
Hardware Accelerator Integration Tradeoffs for
High-Performance Computing: A Case Study of

GEMM Acceleration in N-Body Methods
Mochamad Asri , Dhairya Malhotra , Jiajun Wang, George Biros ,

Lizy K. John , Fellow, IEEE, and Andreas Gerstlauer , Senior Member, IEEE

Abstract—In this article, we study performance and energy saving benefits of hardware acceleration under different hardware

configurations and usage scenarios for a state-of-the-art Fast Multipole Method (FMM), which is a popular N-body method. We use a

dedicated Application Specific Integrated Circuit (ASIC) to accelerate General Matrix-Matrix Multiply (GEMM) operations. FMM is

widely used in applications and is representative example of the workload for many HPC applications. We compare architectures that

integrate the GEMM ASIC next to, in or near main memory with an on-chip coupling aimed at minimizing or avoiding repeated round-

trip transfers through DRAM for communication between accelerator and CPU. We study tradeoffs using detailed and accurately

calibrated x86 CPU, accelerator and DRAM simulations. Our results show that simply moving accelerators closer to the chip does not

necessarily lead to performance/energy gains. We demonstrate that, while careful software blocking and on-chip placement

optimizations can reduce DRAM accesses by 2X over a naive on-chip integration, these dramatic savings in DRAM traffic do not

automatically translate into significant total energy or runtime savings. This is chiefly due to the application characteristics, the high idle

power and effective hiding of memory latencies in modern systems. Only when more aggressive co-optimizations such as software

pipelining and overlapping are applied, additional performance and energy savings can be unlocked by 37 and 35 percent respectively

over baseline acceleration. When similar optimizations (pipelining and overlapping) are applied with an off-chip integration, on-chip

integration delivers up to 20 percent better performance and 17 percent less total energy consumption than off-chip integration.

Ç

1 INTRODUCTION

THE end of Moore’s law era means that single-socket, gen-
eral-purpose hardware is quickly approaching its limits.

A possible path to increasing single-socket performance is
to consider ASIC-based special-purpose hardware (hereby
an “accelerator”). By sacrificing programmability, accelera-
tors provide the best performance with respect to time-to-
solution and energy consumption.

However, most of the existing research on ASIC-based
accelerators has focused on individual computational
kernels [11], [12], [27], [35], [41], [42]. In practice, many
applications comprise several compute and data transfor-
mation kernels (e.g., scatter/gather, transpose, and permu-
tation operations), out of which selected kernels such as
General Matrix-Matrix Multiplies (GEMMs) and Fast
Fourier Transforms (FFTs) are offloaded to an accelerator.

A key concern in system-level design is the architectural
integration of the accelerator with the host system. Where in
the memory hierarchy do we place the accelerator in order
to reduce data movement and communication overhead?
Traditionally, accelerators have been integrated as off-chip
devices placed near DRAM. This requires all data to be
exchanged through DRAM. Such off-chip data movement
can negate performance benefits of acceleration and can
account for up to 50 percent of dynamic access energy in
HPC applications [14]. More recently, accelerators have
been moved in or near main memory [3], [50], but this only
affects how efficiently the accelerator itself can access
memory. To minimize or completely avoid off-chip DRAM
transfers, accelerators can instead be integrated on the same
die and coupled by sharing the last-level cache (LLC) with
CPUs [1], [32], [48]. However, such a design also has its
own shortcomings. If data exceeds LLC capacity, expensive
spills to DRAM will still take place—depending on applica-
tion locality patterns. Overall, deciding on whether on-chip
or off-chip placement is better depends strongly on applica-
tion and architecture interactions.

In this paper, we present a comprehensive algorithm/
architecture co-design case study for a complexHPC applica-
tion consisting of multiple interdependent kernels executing
on a host CPU assisted by a custom hardware accelerator.
We quantify, analyze, and explain the impact of joint acceler-
ator integration and placement, algorithm/architecture and
hardware/software co-optimizations on a representative
HPC code both from a performance and energy perspective.
Specifically, we study these tradeoffs for an application that

� Mochamad Asri, Jiajun Wang, Lizy K. John, and Andreas Gerstlauer are
with the Electrical and Computer Engineering Department, The University
of Texas at Austin, Austin, TX 78712 USA. E-mail: {asri, jiajunwang}
@utexas.edu, {ljohn, gerstl}@ece.utexas.edu.

� Dhairya Malhotra is with the Flatiron Institute, New York 10010 USA.
E-mail: dmalhotra@flatironinstitute.org.

� George Biros is with the Institute for Computational Engineering and
Sciences, The University of Texas at Austin, Austin, TX 78712 USA.
E-mail: gbiros@acm.org.

Manuscript received 2 Apr. 2018; revised 19 Jan. 2021; accepted 22 Jan. 2021.
Date of publication 1 Feb. 2021; date of current version 19 Feb. 2021.
(Corresponding author: Mochamad Asri.)
Recommended for acceptance by A. IOSUP.
Digital Object Identifier no. 10.1109/TPDS.2021.3056045

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021 2035

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 07,2022 at 23:03:14 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8236-9941
https://orcid.org/0000-0001-8236-9941
https://orcid.org/0000-0001-8236-9941
https://orcid.org/0000-0001-8236-9941
https://orcid.org/0000-0001-8236-9941
https://orcid.org/0000-0001-9567-1322
https://orcid.org/0000-0001-9567-1322
https://orcid.org/0000-0001-9567-1322
https://orcid.org/0000-0001-9567-1322
https://orcid.org/0000-0001-9567-1322
https://orcid.org/0000-0002-0033-3994
https://orcid.org/0000-0002-0033-3994
https://orcid.org/0000-0002-0033-3994
https://orcid.org/0000-0002-0033-3994
https://orcid.org/0000-0002-0033-3994
https://orcid.org/0000-0002-8747-5214
https://orcid.org/0000-0002-8747-5214
https://orcid.org/0000-0002-8747-5214
https://orcid.org/0000-0002-8747-5214
https://orcid.org/0000-0002-8747-5214
https://orcid.org/0000-0002-6748-2054
https://orcid.org/0000-0002-6748-2054
https://orcid.org/0000-0002-6748-2054
https://orcid.org/0000-0002-6748-2054
https://orcid.org/0000-0002-6748-2054
mailto:asri@utexas.edu
mailto:jiajunwang@utexas.edu
mailto:ljohn@ece.utexas.edu
mailto:gerstl@ece.utexas.edu
mailto:dmalhotra@flatironinstitute.org
mailto:gbiros@acm.org


consists of multiple GEMM calls that are combined with
complex data-structure accesses and memory reshuffling.
This workload is common in many HPC applications but as
an example we study the Fast Multipole Method (FMM).
FMMapproximates a dense,OðN2Þmatrix-vectormultiplica-
tion by a sparse, OðNÞ matrix-vector multiplication. FMM
belongs to the broad class of N-body methods used in
computational physics and machine learning [6], [17], [20],
[31], [38]. The fraction spent in N-body solvers varies from
100 percent in electromagnetic and acoustic scattering, to
80 percent in astrophysics and complex fluid simulations,
to less than 50 percent inmolecular dynamics.

We consider the near-interaction computation in volume
FMM (a particular FMM variant), referred to as the “U-list”.
The U-list computation is a sparse matrix-vector multiplica-
tion computed by traversing a non-uniform octree to setup
a series of GEMMs of various sizes, interleaved with
data reshuffling, and matrix-matrix accumulation. In well-
optimized FMM codes the U-list accounts for 50 percent of
execution time. The remaining time goes to far-interactions,
which have the same workload pattern [37]. Indeed, this
pattern—GEMMs interleaved with data-transformations—
is prominent in HPC applications, e.g., N-body methods,
high-order finite element methods [7] and hierarchical
matrices [49]. By varying a parameter that controls the size
of the GEMMs in the U-list, we can model workloads that
are both compute- and memory-bound.

We accelerate the GEMM operations in the U-list using
a dedicated ASIC, the Linear Algebra Processor (LAP)
from [41] as an example of a typical GEMM accelerator. We
chose the LAP for our studies since it represents an extreme
case of acceleration that amplifies the impact of placement
and data movement tradeoffs. Compared to modern GPUs,
the LAP delivers a similar performance while having 7-10x
better energy efficiency [41]. Note that our primary goal is
to study relative accelerator placement effects/tradeoffs in
terms of total system energy and runtime, not absolute ben-
efits or comparison of specific acceleration options. As such,
while quantitative results will vary, we expect the main
qualitative placement insights to be independent of and to
transfer to other accelerators or system configurations.

To study placement tradeoffs, we first develop a generic
performance model. Using this model, we perform design
space explorations across different application and architec-
ture parameters. We complement analytical studies with
simulations using the extendedMARSSx86 system simulator
from [5], which integrates a LAP and is calibrated to closely
match the performance of modern x86 machines for faithful
heterogeneous system studies. We extend this simulator
with detailed energy [33] and DRAM [43] models. Using this
setup, we study different architecture variants by integrating
the U-list with GEMM on the LAP, and we test performance
and energy for U-list without LAP, U-list with a LAP next to
or in DRAM, and U-list with on-chip coupling of the LAP at
the LLC.We combine architecture with algorithm co-optimi-
zations by proposing software modifications for data block-
ing, pipelining and overlapping of accelerator computations.

Our results show that simply integrating accelerators onto
the chip does not necessarily lead to performance/energy
wins. For the FMM application we evaluate in our study,
naive on-chip integration of a hardware accelerator alone can

reduces DRAM accesses by up to 26 percent compared to an
off-chip integration.With careful algorithm co-optimizations,
DRAM accesses can be reduced further by up to 2x for a total
of 3x savings. However, even after carefully blocking GEMM
operations to fit into LLCs, there are only minor performance
and energy variations over a naive off-chip integration. This
is due to the compute-dominated nature of GEMM opera-
tions and performance otherwise being determined by base
memory overhead. We similarly observed that when taking
static memory idle, leakage and refresh power into account,
the large reductions in dynamicDRAMaccesses do not trans-
late into significant total energy savings. However, when
more aggressive co-optimizations such as software pipelin-
ing and overlapping with on-chip accelerator coupling are
applied, further runtime and energy savings of 37 and 35 per-
cent are achieved, respectively. When similar optimizations
are employed in off-chip integration, on-chip integration
offers up to 20 percent better performance with 17 percent
less total energy consumption. As such, we observe that on-
chip integration offers more opportunities for runtime and
energy gains. However, depending on application character-
istics and parameters, overall performance and energy are in
other cases comparable across off- or on-chip couplings.

In summary, we make the following contributions:

� We study accelerator integration tradeoffs for a
representative N-body code comprehensively under
consideration of different application and architec-
ture scenarios, hardware/software co-optimizations,
problems sizes and FMM parameters, which allow
us to simulate both compute-bound and memory-
bound workloads.

� We co-optimize architectures and algorithms by
developing novel accelerator-aware hardware/soft-
ware coupling and algorithm optimizations.

� We quantify, analyze and identify detailed accelera-
tion benefits, tradeoffs and limitations in the context
of the FMM U-list and the LAP ASIC using both ana-
lytical performance models as well as simulations.

� To the best of our knowledge, this is the first compre-
hensive co-design study of actual system-wide hard-
ware acceleration benefits and tradeoffs under
different accelerator integration/placement, archi-
tecture and software optimizations, specifically for
custom hardware FMM acceleration.

The rest of the paper is organized as follows: after related
work discussion in Section 2, we provide a background on
FMM and the LAP accelerator in Section 3. We then intro-
duce generalized application and architecture models as
well as HW/SW co-optimizations in Sections 4 through 6.
Using analytical performancemodels, we present projections
and an exploration of different application/architecture
scenarios in Section 7. Finally, we demonstrate a comprehen-
sive simulation-based performance and energy evaluation in
Section 8, followed by a summary and outlook in Section 9.

2 RELATED WORK

The demand for increased system specialization and hetero-
geneity originated as a response to the end of traditional
semiconductor scaling [18], [47]. To date, heterogeneous

2036 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 07,2022 at 23:03:14 UTC from IEEE Xplore.  Restrictions apply. 



computing has received steady attention both in acade-
mia [11], [23], [42], [54] and industry [1], [29]. As one type of
specialization, custom hardware accelerators and accelera-
tor-rich system designs promise order of magnitude perfor-
mance and power benefits beyond traditional CPUs and
GPUs. Accelerators are often designed as standalone com-
ponents that communicate with the rest of the system
through some interface [27], [35]. While a large amount of
accelerator research has focused on the performance and
energy improvements [11], [23], [41], [47], system-level inte-
gration and implications have received less consideration.

Initially, such ASICs were envisioned as external devices
located in a separate chip different from the host system. As
such, any data transfer has to be exchanged through DRAM.
To address the overhead of off-chip memory accesses,
researchers have proposed methods for hiding communica-
tion latency using overlapped computations, e.g., via special
directmemory access (DMA) [26], [44], [51] andDMApipelin-
ing mechanisms [41]. More recently, processing-in-memory
(PIM) architectures have gained renewed attention [34]. With
advancements in 3D technology, integration of general-pur-
pose or specialized compute units into the logic layer of 3D
stacks has been investigated to exploit massivememory band-
width at low energy consumption. While such approaches in
general help move accelerator computation closer to memory,
not every application pattern can benefit. In particular, most
PIMwork assume limited to no data sharing between the PIM
accelerators and the host [3], [50]. By contrast, in domains
where data is frequently shared and exchanged, the potential
benefit of PIM acceleration is limited andunclear.

Alternatively, we can place the accelerator on the chip.
To optimize on-chip cache-level integration, caching and
cooperative prefetching policies have been proposed [32],
[48]. Other approaches allow accelerator local memories to
become part of the shared cache substrate, thereby extend-
ing LLC capacity when accelerators are not in use [15].
Within this context, PIM-like approaches closely couple
accelerators with on-chip caches [2], but such architectures
are again targeted at offloading operations that manipulate
data already residing in caches.

In all cases, existing work is limited to hardware- and
architecture-managed integration issues. There is no existing
work that evaluates and compares actual system-wide bene-
fits and tradeoffs of different on-/off-chip accelerator cou-
plings. Our work is the first to study and demonstrate cross-
layer acceleration tradeoffs from a system-level and hard-
ware/software perspective, specifically in the context of HPC
applications. Furthermore, not only do we study hardware-
centric optimizations, but we also propose software modifica-
tions to fully exploit performance and energy opportunities of
acceleration. Our results show that for real applications, care-
ful architecture and software co-optimization effort is
required in order to unlock on-chip integration gains. We do
not discuss the vast literature on HPC applications on GPU-
accelerated systems. Again, our primary goal is to study rela-
tive accelerator placement effects/tradeoffs in terms of total
system energy and runtime, not advocating for absolute bene-
fits or comparison of specific acceleration options. For a
review focused on energy consumption see [39].

Previouswork have investigated FMMacceleration oppor-
tunities using GPUs and FPGAs [9], [16], [24], [53]. Examples

of GPUs and FMM coupling (and an energy consumption
model) include [10] and [14]. Special-purpose systems for N-
body codes include [40], [45]. More relevant to the questions
we study in this paper are efforts to integrate N-body meth-
ods with FPGAs. Examples include [46] in which a direct
OðN2Þ N-body code (without FMM acceleration) is ported to
an FPGA. In [52], the authors combine FPGAs with tree codes
(another variant of fastN-body code). This is an FFT basedN-
body particle code, where near interactions for each tree node
are shipped to an FPGA. The authors evaluate performance
improvements, but they do not study the coupling placement
and co-optimizations tradeoffs questions we consider here. In
[36] the authors study an ASIC for the direct evaluation of
pairwise interactions. Themain focus of [36] is the description
of the ASIC and characterization of its performance. It does
not examinemore complex algorithms like FMMand no other
architectural tradeoffs are studied.

3 BACKGROUND

In this section, we briefly describe the FMM application and
LAP accelerator used as examples for our study.

3.1 FMM

The FMM was originally presented in [22] as an algorithm
to accelerate computation of gravitational (or Coulombic)
potentials due to a distribution of N-particles (also called an
N-body problem),

fi ¼
XN

j¼1

Gðxi; xjÞ mj; (1)

where xi and mi are the positions and masses of the
particles, Gðxi; xjÞ ¼ 1

4pjxi�xjj is the gravitational potential
kernel and fi is the required potential at particle i. This is
essentially a matrix-vector product with a dense N�N
matrix whose entries are Gij ¼ Gðxi; xjÞ and it requires
OðN2Þ work to compute this product. The FMM works by
geometrically partitioning the problem into smaller boxes
(Fig. 1-Left) using a tree data-structure (called octree in 3D).
The interactions between adjacent boxes (called the U-list
interactions) are computed directly and all other interac-
tions are computed using clever hierarchical low-rank
approximations. This reduces the overall cost to OðNÞ.

Based on this idea several variants of FMM have been
developed, including the volume FMM [13], [19], [21], [30],
[37], [38], which computes potentials due to continuous mass
(or electric charge) distributions through an integral trans-
form. The potential computed in this way solves the Poisson’s
equation: Df ¼ f where f is the mass density and f is the
required potential. This idea is also applicable to solving
many other partial differential equations (PDEs). Instead of
computing interactions between irregular distributions of
particles, volume FMM can be viewed as having regularly
spaced particles in each leaf-box of the tree, sampling the den-
sity function at those locations1 (Fig. 1-Center). In 3D, there
are ðqþ1Þðqþ2Þðqþ3Þ=6 � q3=6 particles per box, where the

1. in practice we use a Galerkin scheme using Chebyshev basis
instead of a nodal basis; however, this detail is unimportant for the dis-
cussion in this paper.

ASRI ETAL.: HARDWARE ACCELERATOR INTEGRATION TRADEOFFS FOR HIGH-PERFORMANCE COMPUTING: A CASE STUDYOF GEMM... 2037

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 07,2022 at 23:03:14 UTC from IEEE Xplore.  Restrictions apply. 



parameter q is the order of the method. Interactions between
adjacent boxes, called the near-interaction or the U-list inter-
actions, are computed directly using matrix-vector products
while the interactionswith the remaining boxes are computed
using hierarchical low-rank approximations. In this paper, we
only consider the U-list part of the computation which we
describe inmore detail below.

The N-body problems that we consider are translationally
invariant and scale invariant i.e., if all the particles are shifted
in space by the same amount or the distance between the par-
ticles is scaled by a constant factor, then the potentials remain
the same (up to a constant scaling factor). In the volume FMM,
since the particles are regularly spaced in each box, the matrix
block for the U-list interaction between two boxes depends
only on the relative position of the two boxes. In our octree
data structure, we ensure that adjacent leaf-nodes are within
one level of each other. This restricts the number of unique U-
list interaction matrix blocks to just 139 and allows us to pre-
compute these matrix blocks instead of evaluating the matrix
entries on the fly. Furthermore, these N-body problems are
also rotationally invariant i.e., if the entire domain is rotated
then the potentials still do not change. For the FMM algorithm
this implies that each of the 139U-list interactionmatrix blocks
(Ai for i ¼ 1; . . . ; 139) can be derived from one of ten precom-
puted matrices by reordering and scaling its rows and col-
umns: Ai¼MiÂjiKi, where Mi and Ki are permutation and
scaling operators (special type of sparse matrices) requiring
Oðq3Þ storage each; and Âj (for j ¼ 1; . . . ; 10) are precomputed
densematrices requiringOðq6Þ storage each.

Fig. 1-Right shows the U-list matrix blocks in a volume
FMM problem with the colors denoting the precomputed
matrix from which the matrix-block is derived. The repeat-
ing matrix blocks provide tremendous opportunity for max-
imize performance by exploiting data locality in computing
these interactions. The PVFMM library [37], [38], which is
the test bed for for all of our experiments, is highly-tuned
for the x86 architecture, on which it has demonstrated up to
60 percent of the peak theoretical FLOP rate. It achieves this
high performance using data locality in the computations.

This sparsity pattern and repeating matrix blocks (due to
translational, scale and rotational invariance of the PDE) is
also typical of other other PDE solvers relying on uniform
meshes or trees based spatial discretization of the domain,
such as finite element methods (FEM) and finite difference
methods (FDM). Therefore, the results of our experiments
also extend to these methods. Furthermore, the parameter q,
which we vary in our experiments, determines the size of
the matrix blocks in U-list computation and determines the
arithmetic intensity (ratio of floating point operations to
memory operations) of the computation. When q � 8, we
are in a compute-bound regime and the workload resembles
many practical FMM problems as well as high-order stencil
codes. When q < 8, we are in a memory-bound regime and
the workload resembles low-order block-structured stencil
codes. Thus by varying q we can analyze both compute-
bound and memory-bound applications.

3.2 Linear Algebra Processor (LAP)

We use the Linear Algebra Processor (LAP) in our studies as
an example of a typical GEMM accelerator. With specialized
microarchitecture optimizations, the LAP can provide mas-
sive parallel compute capabilities within tight power and area
constraints. Previous work has demonstrated that a double-
precision LAPwith 15 internal cores can run GEMMwith 600
GFLOPS at 1.4GHz with 90 percent utilization in an area of
120mm2 in 45nm technology [41]. By comparison, modern
GPUs reach a GEMM performance of 350 GFLOPS at 70 per-
cent utilization in a total of 500mm2 chip area [41]. All in all,
the LAP achieves 25 GFLOPS/W GEMM efficieny, making it
10xmore energy efficient thanmodernGPUs [41].

Fig. 2 shows the overall microarchitecture of a single LAP
core. It consists of a 2D array of 4� 4 processing
elements (PEs). Each PE has a multiply-accumulate (MAC)
unit with a local accumulator and local storage separated
into a bigger single-ported and a smaller dual-ported local
memory. PEs are connected by low-overhead horizontal
and vertical broadcast buses. MAC units perform the inner
dot-product computations central to GEMM operation.

Fig. 1. Left: A gravitational N-body problem depicting a galaxy with several particles and the geometric partitioning of the problem in FMM. The par-
ticles in the red-box interact directly (using matrix-vector product) only with particles in the blue-boxes (in addition to the red-box itself). The remaining
interactions are approximated using hierarchical low-rank approximations. Center: The continuous analogue of the particle N-body problem. The
continuous mass density function is sampled at regularly spaced points (green) in each box. The interactions between particles in the red-box
are computed using direct mat-vecs with particles in the red and blue boxes. This set of boxes is called the U-list of the red box and the interactions
are called U-list interactions. Right: The N�N matrix for a volume FMM problem with order q ¼ 14 and 358 boxes, each containing 680 particles for
a total of N ¼ 2:4e5 particles. Each pixel in the image represents a dense 680�680 block of the matrix corresponding to the interaction between two
boxes. The colored pixels represent the U-list interactions and the colors denotes one of the 10 precomputed matrices from which it is derived.

2038 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 07,2022 at 23:03:14 UTC from IEEE Xplore.  Restrictions apply. 



A LAP can integrate multiple cores together with a
shared local scratchpad memory. When a GEMM kernel is
offloaded to the LAP, its problem size can exceed LAP local
memory capacity. To address this challenge, the LAP inter-
nally tiles/blocks larger problems into smaller chunks that
fit into its local memory and that are processed successively.
Fig. 3 illustrates the LAP blocking scheme. The LAP fetches
sub-blocks of matrices A, B and C into its local memory,
denoted by Ap;Bp; Ci;j respectively. The LAP cores then fur-
ther block sub-matrices to distribute them across PEs. Multi-
ple LAP cores can thereby operate on different sub-blocks
concurrently. The LAP performs sub-block operations
repeatedly until the GEMM is complete.

For details about the LAP architecture and its perfor-
mance analyses see [41]. In our study, we employ a single-
core LAP with 2MB of internal memory. We modified the
application to offload the GEMM kernel to the LAP with the
help of a device driver. The LAP then performs the GEMM,
and interrupts the host CPU when it has finished.

4 APPLICATION MODEL

In this section, we use the FMM example to derive a general-
ized and representative HPC application model. We first
describe FMM dataflow and computation patterns, and then
introduce a corresponding application performancemodel.

4.1 Data Flow and Computation Patterns

The overall data flow and computation pattern is presented in
Fig. 4. It shows the three main parts in U-list computation,
namely the input permutation, the main GEMM Kernel, and
the output permutation. The preprocessing or the input permu-
tation step applies the permutation and scaling operator K to
the input array, labeled “in”, and assembles the result into the
matrixB. This stepmainly consists of light-weight computation
along with data shuffling. The main GEMM computation ker-
nel then computes the product of the precomputed matrix A
with matrix B and produces matrix C as the result. The width
of matrices B and C is equal to the number of times the matrix
block Â appears in the U-list matrix (shown in Fig. 1-Right) and
this can be hundreds or even thousands of columnswide. Since
theGEMMrequires a significant amount of compute resources,
it is the main candidate for accelerator offloading. Once the
GEMM is complete, the matrixC is sent to the host CPUwhich
performs the post-processing computation to assemble the final
result in the array, labeled “out”. This again involves a combina-
tion of light-weight computationwith data reshuffling.

This workflow represents typical program patterns
observed in HPC applications consisting of a mix of irregu-
lar data transformation and compute-intensive stages.
Throughout this paper, we use the U-list as a representation
of application patterns requiring significant data exchanges
between irregular code executing on host CPUs and com-
pute-intensive kernels offloaded to accelerators.

Fig. 2. Linear Algebra Processor (LAP) [41].

Fig. 3. Blocking mechanism of larger matrices [41].

Fig. 4. Data flow graph (DFG) of U-list execution and data movement patterns.

ASRI ETAL.: HARDWARE ACCELERATOR INTEGRATION TRADEOFFS FOR HIGH-PERFORMANCE COMPUTING: A CASE STUDYOF GEMM... 2039

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 07,2022 at 23:03:14 UTC from IEEE Xplore.  Restrictions apply. 



The main FMM parameter in our experiments is q, the
polynomial order of the leaf nodes. For each q, we keep the
total problem size fixed at N ¼ 2:4e5 by adjusting the num-
ber of leaf nodes. The matrix B is in the GEMM (Fig. 4), has
height approximately ðq þ 2Þ3=6. The average width of B is
approximately 2:35N=ððq þ 2Þ3=6Þ (the factor 2.35 is the num-
ber of times each Âk blocks repeats on average per block row
in the FMM matrix in Fig. 1-Right). Hence for problem size
N=2.4e5 and q=10, the size of B is approximately 286-by-2K
and for q=4 it is approximately 35-by-16K. The order q deter-
mines one dimension of the GEMM (the dimension of the
square matrix A is approximately ðq þ 2Þ3=6, Fig. 4). While
the size of B (and C) remains constant, the smaller q is, the
smallerAwill be and the thinner the GEMMbecomes.

4.2 Performance Model

We present a performance model for generalized applica-
tions that exhibit FMM-like dataflow/computation patterns.
Application model parameters and their values for typical
problem degrees are summarized in Tables 1 and 2, respec-
tively. As described earlier, the general application model
consists of three sequential stages:

1) Input permutation: pre-processing to gather leaf
node data with dimensions Noct �Nq and assemble
matrix Bwith dimensions k� n ¼ Nq �NU .

2) Computational kernel: perform GEMM operations to
compute pieces Cj ¼ ÂjBj ¼ 1 . . . 10 each with prob-
lem sizem� k� n ¼ Nq �Nq �NU=10.

3) Output permutation: post-process the combined
matrix C with dimensions m� n ¼ Nq �NU to scat-
ter results back to leaf nodes.

As mentioned before, pre-/post- processing is executed
on the CPU while the GEMM kernel is either executed on
the CPU or offloaded the LAP.

The total execution time T is the sum of execution times
T1, T2 and T3 for pre-processing, GEMM and post-process-
ing, respectively:

T ¼ T1 þ T2 þ T3: (2)

The total data exchanged between pre-/post-processing
and the GEMM invocation can reach more than 3x the total
capacity of even the large 8MBLLC. This requires a significant
amount of shared data written to the LLC by a producer to be
evicted and spilled to DRAM, from where the consumer has
to read it again. As such, shared data will be spillled and pre-
dominantly exchanged through DRAM. We can thus derive
an upper bound on performance assuming that pre- and post-
processing are memory-bound and not cache-contained,
where their cost is dominated by the time required to read

andwritematrices from/tomainmemory. In case of pre-proc-
essing, this includes write-allocating matrix B into the cache,
reading leaf node data, andwritingB back tomemory:

T1 ¼ ð2NUNq þNoctNqÞ=wC; (3)

where wC is the effective memory bandwidth for a combina-
tion of regular and irregular transfers made by the CPU.

Similarly, in case of post-processing, the cost is deter-
mined by the time to read leaf node data, read matrix C,
and write leaf node data back to memory:

T3 ¼ ð2NoctNq þNUNqÞ=wC: (4)

Finally, assuming that memory accesses and computa-
tions are perfectly overlapped, we can derive the cost of exe-
cuting the ten GEMM operations as the maximum of the
compute time for one multiply and one accumulate opera-
tion per element and the times to read matrices A and B
and write-allocate and write C from/to memory:

T2 ¼ 10maxð2NUN
2
q =10fC;NqðNq þ 3NU=10Þ=wCÞ

¼ maxð2NUN
2
q =fC; Nqð10Nq þ 3NUÞ=wCÞ;

(5)

where fC is the effective number of floating-point opera-
tions per second (FLOPS) when executing the GEMM.

We validated our performance model by comparing pre-
dicted performance against real performance measured on an
Intel Core i7-920 CPU running at 2GHzwith a peak flop-rate of
8GFLOPS and single-core maximum measured bandwidth of
6.4GB/s (theoretical peak is 12GB/s). We run experiments ten
times and measure average performance. The observed varia-
tion across runs is less than�0:5%. Table 3 shows the compari-
son ofmeasured execution times versus performance predicted
by themodel. Results generally confirm that themodel captures
runtime trends accurately. Output permutation runtimes show
variations with q that are not tracked by our model. This is due
to memory transfers becoming more irregular and hence more
bandwidth-inefficient depending on q. We measured a band-
width of 0.13GB/s for randomized transfers on the Intel
machine and account for this by applying a reduced average
CPUbandwidth of 0.32GB/s in our output permutationmodel.

5 ARCHITECTURE MODEL

Based on their granularity of coupling, hardware accelera-
tors can be fundamentally classified as tightly coupled or
loosely coupled [8]. Tightly coupled accelerators are attached
to the main processor pipeline as one or more specialized
functional units (FUs) located inside or very close to the

TABLE 1
Application Model Parameters

Symbol Description

q Chebyshev degree
Nq ðq þ 1Þðq þ 2Þðq þ 3Þ=6
Noct Number of leaf nodes
NU Total number of U-list interactions
fC/ fL CPU/LAP FLOP-rate
wC/ wL CPU/LAP memory bandwidth

TABLE 2
Application Parameters as a Function of q

GEMM sizes

q Nq Noct NU m k n

4 35 6917 164913 35 35 16491
6 84 2885 68769 84 84 6877
8 165 1450 34172 165 165 3417
10 286 869 20129 286 286 2013
14 680 358 8336 680 680 834
18 1330 183 4309 1330 1330 431

2040 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 07,2022 at 23:03:14 UTC from IEEE Xplore.  Restrictions apply. 



main processor core. They typically realize fine-grain, short-
latency computations, such as floating-point, vector or
SIMD operations. As such, they generally share key resour-
ces with the processor core (e.g., register file, MMU and L1
data cache) while in some cases possessing their own addi-
tional internal storage. Similar to co-processors, tightly cou-
pled accelerators require special instruction set architecture
(ISA) extensions to manage their operation.

By contrast, loosely coupled accelerators are located out-
side of the main processor core and connected via cache,
memory or I/O buses, or over on- or off-chip interconnect.
Loosely coupled accelerators are often also called coarse-
grained, due to the fact that they typically operate on coarser
invocations of complete tasks, kernels or even an entire appli-
cation. They typically operate asynchronously, where trigger-
ing of their operation and synchronization of completion and
results is achieved through memory-mapped I/O, polling or
interrupt mechanisms. Proper communication and synchro-
nization with such accelerators is accomplished through
device drivers for handling of interrupts, cache flushes and/
or memory copies. GPUs and network/cryptography pro-
cessors [4], [35] are examples that belong to this class.

In this work, we focus on integration tradeoffs of loosely
coupled custom ASIC accelerators. We use the LAP [41] as
an example for coarse-grain custom hardware acceleration
of GEMM operations in the FMM U-list. We study different
LAP coupling scenarios and their implications and system
tradeoffs. Specifically, we investigate two different cases
(Fig. 5): (1) the accelerator is externally coupled as an off-
chip device sharing DRAM with the host CPU, and (2) the
accelerator is located on the same chip as the host CPU

sharing the last level cache (LLC). In this study, we assume
a modern, high-end x86 CPU with a typical aggressive
wide-issue and out-of-order processor micro-architecture.

5.1 External Off-Chip Coupling at Shared
DRAM Level

In this scenario (Fig. 5a), the LAP is connected to the external,
off-chip system bus. The LAP accesses all its necessary input
and output data in the DRAM through the system bus and a
DMA controller. To avoid coherency protocol overhead, we
assume that LAP and CPU are non-coherent. Instead, as
shown in Fig. 5a, before the LAP attempts to read inputs from
the memory, if there exists any dirty data in the host CPU
caches, the software has to explicitly manage coherency and
tell the CPU to evict relevant data from its caches to DRAM.
For example, this can be done via the “clflush” instruction in
the x86 ISA. Once data is synchronized and the LAP has been
triggered, it will operate directly on data in DRAM. The LAP
will issue memory requests to DRAM, subject to DRAM
latency. The LAP will prefetch data and overlap computation
and communication through its internal scratchpad memory.
At the end of one invocation, the LAPwill have stored all out-
put data back to DRAM, fromwhere it can be accessed by the
CPU. Before accessing the LAP results, the CPU driver will
ensure that all previously cached copies are invalidated.

In a PIM setting, the accelerator would be coupled and inte-
grated directly in or near DRAM. Themain benefit is increased
bandwidth for DRAM accesses by the accelerator. However,
GEMMon the LAP is compute-bound and not bandwidth-lim-
ited, i.e., we would not expect to see any performance benefits
from such in-memory integration. As such, we exclude this as
a separate case in our studies. From an energy perspective, our
simulation models currently do not explicitly account for off-
chip interconnect energy. This underestimates energy costs for
DRAMaccesses. At the same time, in a PIM case, off-chip inter-
connect overhead would only be incurred for DRAM accesses
by the CPU, which would in turn again be closer to our
reported results. In literature, dynamic energy costs of 20pJ/bit
are reported for off-chip DRAM interfaces in current 40nm
technology [28] on top off around 60pJ/bit for actual DRAM
accesses including all dynamic read/write and activation
energy as modeled in our setup. In addition, both interconnect

TABLE 3
CPU Performance Model Validation

Model [MCycles] Real [MCycles]

q T1 T2 T3 T1 T2 T3

4 29 101 38 27 158 26
6 29 242 31 26 303 33
8 28 465 33 26 533 34
10 29 823 35 26 916 35
14 28 1928 34 25 2064 34

Fig. 5. Accelerator coupling at different levels of the memory hierarchy.

ASRI ETAL.: HARDWARE ACCELERATOR INTEGRATION TRADEOFFS FOR HIGH-PERFORMANCE COMPUTING: A CASE STUDYOF GEMM... 2041

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 07,2022 at 23:03:14 UTC from IEEE Xplore.  Restrictions apply. 



and DRAM incur similar proportions of static versus dynamic
power [25]. Our reported DRAM energy results can thus be
scaled accordingly to account for additional interconnect costs
in either PIMor non-PIM scenarios.

5.2 Internal On-Chip Coupling at Shared
Cache Level

To avoid communication via external DRAM accesses, we
couple the LAP at the LLC by connecting it to the internal bus
network between L2 and LLC—in the same way as other
cores are interconnected in multicore systems. As shown in
Fig. 5b, the LAP shares the LLCwith other cores. It will access
all data through the LLC. Since the LAP itself explicitly man-
ages all memory and internal scratchpad accesses, we want to
avoid the overhead of it having to participate in the L2 coher-
ency protocol. Instead, the LAP expects necessary data to be
in LLC or DRAM when it starts computing. However, since
data might be cached in the CPU’s L1 or L2, the CPU now has
to explicitly evict data to the LLC. In our setup, caches are
non-inclusive and write-back. The clflush instruction by
default evicts the targeted block all the way to DRAM. If the
block exists in the LLC, it will be invalidated and further
evicted. In our scenario, we wish to manage the eviction and
keep or store the block in the LLC by not invalidating and
potentially updating an already existing, or by allocating a
newLLC cache line that potentially replaces and evicts others.
There are two plausible options to support this: (1) adding a
special instruction in the ISA that handles eviction only to the
LLC, or (2) setting a configurable register in the LLC controller
to identify if a block should be invalidated or kept/stored
when software eviction happens. We opted for the latter
implementation due to its simplicity and transparent change
from the software perspective.

Fig. 5b shows the data movements for this case. The CPU
evicts necessary data to the LLC. Afterwards, the LAP
accesses the LLC to get its data to operate on. If the LAP
experiences an LLC miss, the request is forwarded and ser-
viced by the main memory controller. Similarly, the LAP
writes results back to the LLC, which, in case of capacity
misses, can lead to previous results being evicted to DRAM.

A closer integration with potentially lower distance and
latency would be to couple the accelerator to the CPU at the
level of L1 or L2 caches and buses. While we considered this
option, it is less appropriate for loosely coupled coarse-grain
accelerators. Such accelerators usually afford a greater area
budget than tightly coupled ones. This allows them to operate
with complex data paths and internal memory for accelera-
tion of complete tasks or kernels. Coupling a greater area bud-
get close to themain CPUwould pose challenges in achieving
timing closure and meeting tight clock frequency constraints
set for latency-sensitive L1 and L2 caches. Moreover, buses
and interconnect of private L1 and L2 caches are usually not
designed to support multiple connected cores. Furthermore,
when task-level accelerators are allowed to access and share a
private L1 or L2, the capacity pressure of the relatively small
caches increases. Hence, potential performance degradation
resulting from cache pollution and cache trashing can negate
acceleration benefits, especiallywhen executing onCPU cores
and accelerators concurrently. A number of recent works
have proposed acceleration engines placed in between L1 and
L2 [2]. However, for reasons outlined above, such approaches

do not target task/kernel level invocations, but are restricted
to acceleration at finer instruction-level granularity.

5.3 Performance Model

In the following, we extend our performance model from Sec-
tion 4.2 to incorporate different on-/off-chip accelerator cou-
pling scenarios. We assume that once the CPU is done with
pre-processing, the GEMM is offloaded to the accelerator
without any furthermodifications. However, asmentioned in
Section 4.2, since the total data exchanged by the CPU and the
accelerator during one GEMM invocation can reach more
than 3x the total capacity of the 8MB LLC, shared data will be
spillled and predominantly exchanged through DRAM in
both on- and off-chip coupling scenarios. In other words, a
large fraction of data is exchanged through the DRAM in
either case, i.e., evenwhen the LAP is coupled to the LLC.

We can thus derive an upper bound on performance assum-
ing that pre- and post-processing times T1 and T2 remainmem-
ory-bound and are not impacted by acceleration or different
accelerator coupling scenarios. In contrast to the CPU perfor-
mance model from Section 4.2, however, we can express the
processing time of the GEMMkernel on the LAP as follows. As
mentioned before, the LAP performs internal blocking to com-
puteC ¼ AB in r sub-blockswith dimensionsmc � nc:

r ¼ dn=nce � dm=mce; (6)

To compute each sub-block, the LAP needs to read the sub-
block ofCwith sizemc � nc aswell asmc � k and k� nc sized
panels of A and B into its local memory, perform the GEMM
and then write the sub-block of C back. Again assuming that
memory accesses and computations are perfectly overlapped,
we can derive the cost of computing all r sub-blocks for each
of the ten GEMMs on the LAP as the maximum of compute
time and the time to read/write data from/tomemory:

T2 ¼ 10maxð2mkn=fL; rð2mcnc þmckþ kncÞ=wLÞ
¼ maxð2NUN

2
q =fL; 10rð2mcnc þNqðmc þ ncÞÞ=wLÞ;

(7)

where block sizes for a LAP with 2MB of local memory are
determined to fit all data as mc ¼ minðmaxðm; 64Þ; 256Þ and
nc ¼ minðmaxðn; 64Þ; 256Þ.

6 HW/SW CO-OPTIMIZATION

In this section, we discuss HW/SW co-optimization oppor-
tunities to exploit coupling options and optimally take
advantage of the underlying system architecture.

6.1 Cache-Aware Blocking

In order to minimize data movement and unnecessary
round-trip transfers to DRAM with LLC coupling, all data
should ideally be exchanged between CPU and the accelera-
tor exclusively through the LLC. As Fig. 4 shows, in the U-
list, CPU and LAP communicate by exchanging matrices B
and C during GEMM calls. Since the LAP operates on both
matrices simultaneously in a streaming fashion, ideally
both matrix B and matrix C should remain resident in the
LLC for the duration of such calls. To achieve this, we mod-
ify the U-list such that the program operates on smaller,

2042 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 07,2022 at 23:03:14 UTC from IEEE Xplore.  Restrictions apply. 



blocked versions of matrix B and C whose total size is equal
or smaller than the LLC capacity.

6.2 Prefetching, Pipelining and Overlapping

When GEMM operations are executing on the LAP, the CPU
is generally idling until the LAP signals completion and the
output permutation can resume by processing the C result.
However, we can note that auxiliary M.scale and M.perm
metadata needed by output permutations is independent of
GEMM execution and can thus be prefetched ahead. We
modify the code flow to accommodate this optimization,
such that the CPU prefetches the required metadata for out-
put permutation while the LAP is performing the GEMM.

Moreover, with blocking of matrices into tasks with
smaller granularity, we can apply software pipelining to
exploit additional overlapping and parallelism between
accelerator and CPU. As shown in Fig. 6, with input permu-
tation, GEMM, and output permutation tasks denoted as in
(i), gemm(i), and out(i), respectively, where i represents the
iteration phase of the blocking, while the LAP is operating
on one iteration of the GEMM, the CPU simultaneously per-
forms output and input permutations for the portions of B
and C from the previous and next iterations, respectively.

Initially when i=0, the CPU starts executing the first block
of the input computation, in(0). The first block of the input
computation will produce a number of column vectors of
matrix B, encapsulated by the green rectangle on the top
part of Fig. 6. Afterwards, when the input permutation enter
stage in(1), the LAP executes gemm(0) which takes the input
produced by the CPU at in(0). Then on the next stage, the
result of the GEMM computation will be ready to be used
by the out(0). Moreover, on this stage, the LAP is simulta-
neously ready to execute the next iteration gemm(1).

6.3 Performance Model

We discuss how our performance model can be further
extended to account for blocking and pipelining optimiza-
tions. Execution is blocked into b smaller sub-problems of
size m� k� n ¼ Nq �Nq �NU=b, such that blocks of matri-
ces B and C are exchanged between CPU and LAP through
the LLC without the need to go to DRAM:

T ¼ b ðT1 þ T2 þ T3Þ; (8)

where pre-processing incurs costs for read-allocating relevant
leaf node data while flushing dirty lines being replaced back to
DRAM, the GEMM is predominantly cache-contained, and
post-processing incurs costs for read-alllocating leaf node data
into the cache. The size of leaf node data accessed per block is
thereby upper-bounded by the block dimensionn ¼ NU=b:

T1 ¼ 2minðNoct;NU=bÞNq=wC (9)

T2 ¼ 2NUN
2
q =bfL (10)

T3 ¼ minðNoct; NU=bÞNq=wC: (11)

These b iterations are then further pipelined, where input and
output permutation on the CPU are overlapped with the
GEMMon the LAP. Assuming perfect overlapping between all
memory transfers and computations, and ignoring filling and
flushing of the pipeline, the pipelined execution time becomes:

T ¼ b maxð2NUN
2
q =bfL; 3minðNoct;NU=bÞNq=wCÞ: (12)

7 MODEL-BASED EXPLORATION

In this section, we use analytical performance models pre-
sented in previous sections to discuss algorithm/architec-
ture exploration on various scenarios. We demonstrate
different design points with respect to varying parameters
such as Chebyshev degree, FLOPS, bandwidth and different
HW/SW co-optimizations and coupling scenarios.

Fig. 7a plots projected FMM runtime in total system cycles
(CPU cycles at 2GHz) for varying q across different fL with off-
chip coupling following Equations (2), (3), (4) and Equation (7).
We explore both a traditional DRAM coupling of the LAP
(using peakDRAMbandwidth ofwL ¼ 12:8GB/s) as well as a
near-memory scenario with 10x more LAP bandwidth
(wL ¼ 128GB/s). In general, runtime improves with fL for
both options until the GEMM on the LAP becomes memory-
bound. For large q, runtime is dominated by the GEMM ker-
nels and significant speedups can be achieved by acceleration.

Fig. 6. Software blocking, pipelining and overlapping.

Fig. 7. Design space explorations with different optimizations and LAP coupling scenarios.

ASRI ETAL.: HARDWARE ACCELERATOR INTEGRATION TRADEOFFS FOR HIGH-PERFORMANCE COMPUTING: A CASE STUDYOF GEMM... 2043

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 07,2022 at 23:03:14 UTC from IEEE Xplore.  Restrictions apply. 



For q < 8, the GEMMs become smaller and arememory-dom-
inated already at lower LAP FLOPS. A near-memory integra-
tion can provide additional performance, but gains are limited
by a strict performance floor set by pre- and post-processing
runtimes on the CPU. In memory-bound cases, near-memory
integration can improve runtime byup to 20 percent for q ¼ 14.

Figs. 7b and 7c show FMM runtime for on-chip coupling
with blocking and pipeling optimizations (Equations (8) and
(12)) , respectively. Comparing Figs. 7a and 7b, we can
observe that blocking optimizations alone rarely improve
baseline performance. Since matrices need to be brought into
the cache at least once, pre- and post-processing benefit from
blocking optimizations only in a limited manner, while the
GEMM is largely compute-dominated. By contrast, pipelin-
ing optimizations (Fig. 7c) can further improve performance.
With a properly balanced pipeline, the GEMMs are hidden
and a constant execution time as determined by the sum of
pre- and post-processing times is achieved irrespective of q
or fL. For q ¼ 14 and low fL, a pipeline imbalance leads to
runtime being dominated byGEMMs again.

8 SIMULATION-BASED EVALUATION

In this section, we present our evaluation methodology and
comprehensive results across different acceleration options.
As discussed before, we adopt FMMU-list as a representative
application exhibiting heterogeneous data exchanges bet-
ween host CPU and an accelerator.

We use a cycle-accurate MARSSx86 [5] full-system
simulator for architecture evaluation. The simulator itself has
been calibrated to model a highly representative x86 CPU
baseline targeting HPC applications. We specifically config-
ured and calibrated the simulator to match an Intel Core i7-
920 CPU. As an example of a hardware accelerator,
the simulator from [5] integrates a cycle-accurate model of
the LAP. We feed statistics obtained from MARSSx86 into
McPAT [33] to model the total CPU energy. Finally, we attach
DRAMSim2 [43] to model an accurate DRAM delay and
energy. We measured a single-core maximum bandwidth of
3GB/s in the simulator and use that for performance models.
Table 4 shows the detailed system configuration.

We run FMM using the simulator across different qs. We
fast-forward execution in native emulation and only simu-
late the U-list using the cycle-accurate system model. Since
execution statistics from the simulator are deterministic, we
only use a single run for every q scenario.

8.1 DRAM Accesses

We first evaluate impact of integration options on DRAM
overhead, which is the main optimization goal affected by
different accelerator couplings. Fig. 8 shows the total number
of DRAM accesses in the U-list under different HW/SW cou-
pling options across varying q. We compare the original U-
list with basic acceleration of GEMM calls (Orig) to a U-list
with prefetching (Orig + Pref), with cache-aware blocking
(Blocking), with blocking and prefetching (Blocking + Pref),
and with blocking and software pipelining (Pipelining) for
bothDRAMandLLC coupled LAP accelerators. As expected,
when the accelerator is coupled as an external device requir-
ing data to be always exchanged via DRAM, none of the soft-
ware optimizations significantly affect DRAM accesses.

DRAM accesses are slightly increased with blocking due to
reduced cache and scratchpad localitywith smallermatrices.

By contrast, when the accelerator is coupled at the LLC, a
cache-aware blocking approach reduces the number of DRAM
accesses by 50percent. The blocking case is optimized to ensure
that all data exchanged between CPU and accelerator fits into
the LLC, avoiding DRAM round trips for CPU-LAP communi-
cation. However, blocking benefits decrease with higher q. In
the q ¼ 14 case, due to algorithmic limitation, the smallest
chunk that matrices B and C can be partitioned into already
exceeds LLC capacity. Hence, significant capacity misses are
unavoidable and result in additional DRAMaccesses.

Prefetching does not generally affect DRAM access counts,
but in the blocked case (Blocking + Pref), a minor decrease is
observed. This is due to the Least-Recently Used (LRU) cache
replacement policy. With prefetching, data already in the LLC
is marked as used, which reduces the likelihood of it being
evicted before being needed next as compared to other, less
recently used lines. However, adding prefetching to a non-
blocking approach instead increases the number of DRAM
accesses (Orig + Prefetch). Due to the large number of capacity
conflicts in the non-blocking case, prefetched data is likely be
evicted again from the cache before it can even be used.

8.2 Execution Time

Fig. 9 shows total system cycles for U-list execution under
different optimization and coupling options across varying
q. Total execution time is broken down into cycles spent on
different parts, including Overlap periods in which the
GEMM on the LAP runs in parallel with either prefetching
or input and output permutations on the CPU. Note that
Pref refers to extra cycles spent on prefetching when it can
not be completely hidden behind a shorter GEMM.

Among HW/SW optimizations, due to additional over-
heads, performance is slightly decreased with blocking alone.
Prefetching can in turn be applied to compensate such over-
heads. The best improvement is observed from pipelining and
overlapping (Pipelining). At lower q, execution times are domi-
nated by permutations and there are only small gains from
overlapping themon the CPUwith the GEMMon the LAP. As

TABLE 4
System Configuration

Parameter Core Model

Clock frequency 2GHz
Fetch Width 4
Dispatch Width 4
Issue Width 5
Commit Width 4
Writeback Width 4
Cache Block Size 64B
L1-I Cache 32kB, 8-way
L1-D Cache 32kB, 8-way
L2 Cache 256kB, 8-way
LLC 8MB, 16-way
LAP
FLOPS rate 40GFLOPS
Local Memory 2MB
DRAM
DDR Type DDR3-1600
Specification Micron MT41J256M4

2044 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 07,2022 at 23:03:14 UTC from IEEE Xplore.  Restrictions apply. 



q grows, first input and then output permutations are hidden
behind the increasingly dominating GEMM (except for non-
overlapped invocations needed to fill and flush the software
pipeline). At q ¼ 10, both permutations are maximally over-
lapped and balancedwith the GEMM. This yields a 37 percent
better performance compared to the non-optimized solution
(Orig). However, these speedups almost exclusively stem from
exploiting available parallelism between accelerator and CPU,
i.e., they are not a function of data movement optimizations
and, ultimately, do not vary significantly across different accel-
erator couplings. Although the number of DRAM accesses in
Fig. 9 strongly depends on accelerator coupling and is signifi-
cantly reducedwith LLC blocking, the impact on performance
is generally relatively minor, with a maximal gain of up to 20
percent comparing LLC to DRAM coupling. As discussed in
Section 7, the GEMM is normally compute-bound and input/
output permutation do not benefit significantly from blocking.

Closer observation shows that input permutations
consumemore execution cycles in LAP-DRAM than LAP-LLC
due to flushing overhead to off-chip DRAM. In case of the
GEMM, as it becomes smaller and thinner with smaller q, the
computation to memory ratio and data locality in the LAP
decrease, making it more memory bound. With ample paral-
lelism, the LAP executing is not latency sensitive, but cou-
pling it to the LLC with higher bandwidth benefits
performance resulting in 10 percent faster GEMM execution
in LLC versus DRAM coupling at q ¼ 4 (higher DRAM band-
width, e.g., through in-memory LAP placement could

potentially alleviate such differences). However, at bigger q,
GEMM executions differ by less than 2 percent. Finally,
output permutations are largely unaffected by coupling.
However, due to increased overhead and cache pressure, per-
formance actually decreases with LLC coupling and blocking
at larger q. Coupled with previously discussed blocking limi-
tations, thismakes LLCworse thanDRAMcoupling at q ¼ 14.

8.3 Energy

We further evaluate potential energy benefits of different
architecture and algorithm options. We first focus on DRAM
energy savings as the primary aspect that is affected by data
movement and accelerator placement/coupling optimiza-
tions. Fig. 10 shows the DRAM energy breakdown across dif-
ferent coupling options and varying q. We break energy
consumption down into static background energy due to leak-
age, energy spent on periodic refresh, and dynamic energy
consumption dependent on activation and read/write activ-
ity. As can be observed, static background and periodic
refresh energy is the most contributing factor. Such idle base-
line power contributes from 60 percent up to 80 percent of
total energy consumption. As such, while dynamic energy
reduces by 50-60 percent proportionally to the reduced num-
ber of DRAM accesses shown in Fig. 8 with blocking and LLC
coupling, total energy improvements are limited due to small
share of dynamic energy.

At the full system level (Fig. 11), this translate into even
smaller savings. The graph shows the total system energy

Fig. 8. DRAM accesses with different integration options across varying q.

Fig. 9. Execution cycles with different integration options across varying q.

ASRI ETAL.: HARDWARE ACCELERATOR INTEGRATION TRADEOFFS FOR HIGH-PERFORMANCE COMPUTING: A CASE STUDYOF GEMM... 2045

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 07,2022 at 23:03:14 UTC from IEEE Xplore.  Restrictions apply. 



broken down by contributions from individual system com-
ponents. As can be seen, the CPU consumes the largest por-
tion of energy spent, followed by the DRAM and the LAP
with a comparably tiny fraction. Due to additional base over-
heads and relatively constant energy contributions by the
CPU and the LAP, savings in dynamic DRAM energy across
different integration options and data movement optimiza-
tions have limited effect on total energy. Variations in energy
consumption are predominantly due to differences in static
idle and leakage power accumulated over different total exe-
cution times. This is the case both at the DRAM and full sys-
tem levels, where the CPU is also the dominant contributor of
static leakage power (while its dynamic energy varies little
given the same workload). In other words, energy savings
are primarily driven by improvements in performance.

Through a combination of dynamic DRAM energy
and execution time, i.e., static idle power savings, when cou-
pling the LAP at LLC and applying aggressive software
pipelining and overlapping optimizations, reductions in
DRAM data movement between the LAP and CPU reduce
the total system energy byup to 17 percent compared to cou-
pling at the DRAM level. All in all, primarily driven by exe-
cution time savings, pipelining and overlapping yields up to
43 percent lower energy consumption compared to the origi-
nal solution, but is, again, largely independent of the archi-
tecture coupling.

8.4 Performance Model Validation

Table 5 shows a validation of our performance model
against simulation results. The performance model tracks
simulation results accurately across different q and opti-
mization scenarios with less than 3 percent average error
per model. Our pipelined model overestimates perfor-
mance for q ¼ 14. As mentioned before, the smallest
chunk that matrices can be partitioned into in practice
already exceeds LLC capacity for q ¼ 14. This leads to
performance losses when all memory transfers are over-
lapped in pipelined execution, which are not captured in
our idealized model.

Fig. 10. DRAM energy with different integration options across varying q.

Fig. 11. Total energy with different integration options across varying q.

TABLE 5
Performance Model Validation

LAP-DRAM
Orig

[MCycles]

LAP-LLC
Block

[MCycles]

LAP-LLC
Pipeline
[MCycles]

q Model Sim Model Sim Model Sim

4 183 190 177 176 148 150
6 193 195 188 189 150 150
8 235 220 240 223 151 152
10 311 288 317 297 190 188
14 529 502 524 522 388 448

2046 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 07,2022 at 23:03:14 UTC from IEEE Xplore.  Restrictions apply. 



9 SUMMARY AND CONCLUSIONS

In this paper, we study system-level performance and energy
saving benefits of hardware acceleration under different place-
ment scenarios and software optimizations for a state-of-the-
art Fast MultipoleMethod (FMM).We investigated accelerator
coupling options at the architecture level and proposed several
algorithm co-optimizations to maximize acceleration benefits.
We showed that, in the context of a complex real-world appli-
cation, simply placing an accelerator closer to the chip does not
always lead to significant performance/energywins. We dem-
onstrated that an on-chip integration alonewithout supporting
software optimizations can only provide limited gains. Only
when more aggressive software/hardware co-optimizations
are applied, additional gains can be unlocked.Moreover, when
similar optimizations are employed in off-chip integration, on-
chip integration presents up to 20 percent better performance
with 17 percent less total energy consumption. In general, on-
chip integration offers more performance opportunities when
careful and aggressive co-optimizations are applied. Unlatch-
ing this, however, requires closer involvement and collabora-
tion between both architects and programmers.

Such a study of ASIC acceleration and integration trade-
offs in the context of real, complex and well-optimized HPC
applications has not been presented before. While absolute
performance and energy results are specific to our targeted
FMM application, U-list phase, x86 architecture and GEMM
accelerator, we focus on analysis of relative tradeoffs, where
these can be considered representative of typical HPC appli-
cation and architecture patterns. In future work, we plan to
extend such analyses to other application, architecture and
acceleration options.

ACKNOWLEDGMENTS

This work was supported by NSF awards CCF-1817048,
CCF-1725743 and CCF-1337393, DOE awards DE-SC0019393
and DE-NA0003969, AFOSR award FA9550-17-1-0190, and
computational resources from the Texas Advanced Comput-
ing Center (TACC).

REFERENCES

[1] AMD Fusion, [Online]. Available: http://sites.amd.com/us/
fusion/apu/Pages/fus ion.aspx

[2] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw,
and R. Das, “Compute caches,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit., 2017, pp. 481–492.

[3] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable process-
ing-in-memory accelerator for parallel graph processing,” in Proc.
ACM/IEEE 42ndAnnu. Int. Symp. Comput. Archit., 2015, pp. 105–117.

[4] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov,
“Cryptographic processors: A survey,” Proc. IEEE, vol. 94, no. 2,
pp. 357–369, Jan. 2006.

[5] M. Asri, A. Pedram, L. K. John, and A. Gerstlauer, “Simulator cali-
bration for accelerator-rich architecture studies,” in Proc. Int. Conf.
Embedded Comput. Syst.: Archit. Model. Simul., 2016, pp. 88–95.

[6] J. Board and K. Schulten, “The fast multipole algorithm,” Comput.
Sci. Eng., vol. 2, no. 1, pp. 76–79, Feb. 2000.

[7] C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est: Scalable algo-
rithms for parallel adaptive mesh refinement on forests of
octrees,” SIAM J. Sci. Comput., vol. 33, no. 3, pp. 1103–1133, 2011.

[8] C. Cascaval et al., “A taxonomy of accelerator architectures and
their programming models,” IBM J. Res. Develop., vol. 54, no. 5,
pp. 5:1–5:10, Sep. 2010.

[9] Y. Chai, W. Shen, W. Xu, and Y. Zheng, “Computing acceleration
of FMM algorithm on the basis of FPGA and GPU,” Advanced
Materials Res., vol. 291-294, pp. 3272–3277, 2011.

[10] A. Chandramowlishwaran, K. Madduri, and R. Vuduc,
“Diagnosis, tuning, and redesign for multicore performance:
A case study of the fast multipole method,” in Proc. ACM/IEEE
Int. Conf. High Perform. Comput. Netw. Storage Anal., 2010, pp. 1–12.

[11] T. Chen et al., “DianNao: A small-footprint high-throughput acceler-
ator for ubiquitous machine learning,” in Proc. 19th Int. Conf. Archi-
tect. Support Program. Languages operating Syst., 2014, pp. 269–284.

[12] Y.-H. Chen et al., “Eyeriss: An Energy-efficient reconfigurable
accelerator for deep convolutional neural networks,” in Proc. Int.
Solid-State Circuits Conf., 2016, pp. 262–263.

[13] H. Cheng, J. Huang, and T. J. Leiterman, “An adaptive fast solver
for the modified helmholtz equation in two dimensions,” J. Com-
put. Phys., vol. 211, no. 2, pp. 616–637, Jan. 2006.

[14] J. Choi and R. W. Vuduc, “Analyzing the energy efficiency of the
fast multipole method using a DVFS-aware energy model,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops, 2016,
pp. 79–88.

[15] E. G. Cota et al., “Exploiting private local memories to reduce the
opportunity cost of accelerator integration,” in Proc. Int. Conf.
Supercomputing, 2016, Art. no. 27.

[16] V. Dang, Q. Nguyen, and O. Kilic, “Fast multipole method for
large-scale electromagnetic scattering problems on GPU cluster
and FPGA-accelerated platforms,” Appl. Comput. Electromagn. Soc.
J., vol. 28, pp. 1187–1198, 2013.

[17] J. Dongarra and F. Sullivan, “The top 10 algorithms,” Comput. Sci.
Eng., vol. 2, no. 1, pp. 22–79, Feb. 2000.

[18] H. Esmaeilzadeh et al., “Dark silicon and the endofmulticore scaling,”
inProc. 38th Annu. Int. Symp. Comput. Archit., 2011, pp. 365–376.

[19] F. Ethridge and L. Greengard, “A new fast-multipole accelerated
poisson solver in two dimensions,” SIAM J. Sci. Comput., vol. 23,
no. 3, pp. 741–760, Jan. 2001.

[20] A. Gray and A. Moore, “N-body problems in statistical learning,”
in Proc. Advances Neural Inf. Process. Syst., 2001, pp. 521–527.

[21] L. Greengard and J.-Y. Lee, “A direct adaptive poisson solver
of arbitrary order accuracy,” J. Comput. Phys., vol. 125, no. 2,
pp. 415–424, May 1996.

[22] L. Greengard and V. Rokhlin, “A fast algorithm for particle simu-
lations,” J. Comput. Phys., vol. 73, no. 2, pp. 325–348, Dec. 1987.

[23] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi,
“Graphicionado: A high-performance and energy-efficient accel-
erator for graph analytics,” in Proc. 49th Annu. IEEE/ACM Int.
Symp. Microarchitecture, 2016, pp. 1–13.

[24] T. Huang, Y. Zhu, Y. Ha, X. Wang, andM. Qiu, “A hardware pipe-
line with high energy and resource efficiency for FMM acceler-
ation,” ACM Trans. Embedded. Comput. Syst., vol. 17, no. 2, Jan.
2018, Art. no. 51.

[25] X. Jian, P. K. Hanumolu, and R. Kumar, “Understanding
and optimizing power consumption in memory networks,” in
Proc. IEEE Int. Symp. High Perform. Comput. Archit., 2017,
pp. 229–240.

[26] X. Jiang et al., “Architecture support for improving bulk memory
copying and initialization performance,” in Proc. 18th Int. Conf.
Parallel Archit. Compilation Techn., 2009, pp. 169–180.

[27] N. P. Jouppi, Y. Solihin, L. Zhao, and R. Iyer, “In-datacenter per-
formance analysis of a tensor processing unit,” in Proc. ACM/IEEE
44th Annu. Int. Symp. Comput. Archit., 2017, pp. 1–12.

[28] S. W. KecklerW. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing,” IEEE Micro, vol. 31,
no. 5, pp. 7–17, Sep./Oct. 2011.

[29] A. Krishna et al., “Hardware acceleration in the IBM PowerEN
processor: architecture and performance,” in Proc. 21st Int. Conf.
Parallel Archit. Compilation Techn., 2012, pp. 389–400.

[30] H. Langston, L. Greengard, and D. Zorin, “A free-space adaptive
FMM-based PDE solver in three dimensions,” Commun. Appl.
Math. Comput. Sci., vol. 6, no. 1, pp. 79–122, Aug. 2011.

[31] D. Lee et al., “A distributed kernel summation framework for gen-
eral-dimension machine learning,” Statist. Anal. Data Mining,
vol. 7, pp. 1–13, 2013.

[32] J. Lee and H. Kim, “TAP: A TLP-Aware cache management policy
for a CPU-GPU heterogenous architecture,” in Proc. IEEE Int.
Symp. High-Perform. Comp Archit., 2012, pp. 1–12.

[33] S. Li et al., “McPAT: An integrated power, area, and timing model-
ing framework for multicore andmanycore architectures,” in Proc.
42nd Annu. IEEE/ACM Int. Symp. Microarchit., 2009, pp. 469–480.

[34] G. H. Loh et al., “A processing-in-memory taxonomy and a case for
studying fixed-function PIM,” in Proc. 3rd Workshop Near-Data Pro-
cess., 2013. [Online]. Available: https://www.cs.utah.edu/wondp/

ASRI ETAL.: HARDWARE ACCELERATOR INTEGRATION TRADEOFFS FOR HIGH-PERFORMANCE COMPUTING: A CASE STUDYOF GEMM... 2047

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 07,2022 at 23:03:14 UTC from IEEE Xplore.  Restrictions apply. 

http://sites.amd.com/us/fusion/apu/Pages/fus ion.aspx
http://sites.amd.com/us/fusion/apu/Pages/fus ion.aspx
https://www.cs.utah.edu/wondp/


[35] M. H. Luke Durant, O. Giroux, “Inside volta: The world’s most
advanced data center GPU,” in Proc. Parallel Forall: NVIDIA Devel-
oper Blog, 2017. [Online]. Available: https://developer.nvidia.com/
blog/inside-volta/

[36] J. Makino and H. Daisaka, “GRAPE-8–an accelerator for gravita-
tional N-body simulation with 20.5 Gflops/W performance,” in
Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2012,
Art. no. 104.

[37] D. Malhotra and G. Biros, “PVFMM: A parallel kernel indepen-
dent FMM for particle and volume potentials,” Commun. Comput.
Phys., vol. 18, no. 3, pp. 808–830, Sep. 2015.

[38] D. Malhotra and G. Biros, “Algorithm 967: A distributed-memory
fast multipole method for volume potentials,” ACM Trans. Math.
Softw., vol. 43, no. 2, pp. 17:1–17:27, 2016.

[39] S. Mittal and J. S. Vetter, “A survey of CPU-GPU heterogeneous
computing techniques,” ACM Comput. Surv., vol. 47, no. 4, 2015,
Art. no. 69.

[40] T. Narumi et al., “Fast calculation of electrostatic potentials on
the GPU or the asic MD-grape-3,” Comput. J., vol. 54, no. 7,
pp. 1181–1187, 2010.

[41] A. Pedram, A. Gerstlauer, and R. van de Geijn, “Codesign tradeoffs
for high-performance, low-power linear algebra architectures,”
IEEE Trans. Comput., vol. 61, no. 12, pp. 1724–1736, Dec. 2012.

[42] W. Qadeer et al., “Convolution engine: Balancing efficiency and
flexibility in specialized computing,” in Proc. 40th Annu. Int.
Symp. Comput. Archit., 2013, pp. 24–35.

[43] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE Comput. Archit. Lett.,
vol. 10, no. 1, pp. 16–19, Jan./Jun. 2011.

[44] Y. S. Shao et al., “Co-designing accelerators and SoC interfaces
using gem5-Aladdin,” in Proc. 49th Annu. IEEE/ACM Int. Symp.
Microarchit., 2016, pp. 1–12.

[45] D. E. Shaw et al., “Anton 2: Raising the bar for performance and
programmability in a special-purpose molecular dynamics super-
computer,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2014, pp. 41–53.

[46] E. Del Sozzo, L. Di Tucci, and M. D. Santambrogio, “A highly scal-
able and efficient parallel design of N-body simulation on FPGA,”
in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops, 2017,
pp. 241–246.

[47] G. Ventakesh et al., “Conservation cores: Reducing the energy of
mature computations,” in Proc. 15th Int. Conf. Architectural Support
Program. Languages Operating Syst., 2010, pp. 205–218.

[48] Y. Yang, P. Xiang, M. Mantor, and H. Zhou, “CPU-assisted
GPGPU on fused CPU-GPU architectures,” in Proc. IEEE Int.
Symp. High-Perform. Comput. Archit., 2012, pp. 1–12.

[49] R. Yokota, H. Ibeid, and D. Keyes, “Fast multipole method as a
matrix-free hierarchical low-rank approximation,” CoRR, vol.
abs/1602.02244, 2016.

[50] D. Zhang et al., “TOP-PIM: Throughput-oriented programmable
processing in memory,” in Proc. 23rd Int. Symp. High-Perform. Par-
allel Distrib. Comput., 2014, pp. 85–98.

[51] L. Zhao et al., “Hardware support for accelerating data movement
in server platform,” IEEE Trans. Comput., vol. 56, no. 6, pp. 740–
753, Jun. 2007.

[52] L. Zheng et al., “Heterogeneous reconfigurable design for TreePM
N-body simulation,” in Proc. 19th Int. Conf. Advanced Commun.
Technol., 2017, pp. 442–446.

[53] Z. Zheng et al., “Revealing feasibility of FMM on ASIC: Efficient
implementation of n-body problem on FPGA,” in Proc. IEEE Int.
Conf. Comput. Sci. Eng., 2010, pp. 132–139.

[54] Y. Zhu and V. J. Reddi, “Webcore: Architectural support for
mobile web browsing,” in Proc. ACM/IEEE 41st Int. Symp. Comput.
Archit., 2014, pp. 541–552.

Mochamad Asri received the PhDdegree in elec-
trical and computer engineering from the Univer-
sity of Texas at Austin, in 2020. He is currently a
research scientist with Facebook Reality Labs
(FRL), Menlo Park. His research interests include
heterogeneous system architectures, data move-
ment optimizations, out-of-order micro-architec-
ture, and high performance caching.

Dhairya Malhotra received the PhD degree in
computational science, engineering, and mathe-
matics from the University of Texas at Austin, in
2017. He is currently a research scientist with
the Flatiron Institute, New York. He was a post-
doctoral associate with the Courant Institute of
Mathematical Sciences from 2017 to 2020. His
research interests include high performance
computing, fast algorithms, numerical analysis
and integral equations.

Jiajun Wang received the PhD degree in the elec-
trical and computer engineering (ECE) Depart-
ment, University of Texas at Austin, in 2019. She is
currently a hardware engineer with Google. Her
research interests include high performance codes
evaluations and software hardware co-design to
explore alternative algorithm/hardware scenarios.

George Biros received the PhD degree in compu-
tational science and engineering from Carnegie
Mellon, 2000. He is theW. A. “Tex” Moncrief chair in
Simulation-Based Engineering Sciences with the
Oden Institute for Computational Engineering and
Sciences and has full professor appointments with
the Departments of Mechanical Engineering and
Computer Science (by courtesy), University of
Texas at Austin. He was a postdoctoral associate
with the Courant Institute of Mathematical Sciences
from 2000 to 2003. He was among a team of
researchers that won the IEEE/ACM SC03 and
SC10GordonBell Awards.

Lizy Kurian John (Fellow, IEEE) received the
PhD degree in computer engineering from the
Pennsylvania State University. She is the Cullen
Trust for Higher Education Endowed professor
with the Department of Electrical and Computer
Engineering, University of Texas at Austin. Her
research interests include the areas of computer
architecture, multicore processors, memory sys-
tems, performance evaluation and benchmarking,
workload characterization, and reconfigurable
computing. She is ACM fellow and a fellow of the
National Academy of Inventors (NAI).

Andreas Gerstlauer (Senior Member, IEEE)
received the PhD degree in information and com-
puter science from the University of California,
Irvine, in 2004, where he also was a researcher
before joining UTAustin, in 2008. He is currently a
professor of electrical and computer engineering
(ECE), at the University of Texas at Austin. His
research interests include system-level design,
system modeling, design methodologies, and
embedded hardware and software synthesis. His
work has received several best paper nominations

and best paper awards from, among others, DAC, DATE, and HOST. He
has been General and Program Chair for major conferences including
ESWEEK, and he currently serves as an associate editor for ACMTECS.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2048 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 07,2022 at 23:03:14 UTC from IEEE Xplore.  Restrictions apply. 

https://developer.nvidia.com/blog/inside-volta/
https://developer.nvidia.com/blog/inside-volta/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


