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Abstract

Artificial Intelligence (AI) and Machine Learning (ML) techniques
are revolutionizing various domains, including performance engi-
neering. Performance engineering, which involves the evaluation,
modeling, and optimization of system performance, has tradition-
ally relied on established methodologies that have proven effective
over the years. However, the growing complexity and heterogeneity
of modern computing systems, particularly with the emergence of
AT accelerators, has resulted in a shift in approach. Al and ML tech-
niques are now being leveraged to achieve unprecedented levels
of efficiency and scalability in performance engineering. Similarly,
performance engineering is modifying metrics and methodologies
for ML benchmarking. This talk will describe some opportunities
and challenges when Al meets Performance Engineering.

AI/ML can address challenges in performance engineering by
learning complex system behaviors from vast amounts of data, en-
abling adaptive and predictive performance models. One of the
key advantages of using AI/ML in performance engineering is its
ability to identify performance bottlenecks and predict system be-
havior under varying workloads. Machine learning models can
analyze performance metrics in real time, allowing for automated
tuning and optimization. This capability is particularly useful in
cloud computing environments, where dynamic resource allocation
is crucial for maintaining efficiency and cost-effectiveness. More-
over, Al-driven approaches can facilitate workload characterization
and anomaly detection. By training models on historical data, AI
systems can detect deviations from normal performance patterns,
identifying potential issues before they impact system stability. This
proactive approach to performance engineering reduces downtime
and enhances overall system reliability.

AT and ML can also be used to create performance models, at
levels ranging from circuit design to system level performance. An
example from our prior work [5] used constrained lasso regression
to estimate cross-platform microprocessor performance and power
from performance counters. Essentially benchmark programs are
run on one machine and processor performance monitoring counter
outputs gathered to predict performance and energy on a different
processor. Another effort [4] utilizes training on one platform fol-
lowed by fine-tuning to predict cross-platform energy/power on
Field Programmable Gate Arrays (FPGAs).
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AI/ML is helping performance engineering; similarly perfor-
mance engineering has to help design of AI/ML platforms. Perfor-
mance evaluation and benchmarking of ML systems [2] is chal-
lenging, especially due to the complexity and heterogeneity of
modern Al workloads and accelerators. Al workloads running on
specialized hardware, such as Graphics Processing Units (GPUs),
Tensor Processing Units (TPUs), Neural Processing Units (NPUs)
and Field-Programmable Gate Arrays (FPGAs) with dozens of soft-
ware layers in the thick software stack bring many challenges to
effective evaluation and benchmarking.

Performance metrics and methodologies must be adapted to Al-
driven workloads and platforms. Metrics for benchmarking ML
training will be different from inference benchmarking. Training
could use metrics such as Time To Accuracy (TTA) which con-
siders the time to train a model to a predetermined accuracy [1, 3].
Metrics such as time (latency) for inference in batch size of one
may be most appropriate for edge devices, whereas average latency
for a larger batch may be appropriate for cloud inference engines.
With the proliferation of Generative Al and language models, some
say tokens per second is the relevant metric.

Many choices exist in the software stack about what ML frame-
works (eg: PyTorch, TensorFlow, etc.), what graph formats (ONNX,
NNEF), what graph compilers (Glow, TVM, XLA etc.), what libraries
(CuBLAS, MKL DNN, etc.), operating systems (Linux, RTOS, Ma-
cOS, Android, etc.), hardware targets (CPUs, GPUs, TPUs, NPUs,
FPGAs, accelerators, etc.) should be used. The diversity of options at
every level of the stack make benchmarking inference systems very
challenging. The sensitivity of performance to libraries, formats,
frameworks, etc. is very high, and needs to be studied. It is ques-
tionable whether an AI/ML model must be the cutting-edge model
or a simpler model that many platforms can run. It is questionable
whether very high accuracy thresholds should be chosen in the
TTA metrics or a moderate accuracy achievable by many platforms
and vendors must be chosen. ML datasets need to be predetermined
for fair apple to apple comparison, and test sets identified.

The MLPerf benchmarks [2] are separated into categories of
training and inference. Furthermore there are four categories of
inference: cloud, edge, mobile, and tiny, as requirements and con-
straints are very different in cloud and edge inferencing. Results
may be submitted in the closed division where the specified model
must be used or in the open division, where the model can be
changed.

While AI brings numerous opportunities to enhance perfor-
mance modeling and evaluation, it also presents significant chal-
lenges that must be addressed. One challenge lies in the inter-
pretability of Al models. While AI can provide powerful insights
into system performance, its decision-making processes are often
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considered black-box in nature. Understanding why a model pre-
dicts certain performance trends requires explainable Al techniques,
which are still an active area of research. Without transparency,
it becomes difficult to trust and validate Al-driven optimizations.
Additionally, the reliance on data-driven methods introduces con-
cerns regarding data quality and bias. Al models are only as good as
the data they are trained on, and inaccuracies or biases in training
data can lead to misleading performance predictions. Ensuring the
integrity and representativeness of training datasets is crucial for
the reliability of Al-enhanced performance engineering solutions.

Creating reliable datasets for ML-based performance modeling
is another challenge. The Imagenets for Performance Engineering
are yet to be constructed and curated.

The intersection of AI/ML and performance engineering marks
a transformative shift in how system performance is evaluated
and optimized. Al-driven approaches offer new levels of efficiency,
scalability, and adaptability, making them invaluable in modern
computing environments. However, the challenges of heteroge-
neous hardware, model interpretability, and data quality must be
carefully managed to fully harness the potential of Al in perfor-
mance engineering. By addressing these challenges and exploring
innovative solutions, the future of performance engineering can be
significantly enhanced through AI and ML technologies. This talk
will explore the many ways AI/ML can influence performance engi-
neering, and vice versa, when Al meets performance engineering.
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