well as 12.66× energy savings, compared to
the three state-of-the-art GPU platforms.

CCS CONCEPTS
• Computer systems organization→ Parallel architectures.

ACM Reference Format:
Bagus Hanindhito, Ruihao Li, Dimitrios Gourounas, Arash Fathi, Karan
Govil, Dimitar Trenev, Andreas Gerstlauer, and Lizy K. John. 2021. Wave-
PIM: Accelerating Wave Simulation Using Processing-in-Memory. In 50th
International Conference on Parallel Processing (ICPP ’21), August 9–12, 2021,
Lemont, IL, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3472456.3472512

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00
https://doi.org/10.1145/3472456.3472512

1 INTRODUCTION
Numerical solution of the wave equation is required in many

applications. Acoustic and elastic wave simulations are used in oil
and gas exploration [31], earthquake hazard mitigation [37], site
characterization of critical components of civil infrastructure [18,
29], oceanography [14], medical imaging [22], and defense systems
[25]. Electromagnetic wave simulations are used in modeling of
antenna, radar, and satellites [45], design of electrical machines
[5], defense systems [41], medical imaging [35], and oil and gas
exploration [1].

The acoustic, elastic, and electromagnetic wave equation belong
to the broader class of hyperbolic partial differential equations
(PDEs) [39]. Hyperbolic PDEs share a lot of similarity when it
comes to developing computational algorithms for their numerical
solution1. They involve common operations2, most of which are
Level-1 BLAS, and the communication pattern is local.

In this work, we focus on the acoustic and elastic wave equation.
We use strategies that make our work applicable to other hyperbolic
PDEswithminimal adjustments.We use the discontinuous Galerkin
(dG) method for the numerical solution of the equations, due to
its accuracy, high data-locality, and ease of parallelization [24, 46].
Even though dG lends a lot of data locality to the computations,
large models necessitate using distributed memory computing sys-
tems, which then entail inter-node3 communication, in addition
to intra-node communication. While many optimizations can be
performed to limit data movement and overlap communication and
computation, data movement remains among the key bottlenecks.

There are mature prior frameworks using multi-core CPUs to
solve the wave equation [38, 46]. However, due to a considerable
level of predictability, regularity, and parallelism in the algorithm,
1Another important member of hyperbolic PDEs is the Euler equation, with applica-
tions in aerodynamics, and aircraft/missile design, among others.
2These operations include: a) the problem domain is divided into many smaller ele-
ments (or cells), where each element has a number of nodes. The goal of a computational
algorithm is to compute the solution field on these nodes; b) derivatives of certain fields
need to be computed within each element. For tensor-product elements, such as cubes
that we use here, the derivative computation involves a dot-product between a subset
of the element’s nodes, and a derivative vector; c) in order to compute the solution for
the next time-step, certain scalar values (derivative values, and solution field from the
current time-step) are combined to form updates, according to the utilized algorithm.
Communication between immediate neighbors of an element is needed during this
step; d) the updates are then combined with solution values of the current time-step to
advance the solution forward for another time-step. This process (steps b-d) is repeated
for as many time-steps as is needed.
3HPC node

https://doi.org/10.1145/3472456.3472512
https://doi.org/10.1145/3472456.3472512
https://doi.org/10.1145/3472456.3472512

ICPP ’21, August 9–12, 2021, Lemont, IL, USA B. Hanindhito, R. Li et al.

Element with
3x3x3 Nodes

Mesh with 2x2x2 Elements

Face of The

Problem Domain W

Boundary dW
Discontinuityn

Problem Domain W discretized into
uniform/non-uniform sized elements

Node

Figure 1: The Discretization of Problem Domain using Dis-
continuous Galerkin Method

CPUs may not be the most efficient hardware to use. GPUs are alter-
native candidates, which can provide enough parallelism [4]. How-
ever, the scale of data sets exceeds the on-chip memory capacity of
current GPUs [9, 10]. Due to the memory wall [47], the overhead
of data movement between off-chip and on-chip memory quickly
becomes the new bottleneck of the system if GPUs or other acceler-
ators are used [26, 27]. In addition to limited on-chip memory, data
movement introduced by the inter-element data synchronization
inside each GPU is another key factor affecting the performance of
the GPUs. Furthermore, the high energy consumption of GPUs is
a key concern in data centers and supercomputers. As a result, a
more efficient hardware solution with high performance and low
energy consumption for wave simulation is desirable.

In this paper, we propose a Processing-in-Memory (PIM) system,
which provides high parallelism while reducing the data movement
cost, to speed up the wave simulation. We focus on acoustic and
elastic wave equations. With minimal adjustments, strategies de-
veloped herein may be adopted in many other fields, such as major
components of full-waveform inversion [16, 17], electromagnetic
waves [6], and other hyperbolic partial differential equations [40].

Our system utilizes emerging resistivememories that have shown
great potential for in-memory acceleration, since resistive memory
cells can perform computation inside the crossbar logic in a parallel
way [23, 44]. The mapping and layout techniques explored in this
work are also applicable to other SRAM or DRAM based compute
in memory technologies [15, 20]. We locate the hardware-level data
locality in wave simulations and map it to an Instruction Set Ar-
chitecture (ISA)-based PIM system. In addition, we further explore
the inter-block data transfer inside the PIM architecture to improve
the inter-element data synchronization. Specifically, our technical
contributions in this paper include:
• We profile our GPU implementation of the acoustic wave simula-
tion. Although the GPU solution can provide up to 369x speed-up
over a high-end CPU, we find the main bottleneck is the off-chip
data movement, which makes the simulation memory-bound,
even with 900GB/s of off-chip HBM2 DRAM bandwidth.

• We present an architecture that improves the efficiency of the
data movement inside the PIM.

• We layout the data in a hardware-friendly manner for the PIM
architecture to minimize the overhead of inter-element data
transfer, which is a key factor affecting the performance.

• We investigate H-tree and Bus interconnects to balance the trade-
offs between the latency and energy consumption caused by the
inter-element data transfer, and observe that the H-tree results
in approximately 2.16× time savings in comparison to a bus
architecture.

• We offer solutions to fold the workloads in batches or expand
the workloads, to improve the scalability of the design, making it
capable to support larger or smaller problem sizes at the highest
possible performance.

• We evaluate our PIM design with extensive experiments on
different PIM configurations. Compared to three state-of-the-art
GPU platforms: GTX 1080Ti, Tesla P100, and Tesla V100, our
PIM system yields an average performance increase of 45.31×,
34.52×, and 15.89×, and energy savings of 13.75×, 10.67×, and
5.66×, respectively.

2 BACKGROUND
2.1 A Prelude to Acoustic and Elastic Waves

The acoustic wave equation approximates the propagation of
compressional waves in the Earth, water, and body tissue. It is
described by the following PDE:

𝜕𝑝

𝜕𝑡
+ ^∇ · v = 0, (1a)

𝜕v
𝜕𝑡

+ 1
𝜌
∇𝑝 = 0, (1b)

where 𝑝 = 𝑝 (𝑥,𝑦, 𝑧, 𝑡) is pressure, v = v(𝑥,𝑦, 𝑧, 𝑡) is a vector that
contains velocity values in the 𝑥,𝑦, and 𝑧 directions, denoted as v𝑥 ,
v𝑦 , and v𝑧 , respectively, ^ and 𝜌 are material properties, and ∇ ·
and ∇ are divergence and gradient operators, respectively.

The elastic wave equation describes propagation of compres-
sional and shear waves in elastic solids, and is described by:

𝜕S
𝜕𝑡

= ` (∇v + ∇v𝑇) + _∇ · v I, (2a)

𝜕v
𝜕𝑡

=
1
𝜌
∇ · S, (2b)

where S and I are the fourth-order stress and identity tensors,
respectively, and _ and ` are material properties. One may observe
structural similarities between Eq. (1), Eq. (2), and the Maxwell
equations (not shown), which implies similar algorithms for com-
puter simulations. In other words, successful strategies for efficient
computation of the acoustic wave motion can also be applied to
the elastic and electromagnetic waves. The acoustic wave equation
considered in this work has four variables, while the elastic wave
equation has nine variables that need to be evaluated at each mesh
point in 3D space and at each time-step.

2.2 Problem Discretization Using the
Discontinuous Galerkin Method

Figure 1 illustrates the discretization of the problem using the
discontinuous Galerkin (dG) method, which enables higher data lo-
cality compared to alternative algorithms [46]. Our computational
domain consists of hexahedral elements, each having their own

Wave-PIM: Accelerating Wave Simulation Using Processing-in-Memory ICPP ’21, August 9–12, 2021, Lemont, IL, USA

P Vx Vy Vz Variables
(4x512x32b)

Single Element Data Flow

P Vx Vy Vz Contributions
(4x512x32b)

Auxiliaries (4x512x32b)

Compute
Volume

Compute
Flux

Integration

P Vx Vy VzP Vx Vy VzP Vx Vy Vz
From Neighbor’s

Face Nodes
(up-to 6x64x32b)

up-to 6 neighboring elements

P Vx Vy VzP Vx Vy VzP Vx Vy Vz

nodes on faces

P Vx Vy Vz

To Neighbors
(up-to 6x64x32b)

(6x64x32b)

Figure 2: Single Element Data Flow Diagram

nodes. The dG algorithm computes the unknown values 𝑝 and v
at each node of the elements. Since each element has its own set
of nodes, solution values across element interfaces can be discon-
tinuous, as shown in the right part of Figure 1. The latter property
enables the separation of computations into local and non-local
groups, where each element has a generalized dataflow as shown
in Figure 2.

Local computations only depend on nodal values within each el-
ement. These computations include: a) evaluating derivatives of the
solution values (div v, grad 𝑝), which has the form of a dot-product;
and b) numerical integration of various values within an element,
which has the form of a loop that sums up values. We group the
two main local computations as Volume and Integration, which are
drawn as green and grey blocks, respectively, in Figure 2. The com-
pute Volume operates on variables to produce volume contributions.
The Integration operates on (volume and flux) contributions to up-
date the variables, and requires auxiliaries storage, all of which are
updated during each integration step. There are five integration
steps in each time-step.

Non-local computations reconcile discontinuous solution values
at the interface of two elements. They need data values of corre-
sponding interface nodes from a neighboring element (Figure 1),
which is then used to compute Flux contributions. These non-local
operations are drawn as a red block in Figure 2.

Increasing the number of nodes within an element improves
solution accuracy. It also increases arithmetic intensity and the
ratio of local to non-local computations. Table 1 summarizes key
terms used in the dG discretization, which we refer to in this paper.
The interested reader is referred to [24, 46] for further details.

2.3 Digital PIM Basics
PIM is an emerging hardware platform in which memory can

perform as both compute and storage units. As a result, the data

movement between processing units and memory units is elimi-
nated, which is the bottleneck of most big data applications. Prior
works have investigated both analog and digital characteristics
of NVM to support arithmetic operations in memory. In analog
PIM systems, dot product engines are achieved by applying dif-
ferent voltages to each wordline and bitline based on Kirchoff’s
Law [42, 43, 49]. However, the digital-to-analog (DAC) and analog-
to-digital converter (ADC) blocks contribute the majority to the
overall chip area and power, which can be avoided by exploring
the digital characteristics inside the crossbar circuits [44].

In digital resistive PIM systems, arithmetic operations like ad-
dition and multiplication are achieved by performing NOR opera-
tions sequentially [23, 26, 44]. The NOR operation is achieved in
memristor-based non-volatile memory (NVM) cells. The resistance
of each memristor cell can switch between 𝑅𝑂𝑁 and 𝑅𝑂𝐹𝐹 , which
represents ’1’ and ’0’ in logic accordingly, when different voltages
are applied to the bitline or wordline. The output memristor is ini-
tialized to 𝑅𝑂𝑁 . If one or more of the 𝑛 inputs switches from ’0’ to
’1’, the output memristor will switch from 𝑅𝑂𝑁 to 𝑅𝑂𝐹𝐹 . Due to the
bit-by-bit NOR operations, the latency of the arithmetic operations
on PIM may not be as efficient as other CMOS designs. However,
the advantage of the PIM system is the high parallelism inside each
memory block. As suggested in prior work [26], a 1GB PIM chip
can support 8 million parallel operations.

3 DESIGN MOTIVATION
3.1 Bottlenecks in CPU/GPU Implementations

Our CPU code uses p4est [28] for mesh generation and workload
distribution on multiple CPUs. It takes significant amount of time
to run even a small-sized problem on high-end processors. GPUs
could run wave simulations more efficiently than CPUs, due to the
vast amount of parallelism inherent in the problem, both at the
element- and node-level.

Table 1: Description of Terms Used in dG Discretization

Mass Inverse The inverse of a diagonal mass matrix, which is con-
stant, and is used repeatedly.

Unknown variables Pressure (𝑝) and velocity (𝑣) values, which need to be
computed at each node within an element.

Contributions Incremental updates to unknown variables, which are
computed during Volume and Flux computations.

Auxiliaries Temporary storage for unknown variables needed dur-
ing the temporal integration (Integration) step.

GLL Weight Constant values for Gauss-Legendre-Lobatto weights.
GLL Point Constant values for Gauss-Legendre-Lobatto points.
jacobian_det_w_star Constant variable used in Volume integration.
jacobian_det_domain Constant variable used in Volume integration.
jacobian_inverse_domain Constant variable used in Volume integration.
jacobian_det_boundary Constant variable used in Flux integration.
dshape Derivative values of the shape functions.
^ Constant material property: Bulk Modulus.
𝜌 Constant material property: Density.
grad 𝑝 Gradient of pressure (∇𝑝).
div v Divergence of velocity vector (∇ · v).
_ and ` Constant Elastic material properties.
grad v Gradient of velocity vector (∇v).
div S Divergence of stress tensor (∇ · S).

Refinement Level Refinement Level 𝑛 indicates the problem domain is
discretized into (2𝑛)3 elements.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA B. Hanindhito, R. Li et al.

Our GPU implementation of wave simulation, using CUDA, gives
a significant speed-up over the CPU implementation, for a problem
size that fits into the memory of a single GPU. In our experiments
with GPUs, for mesh refinement level 4, with 1024 time-steps, a
GTX 1080Ti, Tesla P100, and Tesla V100, reach speed-ups of 94.35x,
100.25x, and 123.38x, respectively, over a CPU implementation that
runs on dual Intel Xeon Platinum 8160 with a total of 48 cores. For
mesh refinement level 5, with 1024 time-steps, the speed-up over
the CPU is 131.10x, 223.95x, and 369.05x, for GTX 1080Ti, Tesla
P100, and Tesla V100, respectively.

In the above simulations, GPUs have not reached their peak
performance. Upon profiling the simulator with nvprof [7], the
GPU implementation of the acoustic wave simulation turns out
to be bounded by memory bandwidth, even for Tesla V100 GPUs,
with 900GB/s of memory bandwidth. This excessive data movement
not only limits the performance, but also costs energy that can be
higher than the computation energy itself. As noted in prior work,
the energy cost of moving 256 bits of data by 10mm is significantly
higher than the energy cost of a double-precision fused-multiply
add [30].

The compute Volume kernel can benefit from more Streaming
Multiprocessors (SMs), as we move from GTX 1080Ti, to Tesla
P100, to Tesla V100, until the memory bandwidth becomes the
bottleneck. Meanwhile, the Integration kernel does not scale so
well, compared to the compute Volume kernel, since the memory
accesses dominates this kernel. Lastly, the compute Flux kernel
is the most inefficient kernel, since it has a large divergence that
degrades the parallelism in GPU. Therefore, a solution that can
process these computations in memory is desirable to reduce the
data transfer cost.

3.2 Bottlenecks in Current PIM Architectures
Processing-in-Memory can reduce data movement to processors,

however, dataflow between multiple kernels need to be handled
efficiently. In prior works [26, 33, 43], PIM solutions achieved better
performance than GPUs due to the removal of data movement
between off-chip and on-chip memory. However, the internal data
movement (from one resistive memory subarray to another) also
affects the overall performance. In [26], the FloatPIM solution can
achieve a 6.88× performance improvement if parallelized neighbor-
block data transfer is enabled. But non-neighbor communication
was not fully explored in FloatPIM, making it not a general solution.

Other prior works [33, 43] considered an identical latency for
all inter-block transmissions, using a global buffer for data routing.
The global buffer design is inefficient for transfer of adjacent blocks.
Thus there is opportunity to improve inter-block data transfers
within PIMs, while still exploiting near-neighbor links.

4 THEWAVE-PIM ARCHITECTURE
We now introduce the proposed Wave-PIM architecture, which

incorporates H-tree based efficient interconnects for inter-block
data transfers. Furthermore, we discuss how look-up tables can be
implemented within the PIM architecture, due to their wide usage
in High Performance Computing (HPC) applications [21, 36].

4.1 Overview
The Wave-PIM architecture is a digital PIM, where each PIM

chip consists of multiple memory tiles, and each tile has multiple
memory blocks as illustrated in Figure 3. The memory block is the
most basic unit, which contains memristor memory cells, sense
amplifiers, decoders, row and column drivers, and row and column
buffers, as in prior work [26, 27]. Each memory block is identical,
and computations are performed inside the blocks in a bit-serial
way utilizing NOR operations inherently, without any separate
ALU hardware.

Wave simulation can be abstracted as general memory instruc-
tions and arithmetic instructions. Instructions are sent from the
host, and are pre-processed by the decoder on the PIM chip. Next,
micro sequences are generated and sent to each memory block. Be-
fore the computation starts, we first issuememory copy instructions
to load input variables to each memory block. When all required
operands are ready, arithmetic instructions will be issued, and com-
putations are performed inside memristor cells in a row-parallel
way. Outputs are generated in the same row, and one additional
batch of memory copy instructions will be issued for storing them.

4.2 Inter-block Interconnection
Arithmetic operations are processed inside each memory block,

and the operands can come from other blocks, which makes the
inter-block interconnection an essential component of the PIM sys-
tem. We propose an H-tree-based topology to support inter-block
data transmission. We also introduce how the H-tree-based topol-
ogy can be extended to a Bus-based solution for better flexibility.

4.2.1 H-Tree. H-tree is a data structure widely used in VLSI, data-
base systems, and DRAM interconnections [12, 13, 32]. Here, we
demonstrate how to apply an H-tree in the PIM inter-block inter-
connect. The top-right part of Figure 3 gives an example of the
H-tree interconnection in a 16-block memory tile. In an H-tree,
each non-leaf tree node has four children nodes. Memory blocks
represent leaf nodes, since a memory block is the lowest-level unit
in our proposed PIM architecture. Therefore, there are 4 tree nodes
(𝑆0), each controlling 4 leaf nodes (memory blocks), and 1 non-leaf
node (𝑆1) controlling the 4 𝑆0 in each memory tile.

To show the detailed inter-block data transmission procedure,
we consider an example of transferring data from Block 0 to Block
5. Before transmitting data, one read instruction (𝐼0) is sent to Block
0 first, for loading data from memristor cells to the row/column
buffer. Then, memcpy instructions (𝐼1, 𝐼2, 𝐼3) will be sent to the H-tree
nodes sequentially, alongwith the data path𝐷0 → 𝐷1 → 𝐷2 → 𝐷3.
Finally, one write instruction (𝐼4) is sent to Block 5 to store the data
from the row/column buffer to the assigned memory cells.

With the H-tree topology, the overhead of inter-block data trans-
mission latency can be lower than the latency of prior PIMworks [33].
For example, if the number of nodes in one element exceeds the
number of rows/columns in the PIM memory block, multiple blocks
can be used to complete the computation of one element. Since
the blocks are under the same H-tree node, the data will only pass
through one 𝑆0 H-tree switch. Additionally, the number of children
of a tree node does not have to be 4; it can be higher when customiz-
ing PIM systems for larger-scale models. For smaller-scale models

Wave-PIM: Accelerating Wave Simulation Using Processing-in-Memory ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Tile

Central Controller

Tile

Tile Tile

Tile

Tile

Tile

Tile Tile

...

... ...

...

...

...

Chip

Block Block

Block Block

Block

Block

Block

Block Block

...

... ...

...

...

...

Tile
Row Driver Block

Decoder

B
lo

ck
 –

 c
on

ta
in

in
g

m
em

ri
st

or
 c

el
ls

C
ol

um
n

D
ri

ve
r

Data Path:D0→ D1 D2 D3

Instructions:I0, I1, I2, I3, I4

Level 0 Switch: S0

Level 1 Switch: S1

Tile

I3

Central Controller

S0

Block 15

Block 13

Block 14

Block 12

S0

Block 11

Block 9

Block 10

Block 8

S0

Block 7

Block 5

Block 6

Block 4
D2

D3 I4

S0

Block 3

Block 1

Block 2

Block 0I0

I1

D0

D1

S1

→ →

I2

Proposed H-Tree Interconnection Architecture

Block 4

Block 6

Block 5

Block 7

 Bus Switch

Block 0

Block 2

Block 1

Block 3

I0

I1, I4

I3

D0

D1

D2

D3

I2 I5

Instructions:
(I0, I1, I2), (I3, I4, I5)

Data Path:
(D0 → D1), (D2 → D3)

Tile

Central Controller

Baseline Bus Interconnection Architecture

Figure 3: Wave-PIM Architecture Overview

when there is little inter-block data transmission, the low-overhead
Bus interconnection can be used instead.

4.2.2 Bus. The Bus interconnection can be an alternative candi-
date for inter-block data transmission, since the H-tree topology
is inefficient, due to large leakage power, if there is little inter-
block data movement. For example, in a 256-block memory tile,
1 + 4 + 16 + 64 = 85 H-tree node switches have to be used. By con-
trast, only one central bus switch is needed for a bus interconnect.

The right bottom part of Figure 3 shows an example of trans-
ferring data from Block 0 to 2, and from Block 5 to 7. At first, two
read instructions (𝐼0, 𝐼3) are issued at Block 0 and 5 for loading data
from memristor cells to the row/column buffers. Then, memcpy in-
structions (𝐼1, 𝐼4) are sent to the bus switch sequentially, since only
one data path can be enabled when using the bus interconnection.
Finally, two write instructions (𝐼2, 𝐼5) are issued at Block 2 and 7, to
finish this data transfer.

Unlike the H-tree design, in which the transmissions between
Block 0 to 2, and between Block 5 to 7, can be processed simulta-
neously, the bus switch processes these transmissions sequentially.
This implies that if there is intensive inter-block data transmission,
the Bus interconnection is less efficient than the H-tree. Trade-
offs between these two interconnections will be discussed in the
evaluation part (Section 7).

4.3 Look-up Table in PIM
Look-up tables are a commonly-used architecture in GPUs, FP-

GAs, and ASICs, since they allow replacement of complicated run-
time computations with simpler array-indexing operations. In the
digital PIM architecture, complicated arithmetic operations are im-
plemented by Taylor series, or other approximate computation
techniques [33, 48]. In addition to the arithmetic operations, com-
plicated logic operations like generating the index of neighbor
elements cannot be implemented with NOR operations efficiently,
either. Instead of real-time computations, these operations, like
square root units, can be offloaded to the CPU host and buffered
in look-up tables, if the number of these operations is moderate
compared to the problem domain size.

In the ISA-based PIM system, look-up tables are implemented
with ordinary memory blocks, instead of customized hardware

Row IDOpcode

63

LUT Block ID

525315657 2630

Offset_S

4 0

Offset_D

Figure 4: LUT Instruction Format

Algorithm 1 Steps for executing one look-up table instruction.
1: Generating read instruction 𝑅_1 (location = Row Address ×

1024 + Offset_S × 32, size = 32).
2: Issuing 𝑅_1 to fetch the 32-bit 𝑖𝑛𝑑𝑒𝑥 .
3: Generating read instruction 𝑅_2 (location = LUT Block ID ×

1024 × 1024 + 𝑖𝑛𝑑𝑒𝑥 × 32, size = 32).
4: Issuing 𝑅_2 to fetch the 32-bit content 𝑑𝑎𝑡𝑎.
5: Generating write instruction𝑊 _1 (location = Row Address ×

1024 + Offset_D × 32, size = 32, content = 𝑑𝑎𝑡𝑎).
6: Issuing𝑊 _1.

units. Contents of look-up tables will be loaded to the reserved
memory blocks before the computation begins. The indexes for
accessing look-up tables are generated in memory blocks during
computation. Therefore, the procedure of look-up table access can
be considered as a special case of inter-block data transmission,
which can also be encoded as PIM instructions.

Based on instruction formats used in prior work [33], we propose
our look-up table instruction format (Figure 4). Bits 57-63 define
the opcode, which differentiates look-up table instructions from
other PIM instructions. The address that contains the look-up table
index is calculated by shifting and adding the𝑅𝑜𝑤 𝐼𝐷 and𝑂𝑓 𝑓 𝑠𝑒𝑡_𝑆
(assumingmemory block size is 1024×1024, and the data precision is
32-bit, so only 5 bits are needed to define the offset). Afterwards, the
address for the look-up table content will be calculated by adding
the left shifted 𝐿𝑈𝑇 𝐵𝑙𝑜𝑐𝑘 𝐼𝐷 and the obtained index. Finally, the
content is transferred to the destination address, based on 𝑅𝑜𝑤 𝐼𝐷

and 𝑂𝑓 𝑓 𝑠𝑒𝑡_𝐷 . The detailed execution procedure of the look-up
table instruction is listed in Algorithm 1.

5 WAVE SIMULATION IMPLEMENTATION
We introduce the dataflow of the acoustic and elastic wave sim-

ulation, and outline how it is mapped to our proposed Wave-PIM
architecture for Volume, Flux, and Integration computations.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA B. Hanindhito, R. Li et al.

5.1 Data Layout and Execution Timeline
This part details the data layout in the PIM system and the execu-

tion timeline of Volume and Flux. Integration will not be discussed
since it shares the same computation pattern as Volume.

We first provide an overview of the data layout of a 512-node
element on a 1K×1K memory block (left part in Figure 5). We
use the first 512 rows as computation spaces for each node in
the element. The 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 , 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 , and 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑖𝑒𝑠 of each
node are stored in the same columns. We use the other 512 rows as
storage spaces for storing required constants of each element. These
constants include 𝐺𝐿𝐿𝑊𝑒𝑖𝑔ℎ𝑡 , 𝐺𝐿𝐿 𝑃𝑜𝑖𝑛𝑡 , 𝑑𝑠ℎ𝑎𝑝𝑒 , and𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 .
To make the computation of the 512 nodes processed in a row-
parallel fashion, constants need to be copied to the scratchpad and
broadcast to the first 512 rows before the computation begins.

Each memory block works independently. We use 4,096 memory
blocks for the 4,096 elements of the refinement-level 4 acoustic
wave simulation. The data layout of the elastic wave simulation
needs to be adjusted. The 1K memory block row size is not enough
for the nine variables in the elastic wave simulation, since enough
scratchpads must be reserved for arithmetic operations [23] and
the memory row size is limited due to circuit-level constrains [13].
As a result, we develop the expansion technique (Section 6.2) to use
four memory blocks to deploy one element in the elastic model.

The execution timeline of Volume and Flux is shown in the right
part of Figure 5. In Volume, 𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛_𝑑𝑒𝑡_𝑤_𝑠𝑡𝑎𝑟 , the grad 𝑝 , and
div v are first calculated by a series of addition and multiplication
instructions after appropriate constants are distributed to each
row. During the computation of grad 𝑝 and div v, the intermediate
result 𝑑𝑖𝑣_𝑣 , which represents the divergence of the velocity vector,
and 𝑔𝑟𝑎𝑑_𝑝 , which represents the gradient of the pressure field,
are generated and stored in the scratchpad. The 𝑔𝑟𝑎𝑑_𝑝 is three-
dimensional vector while 𝑑𝑖𝑣_𝑣 is scalar value.

Flux is implemented in a similar manner as Volume, while there
are two major challenges. In Flux, inter-block data transmission
is needed for obtaining 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 from neighboring elements. The
inter-block data movement is achieved by the H-tree or Bus in-
terconnection, as discussed in Section 4.2. Another challenge in
Flux computation is the presence of more complicated arithmetic
operations, including square root and inverse, which exist when pre-
processing the𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 . We consider constant𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 within
an element. Since only two 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 are used throughout each
element, and each element has at most 6 neighboring elements,
we offload the square root and inverse units to the CPU host. The
pre-processed results are loaded to the look-up tables, as discussed
in Section 4.3, before Flux computations begin. The alternative so-
lution is to transfer the pre-processed data to each block directly.
However, PIM memory blocks cannot read data from the off-chip
memory during computation, making it unsuitable for pipelining
as further optimization.

6 FITTING THE PROBLEM INTO THE PIM
We now introduce methods to adjust the data layout, in order

to fit the problem into the available hardware resources. In some
cases, PIM resources are insufficient, which necessitates processing
of elements in batches, as we will discuss in Section 6.1. In addition,
variables in one element can be expanded into multiple blocks in

order to fully exploit the parallelism in acoustic wave simulation
and also to make it possible to fit elastic wave simulation in our
PIM systems, as outlined in Section 6.2. Furthermore, pipelining
can be used to amortize the data fetching overhead when there is
intensive inter-block data transmission.

6.1 Batching
In Section 5, we introduced how to implement each part of the

acoustic wave simulation on the PIM system, with an assumption
of unlimited PIM resources. In other words, there was no need
to batch the elements due to insufficient memory capacity, which
is not a realistic assumption. For example, if the refinement-level
increases to 5, there will be 32,768 elements in the model, leading
to a minimum of 4GB PIM capacity requirement. In this part, we
discuss how to process large problems in batches.
6.1.1 Volume and Integration. For Volume and Integration, batch-
ing simplymeans executing our initial solutionmultiple times, since
there is no inter-element data dependency. As shown in Figure 6,
we give an example of a two-batch procedure. Steps 1 ∼ 4 are
the original execution flows, which is the first batch in the folding
implementation. For the second batch, step 1 , i.e., broadcasting
constants, can be removed, since the constants will not change
during runtime. The overhead of batching is two additional trans-
actions between off- and on-chip memory: store the outputs of the
first batch and load the inputs of the second batch.

6.1.2 Flux. For the Flux, the situation is much more complicated
due to the data dependency between neighboring elements. When
performing Flux computation on a pair of neighboring elements,
both elements have to be stored on-chip. Take for example of de-
ploying a refinement level 5 (containing 32 × 32 × 32 elements)
model on a 2GB PIM chip; only half of the elements can be stored
on-chip. As shown in Figure 7, we assume that Slice 0 and 31 are
the top and bottom slice, and Slice 0 ∼15 are stored on-chip. In this
situation, Flux computation for neighbors between Slice 15 and 16
cannot be achieved, since Slice 16 is not stored on-chip. Such edge
cases have to be considered when batching the Flux.

With 3 axes, 𝑥 , 𝑦, and 𝑧, and 2 normal vectors, −1 and +1, each
element can have at most 6 neighbors, excluding the boundary
elements. For the 𝑥 axis and 𝑧 axis, only intra-slice neighbors are
considered and there is no inter-slice data transmission. Therefore,
the computation of 𝑥 and 𝑧 axis in Slice 16 ∼31 (Step 8 , 9) can
follow the same manner as Slice 0 ∼15 (Step 2 , 3), without
modifying the execution flow. For the 𝑦 axis, the data-flow has to
be modified due to the inter-slice neighbors. With normal vector
−1, we consider pairs of (0, 1), (2, 3), ..., (30, 31) as neighbors. With
normal vector +1, we consider pairs of (1, 2), (3, 4), ..., (29, 30) as
neighbors. For normal vector −1, the computation pattern does not
need any change, since there is no interaction between Slice 15 and
16 (Step 4 , 10). For normal vector +1, we first load the elements
in Slice 16 to PIM (Step 5), then calculate Slice 1 ∼16 (Step 6).
In this way, Flux computation of a large model can be implemented
on a small-scale PIM chip.

6.2 Expansion
In the batching technique, we assumed that we were using only

one memory block for one element. In real cases, one element can

Wave-PIM: Accelerating Wave Simulation Using Processing-in-Memory ICPP ’21, August 9–12, 2021, Lemont, IL, USA

..
.

Memory Block Data Layout
32 bits 4x32 bits 4x32 bits 4x32 bits

scratchpadmass inverse[0] contributions[0]Node 0

scratchpadcontributions[1]Node 1

scratchpadcontributions[2]Node 2

scratchpadcontributions[n]Node n

..
.

..
.

..
.

..
.

..
.

Computation

scratchpadconstant 0 constant 1 [0] constant 2 ...

constant 1 [1]

constant 1 [2]

..
.

..
.

..
.

..
.

..
.

scratchpad

scratchpad

B
ro

ad
cast

Broadcast

Output Intermediate Results Data from Neighbor-Element Block

 grad_p[0-2] div_vdiv_v[0-2]

Grad Pressure & Div Velocity Volume Timeline

Timeline

constants

common
factor

contributions_v[0-2]contributions_p

variables_p variables_v[0-2]materials

Materials and Variables Flux Timeline

jacobian
_det_w_star

mass inverse[1]

mass inverse[2]

variables[0]

variables[1]

variables[2]

variables[n]mass inverse[n]

auxiliaries[0]

auxiliaries[1]

auxiliaries[2]

auxiliaries[n]

Storage
Neighbor-element Data (Inter-block Memcpy)

variables_p variables_v[0-2]materials

constants contributions_v[0-2]contributions_pjacobian
_det_w_star

Figure 5: Single Element Data Layout and Execution Flow in PIM

Central
Scheduler

PIM Block

Storage

Computation Input

Constants

Output Scratchpad

Scratchpad

Off-chip Memory

①
①

①

②,④

⑤,⑦

③

⑥

② ④⑤ ⑦

① Broadcasting constants

② Loading inputs

③ Performing computation

④ Storing outputs

⑤ Loading inputs

⑥ Performing computation

⑦ Storing outputs

Figure 6: Batching of Volume and Integration

Slice 31

…

Slice 16

Slice 15

…

Slice 0

① Loading Slice 0~15 to PIM

② Calculating Flux of Slice 0~15 – X axis (-1, +1)

③ Calculating Flux of Slice 0~15 – Z axis (-1, +1)

④ Calculating Flux of Slice 0~15 – Y axis (-1)

⑤ Storing Slice 0 and loading Slice 16

⑥ Calculating Flux of Slice 1~16 – Y axis (+1)

⑦ Storing Slice 1~15 and loading Slice 17~31

⑧ Calculating Flux of Slice 16~31 – X axis (-1, +1)

⑨ Calculating Flux of Slice 16~31 – Z axis (-1, +1)

⑩ Calculating Flux of Slice 16~31 – Y axis (-1)

⑪ Calculating Flux of Slice 17~30 – Y axis (+1)

⑫ Storing Slice 16~31

X

Y

Z

⑤

⑦

⑦

⑦

O
ff
-c

h
ip

 M
em

or
y

P
ro

ce
ss

in
g
-i
n
-M

em
or

y

Slice 1

Slice 2

Figure 7: Batching of Flux

also be deployed in multiple blocks. We name this technique as
expansion, which is the opposite of batching, and we will discuss
the expansion for both acoustic and elastic wave simulations.

6.2.1Expansion inAcousticWave Simulation. In acoustic wave
simulation, the computation of one element can be performed
within one memory block. The four variables of each element are
processed serially inside each block. However, some PIM resources
may not be utilized when deploying a small refinement-level model
on a large chip. For instance, deploying a refinement-level 4 model
on a 2GB chip will only utilize 25% of available PIM resources,
leading to low utilization of PIM resources that limits attainable
performance while consuming more static power. To solve this, the
computations of pressure 𝑝 and velocity v can be distributed to
four blocks (one for 𝑝 and three for v). These four variables will be
processed in parallel instead, with an overhead of data duplication
and inter-block data movement.

constants

constants

constants

Jacobian
_det_w_star grad_p[0]

grad_p[1]

grad_p[2]

contributions_v[0]

div_v

div_v[0]

div_v[2]

div_v[1]

div_v[0-2]

Grad Pressure & Div Velocity

Inter-block
memcpy

Timeline
contributions_pconstants

Block 0 Output

Block 1

Block 2

Block 3

Jacobian
_det_w_star

Jacobian
_det_w_star

Jacobian
_det_w_star

contributions_v[1]

contributions_v[2]

Figure 8: Four-block Implementation of Volume

To expand the Integration, we simply distribute the four (one for
𝑝 and three for v) groups of 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 to four memory blocks,
since there is no inter-block data dependency. The four groups of
𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑖𝑒𝑠 and 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 will be generated in the respective block.

Expanding the Volume is much more complicated, since inter-
block data dependency will exist if the computation of the grad
𝑝 and div v is distributed into multiple blocks. Figure 5 shows
the timeline of the one-block implementation, in which the com-
putations of pressure and velocity, including 𝑑𝑖𝑣_𝑣 , 𝑔𝑟𝑎𝑑_𝑝 , and
𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 , are processed serially. For the expanded implemen-
tation (Figure 8), 𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛_𝑑𝑒𝑡_𝑤_𝑠𝑡𝑎𝑟 has to be calculated four
times and constants have to be copied to the four blocks to provide
the essential intermediate data. Additionally, 𝑑𝑖𝑣_𝑣 has to be trans-
ferred across blocks. With more dynamic power consumption, the
four-block implementation can achieve a better performance than
the one-block naive solution.

The four-block expansion implementation of Flux is shown in
Figure 9. One block is used for buffering the required neighbor
data 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 . The reason is that, if the H-tree is applied, the inter-
block data transmission latency within the four-block element will
be shorter than long-distance inter-block transmission. The other
three blocks are used for the computation of each axis. While buffer-
ing neighboring element data, part of the intermediate results can
be computed at the same time. For example, the computation of
𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛_𝑑𝑒𝑡_𝑤_𝑠𝑡𝑎𝑟 does not require data from neighboring ele-
ments. Therefore, the overhead of buffering neighboring element
data can be amortised.
6.2.2 Expansion in Elastic Wave Simulation. The elastic wave
simulation is a little different from the acoustic one. Since nine

ICPP ’21, August 9–12, 2021, Lemont, IL, USA B. Hanindhito, R. Li et al.

Block 0 Output

Block 1

constants

common
factor

jacobian_det_w_star

contributions_p
variables_p variables_v[0]materials

Materials and Variables

constants

common
factor

jacobian_det_w_star

variables_p variables_v[1]materials
Materials and Variables

constants

common
factor

jacobian_det_w_star

variables_p variables_v[2]materials
Materials and Variables

variables_p variables_v[0-2]materials
Neighbor-element Data (Cached in Block 3)

In
te

r-
b
lo

ck
 M

em
cp

y

Block 2

Block 3

contributions_p

contributions_p

contributions_v[0]

contributions_v[1]

contributions_v[2]

Timeline

Figure 9: Four-block Implementation of Flux

Volume Computation Time

Dataflow

Flux
Data Fetch (-1)

Integrate
Computation

Flux
Computation (-1)

Flux
Data Fetch (+1)

Flux
Computation (+1)

Figure 10: Dataflow Pipeline

variables of one element cannot be stored in one memory block,
the expansion technique is required. The nine variables will be
distributed to three or nine memory blocks. The Integration and
Flux will follow the same manner as the expansion in the acoustic
wave simulation. On the other hand, more inter-block memcpy in
Figure 8 will happen for Volume in the elastic wave simulation using
the same data transfer pattern.

6.3 Pipelining
The dataflow of the acoustic wave simulation can be further

optimized with a pipelining technique. For the Flux, if additional
PIM blocks are reserved for buffering the data from neighbor ele-
ments, pipelining can be done in 6 steps, since there are 3 axes and
each axis has 2 normal vectors, and there is no data dependency
between different axes and vectors. For the Volume and Integra-
tion, there is intra-block data transmission and data broadcasting.
However, in PIM, both intra-block data movement and computa-
tion are implemented by applying different voltages on bitlines and
wordlines. This hardware hazard makes the Volume and Integration
unable to be pipelined. In addition to the intra-kernel pipeline in
Flux, pipelines can be used for inter-kernel if there is no data de-
pendency. For example, the neighboring-element data fetching in
Flux and the computation in Volume can be processed in parallel
(Figure 10).

7 EVALUATION
We now evaluate the efficacy of our proposed Wave-PIM so-

lution for wave simulations. We implement six benchmarks on
three real GPU platforms, and one cycle-accurate PIM simulator,
to evaluate the performance improvement and energy savings of
our PIM systems in comparison to GPUs. Batching and expansion
techniques are included in the comparisons to show the scalability
of our proposed solutions. As addition, the detailed performance
improvement by pipelining will be discussed by a breakdown anal-
ysis. Trade-offs between the H-tree and Bus interconnection will
also be presented.

7.1 Experiment Setup
We create a simulation framework for Wave-PIM by adapting

NVSim [13] and FloatPIM [26] . We choose a 32-bit floating point
data precision for both PIM and GPU baseline. Moreover, com-
plicated arithmetic operations, such as square root and inverse
operations, are offloaded to the host CPU for the case of PIM.

Various PIM basic operation parameters are referenced from
FloatPIM [26], which are listed in Table 4. The configuration of the
2GB PIM chip listed in Table 3, which is referred from DUAL [27].
We keep the Crossbar Array size as 1k*1K for the other three PIM
settings (512MB, 8GB, 16GB) and only increase/decrease the number
of tiles. To support our proposed ISA, we add an additional decoder
logic inside each block, and one central controller. One host CPU
(we assume an ARM Cortex-A72 architecture [19]) has to be used
for sending instructions and pre-processing part of the input data.
We assume a 900GB/s HBM2 DRAM as the off-chip memory for our
Wave-PIM, where the power of the off-chip memory is 36.91W [34].
To support the inter-block data transmission, we add H-tree/Bus
switches inside each memory tile for data routing. We use the
Synopsys PrimeTime [3] tool to obtain the power consumption of
other circuits, and list them in Table 3.

We use three state-of-the-art GPU platforms (Nvidia GTX 1080Ti,
Tesla P100, and Tesla V100) as the baseline to compare with our
proposed PIM solution. The hardware configuration details are
shown in Table 2. The maximum throughput for the GPU platforms
is obtained from Nvidia whitepapers [9, 10]. The throughput for
our PIM system is calculated based on the maximum parallelism

Table 2: Hardware Configurations
Platform GPU GPU GPU PIM
Name GTX 1080Ti Tesla P100 Tesla V100 Wave-PIM

Host CPU Model Xeon
E5-2620 v4

Xeon
Platinum
8160

Xeon
Platinum
8160

ARM
Cortex-A72

Process Node 16nm 16nm 12nm 28nm
Clock Frequency 1,530MHz 1,480MHz 1,582MHz 900MHz
Register Size 7,168KB 14,336KB 20,480KB N/A
L2 Cache Size 2,816KB 4,096KB 6,144KB N/A

Memory Size and
Type

11GB
GDDR5X

16GB
HBM2

16GB
HBM2

512MB, 2GB,
8GB, 16GB

Memory BW 484GBps 720GBps 900GBps 900GBps
FP32 CUDA Cores 3,584 3,584 5,120 N/A

FP32 Peak
Throughput 11.3TFLOPS 10.6TFLOPS 15.7TFLOPS 1.7, 6.6, 26.4,

52.8 TFLOPS

Table 3: PIM Parameters (2GB capacity)
Components Param Value Power

Crossbar Array size 1Mb 6.14mW
Sense Amp number 1K 2.38mW
Decoder number 1 0.31mW

Memory Block number 1 8.83mW

Tile Memory num_block 256 1.57W
H-tree Switch number 85 107.13mW
Bus Switch number 1 17.2mW

Tile Size 32MB 1.68W (H-tree)
1.59W (Bus)

Central Controller number 1 6.41W
CPU Host number 1 3.06W

Total Size 2GB 115.02W (H-tree)
109.25W (Bus)

Wave-PIM: Accelerating Wave Simulation Using Processing-in-Memory ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Table 4: PIM Basic Operation Energy (E) and Time (T)

𝐸𝑠𝑒𝑡 𝐸𝑟𝑒𝑠𝑒𝑡 𝐸𝑁𝑂𝑅 𝐸𝑠𝑒𝑎𝑟𝑐ℎ 𝑇𝑁𝑂𝑅 𝑇𝑠𝑒𝑎𝑟𝑐ℎ

23.8fJ 0.32fJ 0.29fJ 5.34pJ 1.1ns 1.5ns

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Acoustic_4 Elastic-Central_4 Elastic-Riemann_4 Acoustic_5 Elastic-Central_5 Elastic-Riemann_5

S
im

u
la

ti
o
n
 T

im
e

N
or

m
al

iz
ed

 t
o

U
n
fu

se
d
 G

T
X

 1
0
80

T
i

Benchmarks

Unfused-1080Ti-16

PIM-512MB-28
Fused-1080Ti-16

PIM-512MB-12

Unfused-P100-16

PIM-2GB-28
Fused-P100-16

PIM-2GB-12

Unfused-V100-12

PIM-8GB-28
Fused-V100-12

PIM-8GB-12
PIM-16GB-28
PIM-16GB-12

Figure 11: Performance Comparison Between GPU and PIM

(2𝐺𝐵/1, 024𝑏 = 16𝑀) and the arithmetic operation latency from
prior works [23, 26], assuming a workload containing 50% addition
and 50% multiplication operations. We use the Nvidia-SMI [8] tool
and Intel’s RAPL [11] tool to collect the energy consumption on
the GPU platforms and their hosts.

7.2 Benchmarks
To evaluate performance and energy consumption of both GPU

and PIM implementations, we use six benchmarks divided into
three groups: acoustic wave simulation, elastic wave simulation
with central flux solver, and elastic wave simulation with Riemann
flux solver. Each group has two different refinement-levels which
define the number of elements needed to simulate. The Table 6
describes the main features of these six benchmarks. The perfor-
mance is measured based on the simulation time while the energy
is measured from the total power consumption of both host CPU
and accelerator (i.e., GPU or PIM).

The benchmarks have total number of instructions in the range
of 2 billion to 79 billion and total number of single-precision floating
point operations in the range of 400 million to 12 billion. These num-
bers are from fused GPU implementation obtained using nvprof [7]
where each kernel launched once on Tesla V100 GPU. Usually, the
simulation run for thousands of time-steps where each time-step
requires each kernel to be launched five times.

The unfused GPU implementation runs on GTX 1080Ti is used
as the baseline of our evaluation for both performance and en-
ergy consumption. This implementation consists of three primary
kernels that compute Volume, Flux, and Integration as shown in Fig-
ure 2. Some optimizations include storing repeatedly-used values
in constant-memory, rearranging code to minimize divergence, and
extracting element-level and node-level parallelism.

The fused GPU implementation is one step further to optimize
the GPU implementation that uses kernel fusion to achieve higher
performance. This implementation merges compute Volume and
compute Flux into single kernel to minimize the data movements.
This version also incorporates more efficient algorithms to deter-
mine the neighboring elements and more data locality for each
thread since it handles one node throughout kernel execution.

Table 5: PIM Implementation Configuration
Configuration 512MB 2GB 8GB 16GB
Acoustic_4 𝑁 𝐸𝑎 𝐸𝑎 𝐸𝑎

Elastic_4 𝐸𝑒&𝐵 𝐸𝑒 𝐸𝑎&𝐸𝑒 𝐸𝑎&𝐸𝑒
Acoustic_5 𝐵 𝐵 𝑁 𝐸𝑎

Elastic_5 𝐸𝑒&𝐵 𝐸𝑒&𝐵 𝐸𝑒&𝐵 𝐸𝑒

𝑁 represents the naive implementation, 𝐸𝑎 represents implementation using expansion to
increase the parallelism (can be used for both acoustic and elastic wave simulation), 𝐸𝑒 represents
implementation using expansion due to limited row size (only exists in the elastic wave
simulation) , and 𝐵 represents implementation using the batching technique.

Table 6: Characteristic of Benchmarks Used for Evaluation

Benchmark Refinement
Level

Number of
Elements

Number of
Instructions1

Number of FP
Ops.2

Acoustic_4 4 4,096 2,140,930,048 391,380,992
Elastic-Central_4 4 4,096 3,465,543,680 990,117,888
Elastic-Riemann_4 4 4,096 9,870,131,200 1,472,200,704

Acoustic_5 5 32,768 17,127,440,384 3,131,047,936
Elastic-Central_5 5 32,768 27,724,349,440 7,920,943,104
Elastic-Riemann_5 5 32,768 78,960,159,424 11,777,661,440

1 From inst_executed metric multiplied by 32 to obtain thread-level value.
2 From flop_count_sp and flop_count_sp_special metrics.
1,2 Obtained using nvprof running on Tesla V100 with fused implementation. Values are the total
from each kernel launched once. In each time-step, each kernel is launched five times.

7.3 Performance Comparisons
In this section, we compare the performance between the Wave-

PIM and GPU baseline. Our PIM simulations are done with process
node of 28nm, whereas the GPU numbers are obtained from the real
hardware fabricated on 16nm or 12nm process node. Approximate
scaling as suggested by [2, 50] indicate that with 12nm process
node, the PIM can get 3.81× performance improvement and 2.0×
energy savings. We report both unscaled and scaled performance
results in Figure 11. The batching and expansion techniques for
the PIM implementation are also considered, which are listed in
Table 5.

Due to the reduction in data movement, our Wave-PIM can
achieve up to 414.37× speedup compared with the GPU implemen-
tation. On average, our four Wave-PIM solutions achieve 10.28×,
35.80×, 72.21×, and 172.76× speedups on the six benchmarks com-
pared with the Unfused-1080Ti baseline. Compared against the
most efficient GPU implementation (Fused-V100), our four Wave-
PIM solutions can still achieve 2.30×, 7.89×, 15.97×, and 37.39×
throughput. The speedup of Elastic-Riemann on PIM is below the
average because the computation intensity of Elastic-Riemann is
high, and thus the performance improvement on PIM due to the re-
duction of data movement is insignificant compared to the Acoustic
and Elastic-Central benchmarks. The 512MB PIM solution does not
perform well since the inputs have to be divided into 32 batches for
the refinement-level 5 of elastic wave simulation, which results in
additional data movement from DRAMs.

7.4 Energy Comparisons
We report the energy comparisons between our PIM solutions

and GPU baseline in Figure 11. If the PIM is large enough to store the
size of problem (e.g. 512MB PIM for the refinement-level 4 of acous-
tic wave simulation), our Wave-PIM can achieve at most 50.56×
energy savings compared to the GPU implementation. On aver-
age, our four Wave-PIM solutions achieve 26.62×, 26.82×, 14.28×,
and 16.01× energy savings on the six benchmarks compared to the
Unfused-1080Ti baseline.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA B. Hanindhito, R. Li et al.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Acoustic_4 Elastic-Central_4 Elastic-Riemann_4 Acoustic_5 Elastic-Central_5 Elastic-Riemann_5

E
n
er

gy
N

or
m

al
iz

ed
 t

o
U

n
fu

se
d
 G

T
X

 1
0
80

T
i

Benchmarks

Unfused-1080Ti-16

PIM-512MB-28
Fused-1080Ti-16

PIM-512MB-12

Unfused-P100-16

PIM-2GB-28
Fused-P100-16

PIM-2GB-12

Unfused-V100-12

PIM-8GB-28
Fused-V100-12

PIM-8GB-12
PIM-16GB-28
PIM-16GB-12

Figure 12: Energy Comparison Between GPU and PIM

0 100 200 300

CPU Host

Volume

Flux (-1)

Flux (+1)

Integration

Timeline (s)m

Sqrt

Data Fetch Compute

Data Fetch Compute

Inverse

Figure 13: Pipeline Breakdown

0

50

100

150

200

250

300

350

400

450

500

H-tree Bus H-tree Bus H-tree Bus H-tree Bus
Acoustic_4
PIM-512MB

Acoustic_4
PIM-2GB

Elastic-Central_4
PIM-2GB

Elastic-Central_4
PIM-8GB

T
im

e
(

s)
μ

Intra-element Inter-element

Figure 14: Comparison between H-Tree and Bus

There is a trade-off between the performance and energy con-
sumption. With a large PIM chip, large problems can benefit from
the abundant parallelism and zero overhead DRAM data transfer
since batching is not needed. However, small problems may not be
able to take performance advantage of large PIM chip because of
the resources under-utilization, which is the reason for less energy
savings compared to small chips.

7.5 Pipeline Analysis
We now discuss performance improvement if pipelining is ap-

plied in the Wave-PIM system (Figure 13). The square root and
inverse operations need to be pre-processed for the Flux by of-
floading them to the host CPU during the Volume computation. At
the same time, the neighboring element data can be transferred to
Block 3 (Figure 9) before the computation of Flux begins. We divide
the computation in Flux based on the direction of normal vector
into two stages in order to overlap the overhead of inter-block data
transmission. Without pipelining, our Wave-PIM can only obtain a
0.77× throughput (Figure 11).

7.6 Comparison between Bus and H-tree
The performance of the Bus interconnection is the same as the H-

tree interconnection, if there is a few inter-block data transmission,
as in the Volume and Integration. The Bus interconnect can benefit
from the lower power compared to the H-tree. However, if there is
an intensive inter-block interactions, the performance difference
is more prominent. In this part, we will provide case studies for
the Flux, since a huge amount of inter-block data transmission is
required between neighboring elements.

Figure 14 shows the performance comparison between H-tree
and Bus in four cases. Without expansion (Acoustic-512MB and
Elastic-2GB), the inter-element data transmission contributes 21.62%
58.41% to the overall execution time for the H-tree and Bus, re-
spectively. Moreover, if expansion is applied (Acoustic-2GB and
Elastic-8GB), the two ratios will increase to 42.77% and 69.96%. By
considering the pipelines in Figure 13, inter-element data transmis-
sion time should be shorter than the intra-element computation
time, and thus we used the H-tree interconnection in our design.

8 CONCLUSION
Processing-in-Memory reduces data movement, and allows har-

nessing the data-level parallelism that is abundant inmany scientific
computing applications. In this paper, we mapped the six wave sim-
ulation benchmarks on a PIM system. To maximize the benefits of
processing in memory, the dependencies and movement of the data
and intermediate results between computation steps were carefully
analyzed and handled. We also introduced the concept of batching
and expansion, in order to improve the scalability of the Wave-
PIM implementation to support problems of various sizes at the
highest possible performance. In addition, we also proposed and
evaluated H-tree interconnection against the Bus interconnection
to facilitate more efficient inter-block data transfer. All of these com-
bined yielded not only performance gains, but also reduction in data
movement, which decreases the energy consumption. Experimental
results show that our PIM solution significantly outperforms state-
of-the-art GPU systems, yielding an average of 41.98× speedup,
and 12.66× energy savings.

ACKNOWLEDGMENTS
This research was supported in part by ExxonMobil Research and
Engineering Company, agreement no. EM10480.36, National Sci-
ence Foundation (NSF) grant number 1763848, and computational
resources from Texas Advanced Computing Center (TACC). Any
opinions, findings, conclusions or recommendations are those of
the authors and not of the sponsors.

REFERENCES
[1] Aria Abubakar, Gong LiWang, Lin Liang, TarekM. Habashy, andMaokun Li. 2016.

Electromagnetic modeling and inversion application for oil and gas industry. In
2016 Progress in Electromagnetic Research Symposium (PIERS). 938–938. https:
//doi.org/10.1109/PIERS.2016.7734532

[2] Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin
Foltin, R Stanley Williams, Paolo Faraboschi, Wen-mei W Hwu, John Paul Stra-
chan, Kaushik Roy, et al. 2019. PUMA: A programmable ultra-efficient memristor-
based accelerator for machine learning inference. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. 715–731.

[3] Himanshu Bhatnagar. 2002. Advanced ASIC chip synthesis. Springer.

https://doi.org/10.1109/PIERS.2016.7734532
https://doi.org/10.1109/PIERS.2016.7734532

Wave-PIM: Accelerating Wave Simulation Using Processing-in-Memory ICPP ’21, August 9–12, 2021, Lemont, IL, USA

[4] Jesse Chan, ZhengWang, Axel Modave, Jean-Francois Remacle, and T.Warburton.
2016. GPU-accelerated discontinuous Galerkin methods on hybrid meshes. J.
Comput. Phys. 318 (2016), 142 – 168.

[5] M. V. K. Chari. 1983. Electromagnetic Modeling of Electrical Machinery for
Design Applications. In Industrial Electromagnetics Modelling, J. Caldwell and
R. Bradley (Eds.). Springer Netherlands, Dordrecht, 3–14.

[6] J. Chen and Q. H. Liu. 2013. Discontinuous Galerkin Time-Domain Methods
for Multiscale Electromagnetic Simulations: A Review. Proc. IEEE 101, 2 (2013),
242–254.

[7] Nvidia Corporation. 2019. Nvidia CUDA Toolkit Documentation. https://docs.
nvidia.com/cuda/profiler-users-guide/index.html/.

[8] Nvidia Corporation. 2020. Nvidia System Management Interface. https://https:
//developer.nvidia.com/nvidia-system-management-interface/.

[9] Nvidia Corporation. 2020. Nvidia Tesla V100 GPU Architecture. https://images.
nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.

[10] Nvidia Corporation. 2020. Nvidia Turning GPU Architecture. https://www.nvidia.
com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.

[11] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and Christian
Le. 2010. RAPL: memory power estimation and capping. In 2010 ACM/IEEE
International Symposium on Low-Power Electronics and Design (ISLPED). IEEE,
189–194.

[12] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro, Michael R
Stonebraker, and David A Wood. 1984. Implementation techniques for main
memory database systems. In Proceedings of the 1984 ACM SIGMOD international
conference on Management of data. 1–8.

[13] Xiangyu Dong, Cong Xu, Yuan Xie, and Norman P Jouppi. 2012. Nvsim: A circuit-
level performance, energy, and area model for emerging nonvolatile memory.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
31, 7 (2012), 994–1007.

[14] T. Duda, J. Bonnel, E. Coelho, and K. Heaney. 2019. Computational Acoustics in
Oceanography: The Research Roles of Sound Field Simulations. Acoustics Today
15 (2019), 28–37. Issue 3.

[15] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer,
Dennis Sylvester, David Blaaauw, and Reetuparna Das. 2018. Neural cache:
Bit-serial in-cache acceleration of deep neural networks. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 383–396.

[16] Arash Fathi, Loukas F Kallivokas, and Babak Poursartip. 2015. Full-waveform
inversion in three-dimensional PML-truncated elastic media. Computer Methods
in Applied Mechanics and Engineering 296 (2015), 39–72.

[17] Arash Fathi, Babak Poursartip, and Loukas F. Kallivokas. 2015. Time-domain
hybrid formulations for wave simulations in three-dimensional PML-truncated
heterogeneous media. Internat. J. Numer. Methods Engrg. 101, 3 (2015), 165–198.

[18] Arash Fathi, Babak Poursartip, Kenneth H. Stokoe II, and Loukas F. Kallivokas.
2016. Three-dimensional P- and S-wave velocity profiling of geotechnical sites
using full-waveform inversion driven by field data. Soil Dynamics and Earthquake
Engineering 87 (2016), 63 – 81.

[19] Raspberry Pi Foundation. 2021. Raspberry Pi Power Supply Documenta-
tion. https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/
README.md/.

[20] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. 2019. Computedram: In-
memory compute using off-the-shelf drams. In Proceedings of the 52nd annual
IEEE/ACM international symposium on microarchitecture. 100–113.

[21] DCGroeneveld, LKH Leung, PL Kirillov, VP Bobkov, IP Smogalev, VN Vinogradov,
XC Huang, and E Royer. 1996. The 1995 look-up table for critical heat flux in
tubes. Nuclear Engineering and design 163, 1-2 (1996), 1–23.

[22] Lluís Guasch, Oscar Calderon Agudo, Meng-Xing Tang, Parashkev Nachev, and
Michael Warner. 2020. Full-waveform inversion imaging of the human brain. npj
Digital Medicine 3 (2020), 1 – 12.

[23] Ameer Haj-Ali, Rotem Ben-Hur, Nimrod Wald, and Shahar Kvatinsky. 2018.
Efficient algorithms for in-memory fixed point multiplication using magic. In
2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1–5.

[24] J.S. Hesthaven and T. Warburton. 2010. Nodal Discontinuous Galerkin Methods:
Algorithms, Analysis, and Applications. Springer. http://books.google.com/books?
id=RQWvcQAACAAJ

[25] S. B. Hong, N. Vlahopoulos, R.M.Mantey, andD. J. Gorsich. 2004. A computational
approach for evaluating the probability of acoustic detection of a military vehicle.
In Targets and Backgrounds X: Characterization and Representation, Wendell R.
Watkins, Dieter Clement, and William R. Reynolds (Eds.), Vol. 5431. International
Society for Optics and Photonics, SPIE, 150 – 159.

[26] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. 2019. Floatpim:
In-memory acceleration of deep neural network training with high precision. In
Proceedings of the 46th International Symposium on Computer Architecture. ACM,
802–815.

[27] Mohsen Imani, Saikishan Pampana, Saransh Gupta, Minxuan Zhou, Yeseong Kim,
and Tajana Rosing. 2020. DUAL: Acceleration of Clustering Algorithms using
Digital-based Processing In-Memory. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 356–371.

[28] Tobin Isaac, Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. 2015. Re-
cursive algorithms for distributed forests of octrees. SIAM Journal on Scientific
Computing 37, 5 (2015), C497–C531. https://doi.org/10.1137/140970963

[29] L.F. Kallivokas, A. Fathi, S. Kucukcoban, K.H. Stokoe, J. Bielak, and O. Ghattas.
2013. Site characterization using full waveform inversion. Soil Dynamics and
Earthquake Engineering 47 (2013), 62 – 82.

[30] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. 2011. GPUs
and the Future of Parallel Computing. IEEE Micro 31, 5 (2011), 7–17. https:
//doi.org/10.1109/MM.2011.89

[31] Martin-D Lacasse, Laurent White, Huseyin Denli, and Lingyun Qiu. 2018. Full-
wavefield inversion: An extreme-scale PDE-constrained optimization problem.
In Frontiers in PDE-Constrained Optimization. Springer, 205–255.

[32] Charles E Leiserson. 1980. Area-efficient graph layouts. In 21st Annual Symposium
on Foundations of Computer Science (sfcs 1980). IEEE, 270–281.

[33] Ruihao Li, Shuang Song, Qinzhe Wu, and Lizy. K John. 2020. Accelerating Force-
directed Graph Layout with Processing-in-Memory Architecture. In 2020 27th
IEEE International Conference on High Performance Computing, Data, & Analytics
(HiPC). IEEE.

[34] Shang Li, Dhiraj Reddy, and Bruce Jacob. 2018. A performance & power compar-
ison of modern high-speed dram architectures. In Proceedings of the International
Symposium on Memory Systems. 341–353.

[35] Elena Lucano, Micaela Liberti, Gonzalo G. Mendoza, Tom Lloyd, Maria Ida Iacono,
Francesca Apollonio, Steve Wedan, Wolfgang Kainz, and Leonardo M. Angelone.
2016. Assessing the Electromagnetic Fields Generated By a Radiofrequency
MRI Body Coil at 64 MHz: Defeaturing Versus Accuracy. IEEE Transactions on
Bio-Medical Engineering 63, 8 (8 2016).

[36] Mark E Lucente. 1993. Interactive computation of holograms using a look-up
table. Journal of Electronic Imaging 2, 1 (1993), 28–35.

[37] Babak Poursartip, Arash Fathi, and Loukas F. Kallivokas. 2017. Seismic wave
amplification by topographic features: A parametric study. Soil Dynamics and
Earthquake Engineering 92 (2017), 503–527. https://doi.org/10.1016/j.soildyn.
2016.10.031

[38] Babak Poursartip, Arash Fathi, and John L. Tassoulas. 2020. Large-scale simulation
of seismic wave motion: A review. Soil Dynamics and Earthquake Engineering
129 (2020), 105909.

[39] A. Quarteroni and A. Valli. 1994. Numerical Approximation of Partial Differential
Equations. Springer.

[40] A. Quarteroni and A. Valli. 2008. Numerical approximation of partial differential
equations. Springer, Berlin Heidelberg.

[41] K. Sankaran. 2019. Recent trends in computational electromagnetics for defence
applications. Defence Sience Journal 69 (2019), 65–73. Issue 1.

[42] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic
in crossbars. ACM SIGARCH Computer Architecture News 44, 3 (2016), 14–26.

[43] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. Pipelayer: A pipelined
reram-based accelerator for deep learning. In 2017 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 541–552.

[44] Nishil Talati, Saransh Gupta, Pravin Mane, and Shahar Kvatinsky. 2016. Logic
design within memristive memories using memristor-aided loGIC (MAGIC). IEEE
Transactions on Nanotechnology 15, 4 (2016), 635–650.

[45] G.A.E. Vandenbosch. 2004. Computational electromagnetics and antenna design
in Western Europe-organisation and overview of the present status. In The Fifth
International Kharkov Symposium on Physics and Engineering of Microwaves,
Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828), Vol. 1. 40–45 Vol.1.
https://doi.org/10.1109/MSMW.2004.1345785

[46] L.C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas. 2010. A high-order discon-
tinuous Galerkin method for wave propagation through coupled elastic–acoustic
media. J. Comput. Phys. 229, 24 (2010), 9373 – 9396.

[47] Wm A Wulf and Sally A McKee. 1995. Hitting the memory wall: implications of
the obvious. ACM SIGARCH computer architecture news 23, 1 (1995), 20–24.

[48] Xingyao Zhang, Shuaiwen Leon Song, Chenhao Xie, Jing Wang, Weigong Zhang,
and Xin Fu. 2020. Enabling highly efficient capsule networks processing through
a PIM-based architecture design. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 542–555.

[49] Yuhao Zhang, Zhiping Jia, Yungang Pan, Hongchao Du, Zhaoyan Shen, Mengying
Zhao, and Zili Shao. 2020. PattPIM: A Practical ReRAM-Based DNN Accelerator
by ReusingWeight Pattern Repetitions. In 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 1–6.

[50] Scott Zuloaga, Rui Liu, Pai-Yu Chen, and Shimeng Yu. 2015. Scaling 2-layer
RRAM cross-point array towards 10 nm node: A device-circuit co-design. In 2015
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 193–196.

https://docs.nvidia.com/cuda/profiler-users-guide/index.html/
https://docs.nvidia.com/cuda/profiler-users-guide/index.html/
https://https://developer.nvidia.com/nvidia-system-management-interface/
https://https://developer.nvidia.com/nvidia-system-management-interface/
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/README.md/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/README.md/
http://books.google.com/books?id=RQWvcQAACAAJ
http://books.google.com/books?id=RQWvcQAACAAJ
https://doi.org/10.1137/140970963
https://doi.org/10.1109/MM.2011.89
https://doi.org/10.1109/MM.2011.89
https://doi.org/10.1016/j.soildyn.2016.10.031
https://doi.org/10.1016/j.soildyn.2016.10.031
https://doi.org/10.1109/MSMW.2004.1345785

	Abstract
	1 Introduction
	2 Background
	2.1 A Prelude to Acoustic and Elastic Waves
	2.2 Problem Discretization Using the Discontinuous Galerkin Method
	2.3 Digital PIM Basics

	3 Design Motivation
	3.1 Bottlenecks in CPU/GPU Implementations
	3.2 Bottlenecks in Current PIM Architectures

	4 The Wave-PIM Architecture
	4.1 Overview
	4.2 Inter-block Interconnection
	4.3 Look-up Table in PIM

	5 Wave Simulation Implementation
	5.1 Data Layout and Execution Timeline

	6 Fitting The Problem into The PIM
	6.1 Batching
	6.2 Expansion
	6.3 Pipelining

	7 Evaluation
	7.1 Experiment Setup
	7.2 Benchmarks
	7.3 Performance Comparisons
	7.4 Energy Comparisons
	7.5 Pipeline Analysis
	7.6 Comparison between Bus and H-tree

	8 Conclusion
	Acknowledgments
	References

