
V1.1

Ar
tif

acts
Available

Functional V

1.1

Ar
tif

act
s Evaluated

HLSFactory: A Framework Empowering High-Level Synthesis Datasets for
Machine Learning and Beyond

Stefan Abi-Karam1,2, Rishov Sarkar1, Allison Seigler3, Sean Lowe4, ZhigangWei3, Hanqiu Chen1,
Nanditha Rao5, Lizy John3, Aman Arora4, Cong Hao1

1Georgia Institute of Technology, 2Georgia Tech Research Institute, 3The University of Texas at Austin,
4Arizona State University, 5International Institute of Information Technology Bangalore

{stefanabikaram, rishov.sarkar, hanqiu.chen, callie.hao}@gatech.edu, {aseigler, zw5259, ljohn@ece.utexas.edu}@utexas.edu,
{slowe8, aman.kbm}@asu.edu, {nanditha.rao}@iiitb.ac.in

Abstract
Machine learning (ML) techniques have been applied to high-level
synthesis (HLS) flows for quality-of-result (QoR) prediction and design
space exploration (DSE). Nevertheless, the scarcity of accessible high-
quality HLS datasets and the complexity of building such datasets present
great challenges to FPGA and ML researchers. Existing datasets either
cover only a subset of previously published benchmarks, provide no way
to enumerate optimization design spaces, are limited to a specific vendor,
or have no reproducible and extensible software for dataset construction.
Many works also lack user-friendly ways to add more designs to existing
datasets, limiting wider adoption and sustainability of such datasets.

In response to these challenges, we introduce HLSFactory, a com-
prehensive framework designed to facilitate the curation and generation
of high-quality HLS design datasets. HLSFactory has three main stages:
1) a design space expansion stage to elaborate single HLS designs
into large design spaces using various optimization directives across
multiple vendor tools, 2) a design synthesis stage to execute HLS and
FPGA tool flows concurrently across designs, and 3) a data aggregation
stage for extracting standardized data into packaged datasets for ML
usage. This tripartite architecture not only ensures broad coverage of data
points via design space expansion but also supports interoperability with
tools from multiple vendors. Users can contribute to each stage easily
by submitting their own HLS designs or synthesis results via provided
user APIs. The framework is also flexible, allowing extensions at every
step via user APIs with custom frontends, synthesis tools, and scripts.

To demonstrate the framework functionality, we include an initial
set of built-in base designs from PolyBench, MachSuite, Rosetta, CHStone,
Kastner et al.’s Parallel Programming for FPGAs, and curated kernels
from existing open-source HLS designs. We report the statistical analyses
and design space visualizations to demonstrate the completed end-to-end
compilation flow, and to highlight the effectiveness of our design space
expansion beyond the initial base dataset, which greatly contributes
to dataset diversity and coverage.

In addition to its evident application in ML, we showcase the versatility
and multi-functionality of our framework through seven case studies:
I) Building an ML model for post-implementation QoR prediction;
II) Using design space sampling in stage 1 to expand the design space
covered from a small base set of HLS designs; III) Demonstrating the
speedup from the fine-grained design parallelism backend; IV) Extending
HLSFactory to target Intel’s HLS flow across all stages; V) Adding
and running new auxiliary designs using HLSFactory; VI) Integration
of previously published HLS data in stage 3; VII) Using HLSFactory
to perform HLS tool version regression benchmarking.

Code available at https://github.com/sharc-lab/HLSFactory.

ACMReference Format:
Stefan Abi-Karam1,2, Rishov Sarkar1, Allison Seigler3, Sean Lowe4, Zhigang
Wei3, Hanqiu Chen1,, Nanditha Rao5, Lizy John3, Aman Arora4, Cong Hao1
. 2024. HLSFactory: A Framework Empowering High-Level Synthesis Datasets
for Machine Learning and Beyond. In 2024 ACM/IEEE International Symposium
on Machine Learning for CAD (MLCAD ’24), September 9–11, 2024, Salt Lake City,
UT, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3670474.3685961

This work is licensed under a Creative Commons Attribution International 4.0 License.
MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0699-8/24/09
https://doi.org/10.1145/3670474.3685961

1 Introduction
Machine learning (ML) techniques have been widely applied to different
electronic design automation (EDA) flows including high-level synthesis
(HLS) [9, 12, 17, 20–25, 30] for quality-of-result (QoR) prediction,
optimization, and design space exploration (DSE). A key enabler to
the success of such ML techniques is high-quality datasets, most of
which are developed for individual studies e.g., [22, 25, 30]. Some recent
works have contributed open-source datasets that can be used by other
reseachers, e.g., [6, 14–16, 33, 38].

Despite the great benefits of these datasets, there are still fundamental
limitations that hinder their wider adoption for ML applications and
FPGA research. First, these datasets are usually small or homogeneous,
containing only a subset of previously published HLS benchmarks
[1, 18, 26, 38], and frequently consisting exclusively of designs that work
with one HLS tool from a single vendor. For example, Spector [15] contains
only 9 Intel HLS designs, HLSDataset [33] contains 34 AMD/Xilinx
HLS designs, and Rosetta [38] contains 6 AMD/Xilinx HLS designs.
Second, because of these separately developed HLS datasets, the designs
and intermediate/final tool outputs, which serve as important ML model
features, are often reported organized in non-standard ad hoc ways. Some
datasets contain only source code [1, 18, 26], some datasets contain only
resource usage and end-to-end throughput [38] but no clock frequency or
power numbers, while some contain only post-implementation results [6].
HLSyn [6] is a dataset for HLS designs targeted towards predicting design
quality of FPGAs. It consists of a wider range of programs and compiler
directives, enabling performance optimization of designs. However, existing
datasets require huge manual effort and deep domain-specific knowledge
for ML practitioners if they need a complete, unified, and larger dataset,
where they must execute all related HLS tools on their own to re-collect
and organize the needed information. Third, it is challenging for external
users who want to extend the existing datasets by contributing their
own designs, primarily caused by ad-hoc data formats and missing details
when building these datasets (e.g., tool version, target FPGA device, clock
frequency, implementation flow settings). The fundamental limitation
is, however, not the lack of another complete and rich HLS dataset,
but rather the lack of a flexible and extensible framework to enable
continuous contributions to a standardized and sustainable dataset.

Therefore, in this work, we introduce HLSFactory, the first framework
that takes a principled approach to HLS dataset generation, collection,
expansion, and integration, aiming to facilitate a continuous and
community-wide effort to contribute to the richest HLS dataset, which
will keep expanding easily. HLSFactory boasts the following features:
• Complete and easily extensible with user inputs at multiple
stages. HLSFactory has an end-to-end compilation flow including
three main stages: design space expansion stage to elaborate single
HLS designs at the source-code level into large design spaces; design
synthesis stage to execute HLS and FPGA tools; and data aggregation
stage for extracting standardized data organization. HLSFactory
uses a modular design that allows users to plug in their own designs
and tool flows to the dataset with minimal effort at arbitrary stages.

• Diverse and comprehensive. The initially included dataset covers a
wide variety of HLS designs, containing both simple designs synthesized
with AMD/Xilinx and Intel tool flows and complex designs using
Xilinx-specific features. In addition, HLSFactory has a novel design
space expansion and sampling approach, allowing the generation of
many design points from a single HLS design, improving overall design
space coverage. Further, HLSFactory has comprehensive data metrics
from synthesis to implementation, e.g., HLS synthesis reported resource
and latency, and post-implementation resource, timing, power, etc.

• Reproducible and user-friendly. HLSFactory features push-button
ease-of-use to run the entire end-to-end dataset generation workflow,

https://www.acm.org/publications/policies/artifact-review-and-badging-current
mailto:stefanabikaram@gatech.edu
mailto:rishov.sarkar@gatech.edu
mailto:hanqiu.chen@gatech.edu
mailto:callie.hao@gatech.edu
mailto:aseigler@utexas.edu
mailto:zw5259@utexas.edu
mailto:ljohn@ece.utexas.edu
mailto:slowe8@asu.edu
mailto:aman.kbm@asu.edu
mailto:nanditha.rao@iiitb.ac.in
https://github.com/sharc-lab/HLSFactory
https://doi.org/10.1145/3670474.3685961
https://doi.org/10.1145/3670474.3685961
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3670474.3685961&domain=pdf&date_stamp=2024-09-09

Table 1. A comparison of HLSFactory with the existing work. : feature
supported; : feature unsupported; : feature partially supported.

Contributions DB4HLS HLSyn HLSDataset HLSFactory

Benchmark — Polybench
Benchmark —MachSuite
Benchmark — Rosetta
Benchmark — CHStone
Collection — PP4FPGA
Collection — Accelerators (§5.5)
Post-HLS Latency
Post-HLS Resources
Post-HLS Artifacts
Post-Impl. Data
HLS Optimization DSL
Fine-Grained Parallel Builds
Xilinx HLS Support
Intel HLS Support
User Extendable to Other Tools
Programmable API
Open Source

allowing anyone to replicate our generated results, and to easily
contribute to the framework and the dataset. Specifically, our framework
makes it extremely easy for researchers in the FPGA community
to contribute data for various FPGA devices.

• ML-ready andmulti-purpose Beyond simply being used for ML
training, as demonstrated with a post-implementation QoR prediction
ML model (case study in §5.1), HLSFactory is useful for any task
where a large, diverse set of HLS runs is needed, like HLS tool version
regression testing (case study in §5.7).

• High performance and open-source. HLSFactory maximizes
parallelism for fast dataset generation of large numbers of designs.
HLSFactory is open-source and available on GitHub, including both
the end-to-end framework and a large set of sample designs.
In Sec. 2, we first provide background on the prior works in existing

HLS benchmarks and datasets. Sec. 3 introduces our HLSFactory
framework detailing the three stages. Sec. 4 dives into the implementation
of HLSFactory, including how it is configured and extended, and our
fine-grained parallelism technique to speed up dataset generation.
We then perform several case studies in Sec. 5 that demonstrate the
multi-purpose of the proposed framework.

2 RelatedWork
HLS community has multiple standard benchmarks for assessing HLS
tools including PolyBench [1], CHStone [18], and MachSuite [26], which
in total provide around 67 benchmark designs and are far from sufficient
for ML training. Rosetta [38], Dai [12], MLSBench [16], DB4HLS [14],
HLSDataset [33], and Spector [15] are all recently proposed HLS datasets,
where the former four use AMD/Xilinx tools and the last uses Intel tools.
MLSBench provides a sampling from different combinations of directives
(pragmas) on top of CHStone and MachSuite. DB4HLS provides exhaustive
design exploration on 39 designs from MachSuite with a domain-specific
language (DSL) for DSE and parallelized synthesis runs. HLSDataset aims
to cover all four commonly used benchmarks (PolyBench, CHStone, Mach-
Suite, Rosetta) with a DSL for specifying the design space to sample from.
They also illustrate two ML-based case studies for post-implementation re-
source and power prediction. HLSyn [6] uses control data flow graphs (CD-
FGs) of compiled HLS kernels for QoR prediction using graph neural net-
work approaches; their designs are sampled from PolyBench and MachSuite.
The features of selected prior works and HLSFactory are shown in Table 1.

While existing HLS datasets serve as a solid foundation for empowering
ML in HLS, they are inherently limited. First, each dataset covers only
a subset of commonly used HLS benchmarks, employing ad-hoc data
organization, synthesis tools, configurations, and reported metrics, lacking
standardization. This fragmentation makes it exceedingly difficult for ML
practitioners to effectively utilize all available datasets for training without
significant efforts in data reorganization and tool re-execution. Conse-
quently, the quality of ML models is compromised, impeding the advance-
ment of ML in HLS. Second, the lack of standardized data organization and
metric reporting poses challenges to dataset extensibility and long-term
sustainability, hindering broader user contributions to HLS datasets.

Therefore, rather than introducing yet another HLS dataset, the ML for
HLS community urgently requires a standard, extensible, and user-friendly
framework. Such a framework would streamline the collection,
generation, elaboration, synthesis, and organization of HLS designs and
data from diverse sources and community users. This would facilitate the

HLSFactory

✔ Flexible: Can supply user input at any stage
✔ Extensible: Modular architecture is easy to customize
✔ Reproducible: Open-source end-to-end build flow

Stage : Design Space Expansion1

Expanded Design Space (can be extremely huge)

Random sample Active learning ...

Design Space Sampling

AMD/Xilinx scripts Intel scripts Siemens scripts ...

OptDSL Frontend (Vendor agnostic)
+

Stage : Design Synthesis2

Sampled Concrete Designs (sampling rate adjustable)

Sampled Concrete Designs

AMD/Xilinx Vitis HLS & Vivado Intel i++ & Quartus ...

Pre-implementation results
Post-implementation results

User Entry Point 1

One HLS Design DSE Config

User Entry Point 2

One HLS Concrete Design

Stage : Data Aggregation3

ML-ready dataset
Multi-purpose usage

AMD/Xilinx Post-processing Intel Post-processing ...

User Entry Point 3

User provided synth./impl. results

Existing open-source HLS
designs/benchmarks +

User submitted HLS
Abstract Designs

+ User submitted HLS
Concrete Designs

Figure 1. A complete overview of the HLSFactory framework with three
stages and three entry points where users can contribute their own designs.

long-term maintenance and expansion of HLS datasets. The pressing need
for such a solution is the driving force behind our proposed HLSFactory.

3 HLSFactory Framework
3.1 HLSFactory Overview
As depicted in Fig. 1, HLSFactory is composed of three stages in its
end-to-end synthesis and data extraction flow; before each stage, there
is an entry point where users can submit designs and data.

Stage ➊ is design space expansion, aiming at expanding a single
HLS design into multiple designs by enumerating different combinations
of optimization directives (pragmas), which can significantly increase the
number of data points for ML applications. In this stage, users can submit
one or more HLS designs with possible design space configurations
and HLSFactory will extrapolate and expand the complete design
space via a frontend. Note that the presented design space expansion stage
is explicitly different than traditional design space exploration (commonly
abbreviated as DSE). Design space expansion is not optimization guided
(as detailed in §3.2.3), so suboptimal designs are included, broadening
design space coverage needed to building robust, accurate ML models.
This frontend features multi-vendor support and allows for random
sampling of generated designs to reduce the number of designs to
be synthesized by HLS and implementation tools (e.g., Vivado), if needed
for large design spaces, to shorten the execution time.

We will showcase this usage in Section 5.4.
Stage ➋ is design synthesis stage, where vendor-specific HLS

and implementation tools are invoked to synthesize HLS designs into
RTL code and then placed and routed. In this stage, users can submit
their HLS designs to be directly synthesized without extrapolating.
We will showcase this usage in Section 5.5.

Stage ➌ is data aggregation, where statistics and artifacts are collected
from the implemented designs and compiled into a tool-agnostic format
for use by downstream tasks such as ML training and benchmarking. In

2

loop_opt,3,2

0,lp2,pipeline,unroll,[1 2 4 8]

1,lp3,pipeline,unroll,[1 2 4 8]

2,lp3„unroll,[1 2 4 8]

set_directive_unroll -factor [factor] k2mm/[name]

set_directive_pipeline k2mm/[name]

Figure 2.A snippet demonstrating the OptDSL syntax.

this stage, users can submit their synthesized post-implementation results
or datasets to be merged. We will showcase this usage in Section 5.6.

3.2 Stage 1: Design Space Expansion and Sampling
This stage aims at expanding a single HLS design into multiple by
enumerating combinations of optimization directives (either inline or
in a separate file), such as loop unroll factors, array partitioning schemes,
and whether to pipeline loops. Such expansion is critical for ML usage
because of two reasons. First, the original HLS designs and benchmarks
are far from sufficient for ML training, and obtaining additional HLS
designs is challenging. Second, a key application of ML for HLS is to help
designers choose the best optimization directives for their HLS designs by
predicting post-HLS-synthesis and post-implementation metrics from HLS
source code and directives (e.g., [6, 33, 35, 36]). Therefore, an ML-ready
HLS dataset must provide wide coverage of how different choices
of optimization directives can impact a design. Note that the design space
expansion is expected to be across multiple vendors, tools, and devices.

On the other hand, the expanded design space can be huge, and
synthesizing and implementing each design may be prohibitively
time-consuming. Therefore, design space sampling is needed.

We define the concept of a frontend pass, which lowers an HLS
abstract design to a certain number of concrete designs. An HLS abstract
design is not directly synthesizable but contains parameterized directives
that require preprocessing. An HLS concrete design is a copy of the
abstract HLS design and is augmented with one possible combination
of optimization directives from the design space.

3.2.1 Vendor-agnostic OptDSL Frontend. For design space expansion,
all possible combinations of optimization directives for a certain HLS design
must be explicitly specified. We propose a frontend using a domain-specific
language (DSL), named OptDSL, to specify the design space using a DSE
configuration file. Fig. 2 shows an example of the OptDSL syntax, which
specifies the choices for how to pipeline or unroll two loops lp2 and lp3.

OptDSL is vendor-agnostic but based on a modified version of a
Vitis HLS Tcl script, minimizing the learning curve for designers already
accustomed to writing scripts for Vitis HLS. The main feature of OptDSL
is the bracket notation that parameterizes an optimization directive
with multiple choices. The overall design space is the Cartesian product
of the choices for each parameterized directive.

3.2.2 Vendor-specific Concrete Design Generation. While abstract
designs can be vendor-agnostic, concrete designs are vendor-specific.
I.e., different vendor tools have different HLS syntax and directive
formats; therefore, during the lowering process, the frontend needs
vendor-specific logic to target different tool flows, as depicted in Fig. 1
stage 1. HLSFactory currently provides support for AMD/Xilinx and
Intel flows, while other vendors can be easily supported.

The OptDSL file is provided within the abstract design as a file named
opt_template.tcl. To lower the abstract design for AMD/Xilinx tools,
we generate opt.tcl, a version of opt_template.tcl with bracketed
parameters replaced with different concrete values for each design
point. Once these bracketed parameters are substituted, the OptDSL
script becomes a valid Tcl script that can be used directly with Vitis HLS.

To support other vendors, the frontend can parse the OptDSL file
and identify the specific optimization directives used within it together
with their parametrizations. If the provided OptDSL is not sufficient to
describe a desired DSE, HLSFactory provides the necessary infrastructure
to allow users to specify their own entirely custom frontend as Python
code, as long as it conforms to the specified API interface (to be discussed
in Sec. 4.1). For instance, a new frontend pass can easily be introduced
to parameterize constants in the HLS source code itself: simply copy
the existing OptDSL frontend and modify the templating logic and
syntax to work with files other than opt_template.tcl.

3.2.3 Design Space Sampling. The design space created by the
parameterized optimization directives may be extremely large for even
a single design, growing exponentially with the addition of each directive.

Therefore, it is almost impossible to enumerate every possible design point
in the specified design space and execute synthesis and implementation.

HLSFactory natively supports random sampling of design points from
the Cartesian product of all combinations of optimization directives. Users
can specify the number of sampled design points, trading off design space
coverage for dataset build time and storage.

Unlike design space exploration, HLSFactory’s enumeration and random
sampling approaches are not guided or optimization-driven. The focus
is solely on collecting a wide range of designs, including suboptimal
designs, which are important for building ML datasets and training
ML models that can interpolate to as many unseen designs during
evaluation and deployment, not just optimal designs.

In the future, HLSFactory can be extended to support user-customizable
heuristics for selecting design points, utilizing expert knowledge to
determine which combinations of optimizations are more useful to
sample from and which combinations may result in invalid or redundant
designs. For example, the sampling stage can be combined with active
learning to determine meaningful design points to be synthesized.

3.3 Stage 2: Design Synthesis
The second stage of HLSFactory synthesizes and implements each concrete
HLS design, a process we collectively refer to as the design synthesis.
This stage also has an entry point for user input—vendor-specific
concrete designs can be provided directly at this point without going
through design space expansion. This is useful for easy integration
of third-party HLS designs where parametrization of the design space
may be difficult or unnecessary.

Design synthesis is broken down into two steps: (1) HLSSynth, where
an HLS design is synthesized to RTL code, and (2) HLSImpl, where the
resulting RTL code is implemented, resulting in a fully placed-and-routed
design. For AMD/Xilinx designs, Vitis HLS is used for HLSSynth and
Vivado for HLSImpl. However, any vendor tool can easily be integrated
into the HLSFactory framework, for example, Yosys [34] or Intel HLS
(to be demonstrated in Sec. 5.4), by providing Python code for the
desired ToolFlow subclasses.

3.4 Stage 3: Data Extraction and Aggregation
Once all the frontends and tool flows have been executed on a pool of de-
signs, relevant design data must be extracted and aggregated into structured
formats. HLSFactory provides DataAggregator classes to package HLS
synthesis data (estimated latency, resource usage), post-implementation
data (timing, resource, and power data), tool execution metadata (version,
runtime), and build artifacts (LLVM IR, IP blocks) into shareable datasets.

Furthermore, as in stage 2, users may want to provide input directly
at this stage, e.g., when integrating pre-generated data from prior works,
where the build process is not reproducible and thus an earlier entry point
cannot be used. Therefore, HLSFactory provides an entry point to the
data aggregation stage. This entry point can accept fully synthesized and
implemented designs, from which HLSFactory’s built-in data aggregators
can extract the relevant data, or pre-generated metrics in whatever
form is available, which can be used with a custom DataAggregator
subclass to adapt such metrics into HLSFactory’s standard output format.

4 Implementation and Usage
4.1 Vendor Agnostic User API

HLSFactory is implemented as a Python library and provides a simple
user API that allows the framework configuration to be expressed easily
as a short Python script (while still allowing for full Python programming
if complex configuration is desired).

Table 2. The HLSFactory User API.
API Functions Description
class Design Single HLS design
class Dataset Multiple HLS designs
class Flow(ABC) Abstract class for arbitrary design flow
Flow.execute(design) Execute a flow on one design
Flow.execute_datasets_parallel(design) Execute a flow onmany designs
class Frontend(Flow) Abstract class for frontend design expansion
class OptDSLFrontend(Frontend) Opt DSL frontend for Xilinx HLS designs
class ToolFlow(Flow) Abstract class for EDA tool
class VitisHLSSynthFlow(ToolFlow) Run Vitis HLS synthesis
class VitisHLSImplFlow(ToolFlow) Run Vivado implementation (via Vitis HLS)
class VitisHLSImplReportFlow(ToolFlow) Run Vivado reporting

3

datasets: DesignDatasetCollection = {

"polybench_xilinx": dataset_polybench_builder(WORK_DIR),

"machsuite_xilinx": dataset_machsuite_builder(WORK_DIR),

"chstone_xilinx": dataset_chstone_builder(WORK_DIR),

}

opt_dsl = OptDSLFrontend(WORK_DIR, random_sample=True,

random_sample_num=N_RANDOM_SAMPLES)

hls_synth = VitisHLSSynthFlow()

hls_impl = VitisHLSImplFlow()

hls_impl_report = VitisHLSImplReportFlow()

datasets_post_frontend = opt_dsl.execute_datasets_parallel(

datasets, n_jobs=N_JOBS)

datasets_post_synth = hls_synth.execute_datasets_parallel(

datasets_post_frontend, n_jobs=N_JOBS)

datasets_post_hls_impl = hls_impl.execute_datasets_parallel(

datasets_post_synth, n_jobs=N_JOBS)

hls_impl_report.execute_datasets_parallel(

datasets_post_hls_impl, n_jobs=N_JOBS)

Figure 3. Example usage of the HLSFactory framework.

An example is shown in Fig. 3. The source HLS designs are located
and copied to the desired work directory, and the OptDSLFrontend
is invoked to sample 10 random design points from each design. The
VitisHLSSynthFlow and VitisHLSImplFlow are then be invoked
to synthesize and implement each design point, followed by data
aggregation using the VitisHLSImplReportFlow to gather data from
each implemented design in a standardized format. A full list of the
available APIs is available in Table 2.

The API also includes abstract base classes (ABCs) that users can
subclass to implement their own frontends and tool flows for HLSFactory,
for instance, to support another vendor’s HLS tools. HLSFactory abstracts
away the complexities of integrating custom user subclasses into the
overall dataset generation process, including the use of fine-grained
parallelism (to be discussed in Sec. 4.3).

4.2 Directory Structure
Fig. 4 depicts a simple example of the directory structure accepted as
input and produced as output of the HLSFactory workflow. As described
throughout Sec. 3, we first sample the design space for each source abstract
design and then run tool flows and data aggregation on the sampled
concrete designs. The figure presents the directory structure for the inputs
to this process: an abstract design specified in terms of HLS kernel code, an
opt_template.tcl file to be used by the OptDSL frontend (described
in Sec. 3.2.1), and auxiliary scripts for the AMD/Xilinx tool flows.

During dataset generation, each abstract design is enumerated into
multiple concrete designs, shown in the figure under the newly gen-
erated directory source_designs_xilinx__post_frontend. Each
concrete design is identified by the concatenation of the name of the orig-
inal abstract design and a unique hash determined by the combination of
optimization directives chosen for that design. This unique combination of
optimization directives is generated as the concrete design’s opt.tcl file.

Tool flows and data aggregation run directly within these concrete
design directories. After HLS projects are created, synthesized, and
implemented (within the hls_prj directory, as depicted), the data ag-
gregation stage collects information from these projects into standardized
JSON-formatted files. These JSON files are stored alongside the HLS project
directory within each concrete design, making it clear exactly which
combination of optimization directives were used to generate the data.

4.3 Parallel Build Backend
To build datasets with hundreds and thousands of data points, an efficient
backend is needed to dispatch and execute multiple frontend and tool
flows in parallel. In the case of HLS, the bottleneck of constructing
such datasets is the runtime of the vendor tools themselves. The runtime
for synthesizing an HLS design can range from minutes to hours. We may
also want to run trial FPGA implementation flows, which can take hours.

To address these needs, every frontend and tool flow component
is automatically augmented in a fine-grained parallel build backend based
on multiprocessing. Since all frontend and tool flows are based on the
abstract base class, we can easily provide this facility to the user. We take
advantage of Python’s multiprocessing. We also provide the option to
pin each task to its own dedicated CPU core. This approach appears to be
a good default to distribute design build workloads on many-core systems.

We also provide a way for users to pool parallelism across dataset
collections rather than a single dataset. Users are able to describe

source_designs — Set of designs with a common HLSFactory configura�on

kernel.c — Any HLS design source files needed
design_a — A single raw HLS design

dataset_hls.tcl — Tcl script invoked by Xilinx tool flow for HLS synthesis
dataset_hls_ip_export.tcl — Tcl script invoked by Xilinx tool flow for implementa�on

design_b — A single raw HLS design
source_designs_xilinx__post_frontend — Designs processed with Xilinx tool flows

kernel.c
design_a_opt_6e433aca — A design point sampled from design_a’s design space

dataset_hls.tcl
dataset_hls_ip_export.tcl

design_a_opt_75b686ac — A design point sampled from design_a’s design space

opt_template.tcl — Tcl script template containing OptDSL syntax

opt_template.tcl
opt.tcl — Generated from opt_template.tcl with parameters filled in
hls_prj — Xilinx Vi�s HLS project, synthesized and implemented

design_b_opt_158910ad — A design point sampled from design_b’s design space
design_b_opt_6f2ef3f3 — A design point sampled from design_b’s design space

source_designs_intel__post_frontend — Designs processed with Intel tool flows

data_design.json — General informa�on about design in standardized format
data_hls.json — Sta�s�cs from HLS synthesis in standardized format
data_implementa�on.json — Post-implementa�on sta�s�cs in standardized format
data_execu�on.json — Tool run�me sta�s�cs in standardized format

Figure 4. The directory structure that HLSFactory uses. Red are
input files; green are the intermediate design points; blue are output files.

a collection of datasets, each with their own set of designs. Instead
of dispatching each dataset’s build workloads in its own parallel pool
(i.e., naive parallelism), we aggregate all designs into a single parallel
pool (i.e., fine-grained parallelism). This feature is automatic for every
frontend and tool flow and transparent to the end user.

5 Evaluations
We evaluate our work through a series of seven case studies which
demonstrate HLSFactory’s multifunctionality and ease of use.

5.1 Case Study 1: ML Prediction of Post-Implementation QoR
HLS vendor tools provide resource usage estimates (e.g., #LUTs, #FFs,
#DSPs, #BRAMs) and timing information (e.g., II violations, clock speed) for
designs based on scheduling and binding results. However, HLS-estimated
results often deviate significantly from post-implementation resource usage
and may not correlate well with critical timing metrics (e.g., worst negative
slack and worst hold slack). Previous works, such as S. Dai et al. [13], ad-
dress this issue by using ML-based models to predict post-implementation
quality-of-results (QoR) metrics based on HLS-reported metrics.

We demonstrate that HLSFactory can replicate the approach used
by S. Dai et al. [13] to build ML models for post-implementation QoR
predictions targeting Vitis HLS and Vivado. We use HLSFactory built-in
Polybench, MachSuite, and CHStone design datasets which provide
𝑛 = 29 base designs; using the the OptDSL frontend, design space
expansion is performed resulting in 𝑛=257 final designs. HLSFactory’s
APIs are also used run tool synthesis and implementation as well as
bundle the HLS post-implementation data into a tabular dataset. A

Figure 5. True-vs-predicted plots for the HLS-based ML QoR model.
Test values are shown for models trained on the complete and partial
subset of the training design space. “RAE": Relative Absolute Error
(|𝑦−𝑦 |/|𝑦−𝑦 |), “R2": Coefficient of Determination

4

Figure 6. Effect of design sampling to cover more design space.
Sampled designs cover a wider range of metrics than base designs
with no optimizations. Latency is HLS estimated; resources are
post-implementation. Note that these are stacked density plots to
show the effect of cumulative design sampling.

histogram-based gradient boosting regression model is then trained
to predict post-implementation reported resources and timing metrics
using HLS-reported resources, latency, clock speed, and arithmetic/logic
operation counts as model inputs. We train our model on an 80%/20%
train-test split, as well as a 25% subset of the training data to demonstrate
the utility of design space expansion in improving ML model performance.

Our results, shown in Fig. 5, indicate that the 𝑅2 value and mean
relative error are better for the larger training set achieved through design
space expansion. We highlight that generating more data points using
HLSFactory’s design space expansion will result in higher prediction
accuracy, even when randomly sampling from the entire design space
and including suboptimal, i.e. “bad", designs (in terms of QoR metrics). For
most resource prediction targets, our ML model also has a lower relative
error than the HLS-reported values, showing improvement over the
HLS tool itself. These results highlight the utility of HLSFactory applied
to ML for EDA and the importance of design space expansion, even with a
smaller sample size, for robust ML dataset construction and model training.

5.2 Case Study 2: Design Space Coverage
We evaluate how the use of design space expansion in HLSFactory
quantitatively and qualitatively improves the overall design space
of generated datasets in terms of latency (HLS-reported) and resource
usage (post-implementation). In the context of ML, improved design
space coverage for these metrics is important for robust model training
on downstream tasks, such as ML-based QoR prediction. Thus we
perform a case study comparing metrics of the base designs in Polybench,
MachSuite, and CHStone (𝑛=29) with the designs sampled from them
(𝑛=257); this is the same dataset used in §5.1.

We start with a quantitative evaluation. Fig. 6 illustrates the cumulative
distributions of these metrics as a stacked histogram representing
only base designs (𝑛=29), half the sampled designs (𝑛=129), and all
the sampled designs (𝑛=257). We highlight that the sampled designs
cover a wider range of average-case latency, LUT usage, and FF usage,
with denser coverage as 𝑛 increases. In the case of DSP and BRAM usage,
most base designs use none of these resources while sampled designs do.

We then illustrate the qualitative coverage of the design space in
Fig. 7. This space is the 2-D embedding space of HLS-reported and
post-implementation metrics generated using a PacMAP [32] dimensional
reduction. Each of the base designs is depicted as large emphasized
points within this embedding space; sampled designs from the same
base design (top panel) or the same benchmark (bottom panel) have
matching colors. The convex hulls around same-colored points show
the portion of the embedding space covered by design space expansion
from each base design or benchmark. This clearly shows that sampling
from the expanded design space results in non-overlapping coverage
that otherwise would not appear in the final dataset.

5.3 Case Study 3: Speedup of Fine-Grained Design Parallelism
We evaluate our fine-grained parallelism strategy described in Sec. 4.3
using a case study synthesizing designs sampled from Polybench,
MachSuite, and CHStone using Vitis HLS across 32 CPU cores.

Results are shown in Fig. 8, showing that fine-grained parallelism
achieves more than 20% speed up compared with the naive parallelism

Figure 7. Embedding of sampled designs across selected benchmarks.
Base designs without optimizations are emphasized. Design points
and locations are the same between both panels; they are only colored
and grouped differently.

Figure 8. Parallel execution of Vitis HLS synthesis. Top panel shows
core utilization over time with naive parallelism across datasets;
bottom panel shows our fine-grained design parallelism across datasets.

approach. Such fine-grained parallelism is especially beneficial given
the user-specified timeout threshold (annotated as gray bars).

5.4 Case Study 4: Targeting Different Vendors
To demonstrate the extensibility of the first stage of HLSFactory, we
show how to add support for Intel’s i++ HLS flow.

As described in Sec. 3.2.2, HLSFactory includes an OptDSL parser that
recognizes Vitis HLS optimization directives in opt_template.tcl,
such as the set_directive_unroll and set_directive_array_-
partition commands. We can therefore build our Intel-lowering
frontend on top of this functionality.

Because i++ does not support specifying optimization directives
in a separate file, our frontend instead transforms the HLS source
code directly to add i++-compatible versions of each directive parsed
from the opt_template.tcl file.

While our frontend can often generate exact equivalents for the
specified directives, in some cases, i++ has no exact equivalent for
a particular directive used by Vitis HLS, such as array_partition
directives. In these cases, we substitute similar directives—in this case,
a combination of Intel directives hls_numbanks and hls_bankwidth
that achieve a similar memory partitioning result.

Since HLSFactory is agnostic to the specific directives being used
and does not correlate specific AMD/Xilinx concrete designs with
specific Intel concrete designs, directives need not match one-to-one.
There is no impact on correctness; substituting similar directives still
improves the diversity of the dataset.

5

Figure 9. Distribution of post-implementation metrics for PolyBench
and MachSuite designs (𝑛=1340) using Intel’s HLS flow.

Figure 10. Distribution of HLS-estimated metrics from selected
HLSFactory benchmarks (PolyBench, CHStone, and MachSuite; 𝑛=167)
vs. HLSyn (𝑛=3371).

In total, our end-to-end Intel flow extends the HLSFactory user
APIs in Table 2 with three Intel equivalents: OptDSLFrontendIntel-
(Frontend) as described above, IntelHLSSynthFlow(ToolFlow)
to invoke i++ for HLS, and IntelQuartusImplFlow(ToolFlow) to
invoke Quartus for implementation. We run this flow on designs sampled
from PolyBench and MachSuite and plot the resulting metrics in Fig. 9.
Intel’s HLS tool does not report overall latency estimates, but it optimizes
each kernel’s throughput by maximizing clock speed, which we use
as a proxy for performance.

5.5 Case Study 5: Adding Auxiliary Design Collections
Third-party researchers may have existing, synthesizable, vendor-specific
HLS designs to integrate into HLSFactory, but they may not want
or need to create an OptDSL specification for them. For instance, the
authors of LightningSim [28] collect 33 synthesizable open-source designs
for AMD/Xilinx Vitis HLS to evaluate their simulation tool, including
designs from AMD/Xilinx sample code repositories [4, 5], algorithm
implementations from Kastner et al.’s Parallel Programming for FPGAs [19],
and graph neural network implementations from FlowGNN [27]. These
designs are all provided in a standard format, each having a Tcl script
setup.tcl to set up a Vitis HLS project for synthesis.

Using the entry point at the design synthesis stage, one graduate
student was able to integrate all of these designs into HLSFactory
in less than one hour. To match the input directory structure in Fig. 4, we
only needed to copy setup.tcl to dataset_hls.tcl with csynth_-
design appended (HLSFactory’s VitisHLSSynthFlow expects it to
setup the project and run synthesis) and add a four-line script dataset_-
hls_ip_export.tcl to invoke implementation from Vitis HLS. Since
we used the entry point after design space expansion, these were concrete
designs, not abstract designs, so no opt_template.tcl was required.

Many other works [7, 8, 29, 37] were also easily integrated with
HLSFactory in a similar fashion; the code is available online.

5.6 Case Study 6: Integrating ReleasedData fromOtherWorks
We may still want to incorporate previously published data have
published to build a more comprehensive HLS dataset. HLSFactory’s
data aggregation step provides an entry point to incorporate external
data sources into our dataset with ease.

We illustrate how HLSFactory can integrate pre-generated data
from prior works—in this case, HLSyn [6]. HLSyn provides both the

Figure 11.Distribution of HLS tool metrics from two versions of Vitis HLS.

source code (with places to template optimization directives) of their
selected kernels, as well as associated metrics for HLS-reported resource
usage and latency for sampled designs. We write a DataAggregator
subclass to integrate this data into HLSFactory.

The results are illustrated in Fig. 10, showing the distributions of
reported HLS metrics sourced from the listed valid designs of HLSyn
and a small sampled subset of designs from our base PolyBench, CHStone,
and Machsuite datasets.

The HLSyn flow is built on top of AutoDSE [2, 31] and the Merlin
compiler [3, 10], both of which are open-source software tools aimed
at optimized design space exploration (DSE) and source-to-source
translation. These tools suggest future work to integrate AutoDSE
and the Merlin compiler as custom flows in HLSFactory, allowing
designs to be built from the design space specifications defined in
AutoDSE and synthesized with the Merlin compiler.

5.7 Case Study 7: Regression Benchmarking HLS Synthesis Tools
New versions of HLS vendor tools are periodically released and improve
both the tool performance (e.g., faster synthesis) and the QoR of
synthesized designs (e.g., less resource usage). However, quantifying
such improvements across different tool versions is difficult without
a way to benchmark a wide range of designs, similar to the regression
testing used in traditional software development.

We demonstrate that HLSFactory streamlines regression testing
on HLS tools. We compare Vitis HLS versions 2021.1 and 2023.1 using
designs sampled from Polybench, Machsuite, and CHStone (with 16
samples per base design). We collect paired samples by synthesizing
the same design with both tool versions.

This experiment was set up in a fully self-contained Python script
and HLSFactory enabled this initial study to be completed by one
graduate student in three hours.

The results are shown in Fig. 11. We show distributions of the tool
runtime, HLS-estimated latency, LUT usage, and FF usage across tool
versions. We also report the 𝑝-value for a paired two-tailed Wilcoxon
signed-rank test [11, p. 350] and indicate cases with a 𝑝-value less
than 𝛼 =0.05 with an asterisk, indicating a statistically significant
difference. Note that for certain metrics, the mean and median shift
in opposite directions between tool versions.

6 Conclusion
HLSFactory brings a much-needed principled approach to generating
datasets of HLS designs. Our case studies show a small sample of what
can be done when a flexible, reproducible way to generate data from HLS
designs is available. We demonstrate that there is substantial untapped
potential for future research into how ML can be applied to HLS.

We also consider directions for future extensions of HLSFactory.
Our framework currently has no support for collecting post-simulation
metrics like vector-based power analysis or simulated latency. Introducing
simulation to HLSFactory, particularly for designs where only a high-level
C testbench is available rather than an RTL testbench, is a valuable
direction for future work.

We hope that, through open-source, this work invites the research
community to collaborate and contribute more designs and tool flows
and accelerate ML research for EDA applications.

6

Acknowledgements
This research was supported in part by National Science Foundation
(NSF) Grant #2326894, NVIDIA Applied Research Accelerator Program
Grant, and the Texas Advanced Computing Center (TACC). Any opinions,
findings, conclusions, or recommendations are those of the authors
and not of the funding agencies. We also thank Georgia Tech Research
Institute for direct funding of selected authors.

References
[1] [n. d.]. PolyBench. https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
[2] UCLA VAST Lab [n. d.]. UCLA-VAST/AutoDSE. UCLA VAST Lab.

https://github.com/UCLA-VAST/AutoDSE
[3] Xilinx [n. d.]. Xilinx/Merlin-Compiler. Xilinx. https://github.com/Xilinx/merlin-compiler
[4] AMD/Xilinx. 2021. Basic Examples for Vitis HLS. GitHub.
[5] AMD/Xilinx. 2022. Vitis Accel Examples’ Repository. GitHub.
[6] Yunsheng Bai, Atefeh Sohrabizadeh, Zongyue Qin, Ziniu Hu, Yizhou Sun, and Jason

Cong. 2023. Towards a Comprehensive Benchmark for High-Level Synthesis Targeted
to FPGAs. In Thirty-Seventh Conference on Neural Information Processing Systems
Datasets and Benchmarks Track.

[7] Hanqiu Chen and Cong Hao. 2022. Mask-Net: A Hardware-Efficient Object Detection
Network with Masked Region Proposals. In 2022 IEEE 33rd International Conference
on Application-specific Systems, Architectures and Processors (ASAP). IEEE, Gothenburg,
Sweden, 131–138. https://doi.org/10.1109/ASAP54787.2022.00030

[8] Hanqiu Chen and Cong Hao. 2023. DGNN-booster: A Generic FPGA Accelerator
Framework for Dynamic Graph Neural Network Inference. In 2023 IEEE 31st Annual
International Symposium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, Marina Del Rey, CA, USA, 195–201. https://doi.org/10.1109/FCCM57271.2023.00029

[9] Vidya A. Chhabria, Yanqing Zhang, Haoxing Ren, Ben Keller, Brucek Khailany,
and Sachin S. Sapatnekar. 2021. MAVIREC: ML-Aided Vectored IR-Drop Estimation and
Classification. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[10] Jason Cong, Muhuan Huang, Peichen Pan, Yuxin Wang, and Peng Zhang. [n. d.].
Source-to-Source Optimization for HLS. In FPGAs for Software Programmers, Dirk
Koch, Frank Hannig, and Daniel Ziener (Eds.). Springer International Publishing,
137–163. https://doi.org/10.1007/978-3-319-26408-0_8

[11] W. J. Conover. 1999. Practical Nonparametric Statistics (3rd ed ed.). Wiley, New York.
[12] Steve Dai, Yuan Zhou, Hang Zhang, Ecenur Ustun, Evangeline FY Young, and

Zhiru Zhang. 2018. Fast and accurate estimation of quality of results in high-level
synthesis with machine learning. In 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE, 129–132.

[13] Steve Dai, Yuan Zhou, Hang Zhang, Ecenur Ustun, Evangeline F.Y. Young, and Zhiru Zhang.
2018. Fast and Accurate Estimation of Quality of Results in High-Level Synthesis with Ma-
chine Learning. In 2018 IEEE 26th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). 129–132. https://doi.org/10.1109/FCCM.2018.00029

[14] Lorenzo Ferretti, Jihye Kwon, Giovanni Ansaloni, Giuseppe Di Guglielmo, Luca
Carloni, and Laura Pozzi. [n. d.]. DB4HLS: A Database of High-Level Synthesis Design
Space Explorations. https://doi.org/10.48550/arXiv.2101.00587 arXiv:2101.00587 [cs]

[15] Quentin Gautier, Alric Althoff, Pingfan Meng, and Ryan Kastner. 2016. Spector:
An opencl fpga benchmark suite. In 2016 International Conference on Field-Programmable
Technology (FPT). IEEE, 141–148.

[16] Pingakshya Goswami, Masoud Shahshahani, and Dinesh Bhatia. [n. d.]. MLSBench:
A Synthesizable Dataset of HLS Designs to Support ML Based Design Flows. In
Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (New York, NY, USA, 2020-02-24) (FPGA ’20). Association for Computing
Machinery, 312. https://doi.org/10.1145/3373087.3375378

[17] Winston Haaswijk, Edo Collins, Benoit Seguin, Mathias Soeken, Frédéric Kaplan,
Sabine Süsstrunk, and Giovanni De Micheli. 2018. Deep Learning for Logic Optimization
Algorithms. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[18] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya Ishii.
[n. d.]. CHStone: A Benchmark Program Suite for Practical C-based High-Level
Synthesis. In 2008 IEEE International Symposium on Circuits and Systems (ISCAS)
(2008-05). 1192–1195. https://doi.org/10.1109/ISCAS.2008.4541637

[19] Ryan Kastner, Janarbek Matai, and Stephen Neuendorffer. 2018. Parallel Programming
for FPGAs. https://doi.org/10.48550/arXiv.1805.03648 arXiv:arXiv:1805.03648

[20] Ryan Gary Kim, Janardhan Rao Doppa, and Partha Pratim Pande. 2018. Machine
Learning for Design Space Exploration and Optimization of Manycore Systems.
In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1–6.

[21] Zhe Lin, Zike Yuan, Jieru Zhao, Wei Zhang, HuiWang, and Yonghong Tian. 2022.
PowerGear: Early-Stage Power Estimation in FPGA HLS via Heterogeneous Edge-Centric
GNNs. In Design, Automation & Test in Europe Conference & Exhibition (DATE).
https://doi.org/10.23919/DATE54114.2022.9774682

[22] Zhe Lin, Jieru Zhao, Sharad Sinha, andWei Zhang. 2020. HL-Pow: A Learning-Based
Power Modeling Framework for High-Level Synthesis. In 25th Asia and South Pacific Design
Automation Conference (ASP-DAC). https://doi.org/10.1109/ASP-DAC47756.2020.9045442

[23] Dong Liu and Benjamin Carrion Schafer. 2016. Efficient and reliable High-Level
Synthesis Design Space Explorer for FPGAs. In 2016 26th International Conference
on Field Programmable Logic and Applications (FPL).

[24] Yixuan Luo, Cheng Tan, Nicolas BohmAgostini, Ang Li, Antonino Tumeo, Nirav
Dave, and Tong Geng. 2023. ML-CGRA: An Integrated Compilation Framework
to Enable Efficient Machine Learning Acceleration on CGRAs. In 2023 60th ACM/IEEE
Design Automation Conference (DAC).

[25] Hosein Mohammadi Makrani, Farnoud Farahmand, Hossein Sayadi, Sara Bondi,
Sai Manoj Pudukotai Dinakarrao, Houman Homayoun, and Setareh Rafatirad. 2019.
Pyramid: Machine Learning Framework to Estimate the Optimal Timing and Resource
Usage of a High-Level Synthesis Design. In 2019 29th International Conference on
Field Programmable Logic and Applications (FPL).

[26] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-YeonWei, and David Brooks.
[n. d.]. MachSuite: Benchmarks for Accelerator Design and Customized Architectures.
In 2014 IEEE International Symposium on Workload Characterization (IISWC) (2014-10).
110–119. https://doi.org/10.1109/IISWC.2014.6983050

[27] Rishov Sarkar, Stefan Abi-Karam, Yuqi He, Lakshmi Sathidevi, and Cong Hao.
2023. FlowGNN: A Dataflow Architecture for Real-Time Workload-Agnostic
Graph Neural Network Inference. In 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, Montreal, QC, Canada,
1099–1112. https://doi.org/10.1109/HPCA56546.2023.10071015

[28] Rishov Sarkar and Cong Hao. 2023. LightningSim: Fast and Accurate Trace-Based
Simulation for High-Level Synthesis. In 2023 IEEE 31st Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE, Marina Del
Rey, CA, USA, 1–11. https://doi.org/10.1109/FCCM57271.2023.00010

[29] Rishov Sarkar, Hanxue Liang, Zhiwen Fan, Zhangyang Wang, and Cong Hao.
2023. Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture
with Task-Level Sparsity via Mixture-of-Experts. In 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD). IEEE, San Francisco, CA, USA, 01–09.
https://doi.org/10.1109/ICCAD57390.2023.10323651

[30] Gagandeep Singha, Dionysios Diamantopoulosb, Juan Gómez-Lunaa, Sander Stuijkc,
Henk Corporaalc, and Onur Mutlu. 2022. LEAPER: Fast and Accurate FPGA-based
System Performance Prediction via Transfer Learning. In IEEE 40th International
Conference on Computer Design (ICCD). https://doi.org/10.1109/ICCD56317.2022.00080

[31] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. [n. d.]. Au-
toDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators.
https://doi.org/10.48550/arXiv.2009.14381 arXiv:2009.14381 [cs]

[32] Yingfan Wang, Haiyang Huang, Cynthia Rudin, and Yaron Shaposhnik. 2021.
Understanding How Dimension Reduction Tools Work: An Empirical Approach
to Deciphering t-SNE, UMAP, TriMap, and PaCMAP for Data Visualization. Journal
of Machine Learning Research 22, 201 (2021), 1–73. http://jmlr.org/papers/v22/20-1061.html

[33] Zhigang Wei, Aman Arora, Ruihao Li, and Lizy John. [n. d.]. HLSDataset: Open-Source
Dataset for ML-assisted FPGA Design Using High Level Synthesis. In 2023 IEEE 34th
International Conference on Application-specific Systems, Architectures and Processors (ASAP)
(Porto, Portugal, 2023-07). IEEE, 197–204. https://doi.org/10.1109/ASAP57973.2023.00040

[34] Clifford Wolf and Johann Glaser. 2013. Yosys - a Free Verilog Synthesis Suite. In
Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip). Linz, Austria.

[35] Nan Wu, Yuan Xie, and Cong Hao. 2021. Ironman: Gnn-assisted design space exploration
in high-level synthesis via reinforcement learning. In Proceedings of the 2021 on
Great Lakes Symposium on VLSI. 39–44.

[36] NanWu, Yuan Xie, and Cong Hao. 2022. IRONMAN-PRO: Multiobjective design
space exploration in HLS via reinforcement learning and graph neural network-based
modeling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 42, 3 (2022), 900–913.

[37] Xiaofan Zhang, Haoming Lu, Cong Hao, Jiachen Li, Bowen Cheng, Yuhong Li, Kyle
Rupnow, Jinjun Xiong, Thomas Huang, Honghui Shi, Wen-Mei Hwu, and Deming
Chen. 2020. SkyNet: A Hardware-Efficient Method for Object Detection and Tracking on
Embedded Systems. Proceedings of Machine Learning and Systems 2 (March 2020), 216–229.

[38] Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava, Hanchen Jin,
Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo Angarita Velasquez, Wenping Wang,
and Zhiru Zhang. [n. d.]. Rosetta: A Realistic High-Level Synthesis Benchmark Suite
for Software Programmable FPGAs. In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (New York, NY, USA, 2018-02-15) (FPGA ’18).
Association for Computing Machinery, 269–278. https://doi.org/10.1145/3174243.3174255

7

https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://github.com/UCLA-VAST/AutoDSE
https://github.com/Xilinx/merlin-compiler
https://doi.org/10.1109/ASAP54787.2022.00030
https://doi.org/10.1109/FCCM57271.2023.00029
https://doi.org/10.1007/978-3-319-26408-0_8
https://doi.org/10.1109/FCCM.2018.00029
https://doi.org/10.48550/arXiv.2101.00587
https://arxiv.org/abs/2101.00587
https://doi.org/10.1145/3373087.3375378
https://doi.org/10.1109/ISCAS.2008.4541637
https://doi.org/10.48550/arXiv.1805.03648
https://arxiv.org/abs/arXiv:1805.03648
https://doi.org/10.23919/DATE54114.2022.9774682
https://doi.org/10.1109/ASP-DAC47756.2020.9045442
https://doi.org/10.1109/IISWC.2014.6983050
https://doi.org/10.1109/HPCA56546.2023.10071015
https://doi.org/10.1109/FCCM57271.2023.00010
https://doi.org/10.1109/ICCAD57390.2023.10323651
https://doi.org/10.1109/ICCD56317.2022.00080
https://doi.org/10.48550/arXiv.2009.14381
https://arxiv.org/abs/2009.14381
http://jmlr.org/papers/v22/20-1061.html
https://doi.org/10.1109/ASAP57973.2023.00040
https://doi.org/10.1145/3174243.3174255

7 Artifact Appendix
7.1 Abstract
The HLSFactory framework includes multiple software and dataset components, which are available as public open-source releases and artifacts.
We briefly outline these components and how to access them. We plan to expand many aspects of our work in the future (e.g., more built-in
HLS benchmarks and designs, additional tool flow integrations, enhanced design frontends) and openly encourage contributions and use of HLSFactory.

For users strictly interested in running the artifact evaluation to reproduce data and results for various reported case studies, details can
be found in §7.1.4 and at the following repository: https://github.com/sharc-lab/hlsfactory-artifact-eval.

7.1.1 HLSFactory Python Library. The HLSFactory Python library, hlsfactory, provides APIs and logic for various features including
loading HLS designs (locally on disk or from built-in common HLS benchmarks and designs), expanding designs through design space sampling, running
parallel tool flows for HLS vendor tools, and extracting+serializing+archiving structured HLS and FPGA tool data (including reports and build artifacts).
• Source code repository: https://github.com/sharc-lab/HLSFactory
– Archived at https://zenodo.org/doi/10.5281/zenodo.12989544 (DOI: 10.5281/zenodo.12989544)

• Documentation: https://sharc-lab.github.io/HLSFactory/docs/
– Archived as part of the source code repository

• Install via pip: pip install git+https://github.com/sharc-lab/HLSFactory
• Install via conda: conda install –channel https://sharc-lab.github.io/HLSFactory/dist-conda hlsfactory
• Install via mamba: mamba install –channel https://sharc-lab.github.io/HLSFactory/dist-conda hlsfactory

We highly encourage users to review the documentation for details on the framework, walkthroughs of various demos and case studies
with accompanying code and Jupyter Notebooks, and information on how to extend and add new datasets and built-in designs.

7.1.2 HLSFactory’s Collection of HLS Benchmarks and Designs. One core contribution of this work is the collection of source code
for common HLS benchmarks and other open-source and academic HLS designs. We have created design space descriptions and entry point
scripts for each design, necessary for the various tool flows supported by our work, and tested our flow on each design.

Our initial release includes designs from the following sources: Polybench [1], MachSuite [26], Rosetta [38], CHStone [18], the "Parallel
Programming for FPGAs" textbook [19], AMD/Xilinx sample HLS designs [4, 5], and various HLS accelerators from Sharc Lab [7, 8, 29, 37].
These designs can be found in the HLSFactory Python library itself under the repository path hlsfactory/hls_dataset_sources.

A notable feature is that these designs are built into the packaged Python library, available via pip and conda. Users who install hlsfactory
can load designs locally without additional downloads. Additionally, users can still load custom designs locally at runtime.

7.1.3 Pre-Generated Datasets of HLS Synthesized and Implemented Designs. While running our case studies, we ran various end-to-end
dataset generations flows. The pre-generated datasets include design sources (with sampled optimization directives if design space sampling
is used), HLS synthesized designs (including HLS reports, generated hardware IP, and HLS scheduling and binding data), and, in some runs,
FPGA post-implementation reports. These datasets can save users and researchers significant time by providing a dataset fully synthesized
and implemented HLS designs with important intermediate artifacts.

We include the following pre-generated datasets: Design Space Base Dataset, Design Space Sampled Dataset, Intel Design Flow Dataset,
Parallelization Test Dataset, Regression Benchmarking Test Dataset.

We archive and host these datasets on Zenodo: https://zenodo.org/doi/10.5281/zenodo.13117901 (DOI: 10.5281/zenodo.13117901)

7.1.4 Scripts to Reproduce Case Study Results. We provide Python scripts to reproduce the results of various case studies, including
figures and numerical results. This includes scripts to generate design datasets from scratch and perform the case study analyses. Generating
design data requires HLS and FPGA vendor tools and can take over 24 hours for the largest datasets used in this work. Therefore, users can
also use the pre-generated datasets from §7.1.3 and only run the required analysis scripts.

The code for running these scripts as an artifact evaluator, along with detailed instructions, is available at the GitHub repository:
https://github.com/sharc-lab/hlsfactory-artifact-eval.

This repository is archived at https://zenodo.org/doi/10.5281/zenodo.13117886 (DOI: 10.5281/zenodo.13117886).

7.2 Artifact Check-List (meta-information)
• Data set: Polybench, MachSuite, Rosetta, CHStone, "Parallel Programming for FPGAs",

Xilinx/Vitis-HLS-Introductory-Examples
• Run-time environment: Linux, Windows, MacOS
• Metrics: Runtime, HLS Reported Latency, HLS Reported Resource Usage, Post-Implementation Timing Metrics,

Post-Implementation Resource Usage, Post-Implementation Power Estimation
• Output: HLS Synthesis Reports, HLS Synthesized Hardware IP, Post-Implementation Reports
• Experiments: "ML Prediction of Post-Implementation Quality-of-Results Metrics",

"Design Space Coverage", "Speedup of Fine-Grained Design Parallelism", "Targeting Different HLS Vendors",
"Integrating Released Data from Other Works", "Regression Benchmarking of HLS Synthesis Tools"

• Proprietary EDA tools: AMD/Xilinx Vitis HLS 2023.1, AMD/Xilinx Vivado 2023.1,
AMD/Xilinx Vitis HLS 2021.1, AMD/Xilinx Vivado 2121.1,
Intel HLS Compiler (i++) 21.1.0, Intel Quartus Prime 21.1.0

• Howmuch disk space required (approximately)?: ≈200 GB
• Howmuch time is needed to prepare workflow (approximately)?: ≈20 Minutes
• Howmuch time is needed to complete experiments (approximately)?: ≈24 hours (using 32 cores)
• Publicly available?: Yes!
• Code licenses (if publicly available)?: GNU AGPLv3
• Data licenses (if publicly available)?: CC BY-SA 4.0
• Archived (provide DOI)?: Yes! Datasets: [10.5281/zenodo.13117901], Code Repositories: [10.5281/zenodo.12989544, 10.5281/zenodo.13117886]

7.3 Description
7.3.1 How To Access. The main artifact evaluation code for reproducing results presented in the paper is hosted at this GitHub repository:
https://github.com/sharc-lab/hlsfactory-artifact-eval.
7.3.2 Hardware Dependencies. No specialized hardware is needed. We recommend a desktop workstation or server with as many cores
as possible (for faster parallel dataset generation) and a common Linux-based distrobution (such as Ubuntu).

7.3.3 Software Dependencies. HLSFactory and the artifact evaluation scripts are implemented in Python and require version 3.10 or higher. The
hlsfactory library depends on pandas, psutil, PyYAML, tqdm, and python-dotenv. The artifact evaluation scripts additionally require pacmap,
scikit_learn, scipy, seaborn, and hlsfactory.

8

https://github.com/sharc-lab/hlsfactory-artifact-eval
https://github.com/sharc-lab/HLSFactory
https://zenodo.org/doi/10.5281/zenodo.12989544
https://sharc-lab.github.io/HLSFactory/docs/
https://github.com/sharc-lab/HLSFactory/tree/main/hlsfactory/hls_dataset_sources
https://zenodo.org/doi/10.5281/zenodo.13117901
https://github.com/sharc-lab/hlsfactory-artifact-eval
https://zenodo.org/doi/10.5281/zenodo.13117886
https://github.com/sharc-lab/hlsfactory-artifact-eval

7.3.4 Commercial Software Dependencies. To run Xilinx-based dataset generation flows, AMD/Xilinx’s Vitis HLS and Vivado are required,
with most design runs using version 2023.1. The regression testing case study requires version 2021.1. For Intel-based flows, Intel’s HLS
Compiler and Quartus Prime are needed, with version 21.1.0 required for the Intel design run.
7.3.5 Datasets. All the required HLS designs (source code, tool scripts, design space descriptions) are built into the hlsfactory package
itself. For more details, refer to §7.1.2.

7.4 Installation
Installation of the hlsfactory package (as described in §7.1.1) and Python requirements can be done using pip or conda based tools.

7.5 ExperimentWorkflow
For details on running and generating case study results, please refer to the artifact evaluation repository (§7.1.4). The process involves obtaining
an HLS dataset either by running a dataset generation script or by sourcing a pre-generated dataset from Zenodo. After obtaining the dataset,
the user runs a specific case study analysis or visualization script to generate the relevant figures and results. We also specify which case
study analyses require which datasets to be run or sourced.

7.6 Evaluation and Expected Results
The analysis scripts should produce figures and numerical results similar to those in the paper. The entire workflow is designed to be deterministic,
assuming the vendor tools are deterministic. While we have identified most sources of randomness that we allow users to control with a random
seed (e.g., random sampling in design space expansion), some elements remain beyond our control, such as pacmap’s fitting, which is not
fully deterministic even with random_state set.

7.7 Experiment Customization
Users and evaluators can modify hardcoded parameters in the dataset generation runs or analysis scripts (e.g., random samples for design
space expansion, dimensionality reduction parameters). As “proof-of-concept” demos, our case studies allow for modification and extension
of hlsfactory to support new data and tools, both locally at runtime and as contributions to the published Python package.

7.8 Notes
For more detailed and complete instructions, please refer to the README.md in the artifact evaluation code repository.

7.9 Methodology
Submission, reviewing and badging methodology:
https://www.acm.org/publications/policies/artifact-review-and-badging-current,
http://cTuning.org/ae/submission-20201122.html, https://github.com/ml-eda/artifact-evaluation/.

9

https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://cTuning.org/ae/submission-20201122.html
https://github.com/ml-eda/artifact-evaluation/

	Abstract
	1 Introduction
	2 Related Work
	3 HLSFactory Framework
	3.1 HLSFactory Overview
	3.2 Stage 1: Design Space Expansion and Sampling
	3.3 Stage 2: Design Synthesis
	3.4 Stage 3: Data Extraction and Aggregation

	4 Implementation and Usage
	4.1 Vendor Agnostic User API
	4.2 Directory Structure
	4.3 Parallel Build Backend

	5 Evaluations
	5.1 Case Study 1: ML Prediction of Post-Implementation QoR
	5.2 Case Study 2: Design Space Coverage
	5.3 Case Study 3: Speedup of Fine-Grained Design Parallelism
	5.4 Case Study 4: Targeting Different Vendors
	5.5 Case Study 5: Adding Auxiliary Design Collections
	5.6 Case Study 6: Integrating ReleasedData from Other Works
	5.7 Case Study 7: Regression Benchmarking HLS Synthesis Tools

	6 Conclusion
	References
	7 Artifact Appendix
	7.1 Abstract
	7.2 Artifact Check-List (meta-information)
	7.3 Description
	7.4 Installation
	7.5 Experiment Workflow
	7.6 Evaluation and Expected Results
	7.7 Experiment Customization
	7.8 Notes
	7.9 Methodology

