ATAPP: Architecture and Technology Aware
Power Predictor for Unseen FPGASs

Zhigang Wei*, Aman Aroral, Emily Shriver, Lizy K. John*
*The University of Texas at Austin, 1 Arizona State University
zw5259 @utexas.edu, aman.kbm@asu.edu, ljohn@ece.utexas.edu

Abstract—Machine Learning has been successfully adopted to estimate
power consumption for FPGA designs using features from the early stages
of High-Level synthesis. However, existing ML-based power models work
only for the same FPGA the model is trained on, and do not generalize
well for unseen or futuristic FPGAs due to the lack of consideration of
architectural and technology features, which are highly relevant to the
power consumption. In addition, state-of-the-art analytical models take
hours to synthesize and simulate hardware designs to perform accurate
power analysis. It leads to a long turnaround time and inefficiency for
researchers who want to explore the effects of the FPGA architecture
on power. In order to tackle the problem, we proposed ATAPP, a novel
Graph Neural Network-based power model where both design switching
activities and architecture features are encoded to make power prediction.
The features of the FPGA architecture are extracted with RapidWright
at the tile level of the layout, and the embeddings are generated using
positional encoding. The design features are composed of switching
activities at the intermediate representation operator level and the data
flow of the design in a graph. With the two representations, ATAPP is
able to predict the average dynamic power with a new design overlay on
an unseen FPGA. Our experiments show that ATAPP demonstrates an
average error of 13.09% with unseen FPGAs and designs, while the best
prior produces more than 40% error and XPE produces more than 200%.

I. INTRODUCTION

Power efficiency has emerged as one of the first-order constraints
for hardware systems such as field-programmable gate arrays
(FPGAs), and both the FPGA architecture and design optimization
with regard to power efficiency usually necessitate knowledge of
power consumption. However, the power evaluation flow for FPGA
designs induces large overheads of design turnaround time, and the
problem becomes more serious when researchers want to explore
the architecture of an FPGA considering power metrics in addition
to performance metrics. In general, accurate FPGA power estimation
requires the signal activities of critical components and I/O ports to be
obtained via vector-based gate-level simulation and a set of physical
component measurements to be obtained through the Register-
Transfer-Level(RTL)-based FPGA implementation flow, including
synthesis and implementation. After these steps, analytical models
can be used to infer power consumption. However, all the above steps
need to be refined and repeated once the FPGA architecture changes,
since the resource types or counts and their layout on the FPGA
fabric can greatly affect the implementation phase even with the
same RTL design. The technology node can further influence all the
mentioned phases and the analytical model for power evaluation. The
cycle-accurate gate-level simulation and design implementation flow
with different FPGA architecture result in large runtimes. Overall, in
a power-oriented hardware optimization loop, designers repeatedly
perform the above power evaluation steps until power closure is
achieved, which incurs long development time and high labor cost.

To overcome the challenge of post-implementation power
evaluation in FPGA, previous works have used machine learning
(ML) techniques [1], [2] to bypass bottleneck phases including
synthesis and implementation. ML models are trained with features
extracted from the High Level Synthesis (HLS) [3] phase and labels

HEEN FPGAl
I FPGA2

(mw)
N N
o w
o o
I

s I I
L i ;
50 II II 'II 'II -25 /

1 2 3 4 5 6 0 1000
Design

Relative Power Difference(%)

2000
Design

3000 4000

Fig. 1. Changes in power from one FPGA to another. Power may increase
or decrease as shown (left) for example designs; Distribution of the relative
power difference on two different FPGAs based on over 4000 designs (right)

from simulation-based power consumption. The models mentioned
above are designed to predict power with HLS features on one
specific FPGA, however, these models cannot be used in power
prediction on unseen FPGAs. We compare the power over 4,000
designs on 2 different FPGAs and the relative power difference
(calculated as £ 2131 P1Y is shown in the right of Fig. 1. For a specific
view of the power comparison as illustrated in the left of Fig. 1, we
pick 6 designs and compare the power consumption of these 6 designs
on 2 different FPGAs (zu9eg as FPGA1 and 7v585t as FPGA2). It is
observed that there is a significant power difference between FPGA1
and FPGA2. Therefore, power models, which can make accurate
prediction on FPGAI1, cannot make correct prediction on FPGA2
(a new unseen FPGA) due to the features dependent solely on the
designs and lack of consideration of FPGA architecture features.

We summarize and compare the prior analytical power model and
existing ML-based power models in Table I. There are integrated
power estimation tools inside AMD/Xilinx Vivado and it supports
the power estimation for all the Xilinx FPGAs, however, it lacks
the flexibility to estimate the power in different design cycles. It
takes a long time to synthesize and simulate designs before accurate
power estimation. The AMD Power Estimator(XPE) is an analytical
power model that supports flexible estimation in different design
phases. It supports all AMD/Xilinx devices, but accuracy is too
low with early-stage HLS results [4]. Both Vivado and XPE only
support power estimation on existing devices, and researchers are not
allowed to manipulate the FPGA architectures. Verilog-to-Routing
(VTR) [5] is an open source tool used for the exploration of FPGA
architecture. Although manipulation of the FPGA architecture is
allowed, it takes even longer than Vivado to synthesize the design
and estimate the power. PowerGear [1] is state-of-the-art ML-based
power model, it can make prediction accurately on the FPGA seen
in the training, it performs poorly for unseen FPGAs. In order to
predict power for the unseen FPGA with PowerGear, it requires a
complete dataset generation and training which restrict the usage
of PowerGear on varities of FPGAs. Therefore, fast and accurate
power evaluation on unseen FPGAs remains unsolved.

TABLE I
A COMPARISON OF ATAPP WITH
THE EXISTING WORK ON POWER PREDICTION. @: FEATURE SUPPORTED;
O: FEATURE UNSUPPORTED; 0: FEATURE PARTIALLY SUPPORTED.

Features | Vivado | XPE [4] | VTR [5] | PowerGear [1] | ATAPP

High accuracy

Time efficient

No logic synthesis

No implementation
Unseen FPGA Prediction

O000e
Oo®e®eO
[Jolelel.]
ceece®
00000

N
N
Unseen designs| .

%

O /‘ ,
ML-based power oo oa] |/ ML-based power
Unseen designs model trained on %EEDEE% model trained on
sean FPGAs C00LJo0s) | Lseen FPGAs
Unseen FPGA

architecture

Fig. 2. Prior power models predict power of unseen designs on seen FPGAs
(left) vs. ATAPP which predicts power of new designs on new FPGAs (right)

We propose ATAPP, an FPGA architecture and technology-aware
power predictor that combines both the features of the FPGA ar-
chitecture and the switching activities of the designs to predict the
average dynamic power consumption. Unlike the existing ML-based
power model, ATAPP makes predictions based on two parts: FPGA
architecture representation and design representation as shown in
Fig. 2. The architecture representation includes information such as
resource type and counts, technology parameters, resource position
in the FPGA fabric, and voltage levels. They are encoded into finite
length of vectors so that they can be digested by a multi-layer
perceptron (MLP) model to generate architecture embeddings. For
the design representation, we represent the HLS design as a graph
which is generated with Intermediate Representation (IR) codes and
Finite State Machine Datapath (FSMD) model produced by HLS
compilation. We then extract switching activities by simulating the
IR codes and put them on the associated edges of the graph. A
GNN encoder, which is adapted from UniMP [6], is applied to the
HLS designs to generate design embeddings. Both architecture and
design embeddings are concatenated and fed into another MLP for a
regression task. ATAPP, to our knowledge, is the first work to predict
power across FPGAs based on both FPGA architecture and HLS
designs. In this paper, we target Xilinx FPGAs as an example, but our
approach is extendable to other FPGA vendors and academic FPGA
architecture research. Our contributions are summarized as follows:

« We propose a GNN-based model ATAPP, an architecture-aware
and technology-aware power prediction model. It is trained on
seen FPGAs and seen designs (circuits) but can make power
prediction for both unseen FPGA architectures and designs.

o We apply positional encoding to efficiently encode the FPGA
architecture features at the tile level and generate FPGA
architecture embeddings with a MLP model.

« A GNN encoder based on UniMP layer is developed to generate
graph embeddings aware of switching activities, generated with
IR codes and FSMD model.

o The experimental results show that ATAPP can predict dynamic
power with a 13.09% error on average.

II. RELATED WORK

Machine Learning for EDA. Machine Learning (ML) algorithms
have gained popularity in the Electronic Design Automation (EDA)
domain due to their extremely high efficiency, high quality [7], and
owing to their great potential to solve NP-complete problems which
are common in EDA domain. While traditional analytical solutions,
on the other hand, lead to huge time and resource consumption. ML
models have shown remarkable success in various design phases
of the EDA flow, such as High-Level Synthesis (HLS), [1], [2],
[8]-[15], logic synthesis [16], [17], and placement and routing in
physical design [18]-[22]. As [7] points out there are four major
tasks specifically for HLS: (1) Result prediction including timing,
resource usage, power, maximum frequency, throughput, area,
latency and operation delay [11], [15], [23]; (2) Cross-platform
performance prediction such as performance prediction for new
FPGA platforms and performance prediction for new applications
through the execution on CPUs [13], [24]; (3)Active Learning where
DSE (Design Space Exploration) for HLS is performed and ML
models are used as surrogates for actual synthesis when evaluating
a design [10], [25]; (4) Improving optimization algorithms where
ML models are used to substitute traditional algorithms for hyper-
parameter or configuration selection [26], [27]. Our work focuses
on power prediction for HLS designs on unseen FPGA platforms.

Machine Learning for Power Estimation. Traditional accurate
power analysis is usually inefficient due to long-running synthesis
and simulation. Power is computed from the switching activities of
individual signal nets and the capacitive load they drive. The approach
is very accurate and serves as the sign-off standard; however, it comes
with a very long turn-around time in simulation and computational
cost. To address the problem, ML techniques have been widely
employed in every design cycle to perform power estimation includ-
ing architecture-level power prediction [28]-[30], RTL stage power
modeling [31]-[39] and HLS stage power estimation [1], [2], [13]-
[15], [40], [41]. Compared to architecture-level power estimation,
HLS designs provide a closer look of the hardware designs, and thus
more accurate power estimation can be produced. Althgouh RTL-
based power evaluation is more accurate, HLS-level power estimation
can save significant time without losing much fidelity of results. HL-
Pow [2] adopts Convolutional-Neural-Networks (CNNs) to infer the
measured power onboard. They generate the switching activity on the
C-level operators and further link them to RTL operators with HLS
report mapping information. The switching histogram is built for each
operator and fed into their CNNs to infer the power. PowerGear [1],
on the other hand, uses graph-neural networks (GNNs) to perform the
estimation. They extract the switching activities in a similar way as
HL-Pow and recover a graph with operators and the switching charac-
teristics. The graph samples are then used in a GNN model to infer the
dynamic power. Unlike the previous two works, HLSPredict [13] uses
Random Forest (RF) and Artificial Neural Network (ANN) to predict
the power of HLS design with performance counters on a desktop
CPU as features. All of the above-mentioned works perform well for
the same FPGA they are trained with, but their models are not aware
of FPGA architectures restricting their model usage on single FPGA.
Our work aims to provide an FPGA architecture-aware power model
so that it can predict power for HLS designs on unseen FPGAs.

III. PROBLEM FORMULATION

In this work, we aim to predict the power for an unseen design
implemented on an unseen FPGA using an ML technique. For this
matter, we need to first define and solve the following problems step
by step:

Problem 1: Generate the FPGA architecture representation.
The architecture features should be both representative of the FPGA
characteristics and compatible with machine learning algorithms. The
key challenge is to find a good architecture representation ensuring
sufficient granularity to reflect relevant details while avoiding
unnecessary complexity that could hinder model generalization.
Therefore, we split the FPGA architecture representation into several
categories that can highly impact power consumption for the device
denoted as d: resource counts and types 3 such as LUTs, flip-flops,
DSP slices and BRAM, technology parameter and voltage levels ~
and the layout map J of resources and switch boxes. We consider a
device is determined by these three factors d(3,7,0).

Problem 2: Generate the design (circuit) representation with
switching activity It is a common way to use a graph to represent
a HLS design [1], [11]. The graph should sufficiently represent the
hardware dataflow as well as the switching behavior of the entire
design. Therefore, for the graph G =(V,F) where V and E represent
the node and edge set, respectively, every node in the graph can be
used to represent the operator and every edge in the graph can be
used to represent the switching behavior on that path.

Problem 3: Build the prediction model with both the design
(circuit) and the unseen FPGA architecture. Let g be the HLS
generated codes with switching activities o on a FPGA device d with
resource and interconnect representation 3, technology parameter -y
and layout map J. Let P be the the ground-truth power generated
by the vendor FPGA implementation and simulation tool:

P=F(g(),d(57,9)) M

The goal is to find a hypothesis H that approximates the results of
function F' for any given HLS generated codes g with any switching
activities & on any FPGA device d that can be defined by the resource
and interconnect features r, technology parameter ¢ and layout map d:

minLoss(F(g(a),d(8,7,6)),H (9(c),d(5,7,0))) ()

IV. METHODOLOGY

The objective of our study is to generate a general ML-based
model which can make power predictions based on the FPGA
architecture and design representation. As discussed in Section III,
our solution mainly includes an effective FPGA architecture and
representation of the HLS design, as well as a model construction.
ATAPP is trained with a set of FPGA architecture, design overlay on
that FPGA and the associated ground-truth power. It can then make
prediction with unseen FPGA architecture and design representation.
We discuss how the architecture representation is encoded in details
in Section IV-A and how the design representation is generated
in Section IV-B. Section IV-C discusses the detailed view of the
model construction and how the architecture and design embeddings
are produced. Based on the definition of architecture and design
features, we generate our own dataset for our studies.

A. Architecture representation

It is important to capture features of FPGA architecture to make
prediction for unseen FPGAs, but it is not straightforward to feed
power-related FPGA architecture features directly to an ML-based
model since not all features are numeric. Representing an FPGA
architecture, however, in a numerical way poses several challenges
due to the inherent complexity, flexibility and highly configurable
nature of FPGAs. These challenges arise from the spatial structure
of the architecture, for example, how to arrange the basic unit
on the fabric matters a lot to the implementation and hence the

Device OO0 D00 00r D00 Ooor o000
OO UL 00| 000000l |[00000n) 000
000 [D0OD00| |[00o&a0l800000| |00
o o O |5 ot
SLR o | o
Dol oo ood_mee FER0] |[00cicnn| |00
0 O R o O
000000 o00L000000L000000lLIo0D
o s T (|
00| (000000l 1000400 |0000oal |ooo
00| (000000l |[000 000l |[00go0onl |00
0 O o e o o O

Fig. 3. FPGA Architecture Terminology: Super Logic Region (SLR), Fabric
Sub Region (FSR)

power consumption of the same HLS design but to make these
arrangements consumable by an ML model requires extra effort.

As discussed in Section III, we define the power prediction
problem scoped by resource and interconnect representation,
technology parameters and layout map. The resource representation
and technology parameters can be expressed as numeric values.
Therefore, in order to explore the effect of these features on power
prediction, we further define the FPGA type within the AMD/Xilinx
UltraScale+, UltraScale and 7Series families. The resource count is
one of the important features for the capability of an FPGA device.
Therefore, the number of these resources, E,.s (DSP, LUT, FF and
BRAM), are included as key features. Even though the UltraScale
and UltraScale+ FPGA devices use different DSP structure from
7Series, we do not observe any obvious number of utilized DSP
difference between the devices when implementing the same HLS
design. All the FPGA devices mentioned use the same structure of
other units, therefore, we do not go deeper to reach the gate-level
implementation the basic components. Besides the available resource
counts, technology parameters F., including technology node and
operational voltage, are also critical to the power dissipation.

When it comes to spatial features of the FPGA architecture, we
need to first define which abstraction level to reach. In Xilinx FPGAs,
there are six major levels of hierarchy - the entire device all the way
down to building blocks. They are Device, Super Logic Region
(SLR), Fabric Sub Region (FSR), Tile, Site and Basic Element of
Logic (BEL) [42]. The first four hierarchies can be seen in Fig. 3. The
device is at the highest level of Xilinx architecture and it is composed
of replicated FSRs. SLRs are present in certain devices and each
SLR contains a 2D array of FSRs. FSR is a 2D array of tiles in the
fabric. Each tile is an instance composed of multiple sites and each
tile has a unique name with a coordinate suffix. Not all tiles contain
sites (there exist NULL and empty tiles in Xilinx terminology), but
those that do can have more than one. A site is referred to as a group
of related elements and their connectivity. Similar to a tile, each site
is associated with its own coordinate grid and there is a chance that
two sites share the same grid space. The site type includes SLICEL
and SLICEM which are the most common site types and are the
basic configurable logic building blocks (CLBs) that contain LUTs
and FFs. At the lowest level, the atomic unit is a BEL. BELs are
the smallest, indivisible, and representable component in the fabric
of an FPGA. In order to collect the aforementioned information, we
utilize RapidWright [42], which is an open source Java framework
that provides accurate device model views of all Vivado-supported
Xilinx devices including 7Series, UltraScale and UltraScale+. The
encoding flow of the FPGA architecture includes several steps and
is summarized in Fig. 4. We introduce the process in detail below.

O FSR extraction. Since each device is composed of several
similar FSRs, modeling every FSR separately is not required to

TABLE I
FEATURES USED IN OUR MODEL

[Feature category | Format [

Details |

Architecture 360 1 x4 matrix with PE: AFE Resource types and the arrangement of resources on fabric
Design Graph data with node and edge DFG recovered from IR codes, FSMD model and post-HLS reports
attributes: G=(V,E) and metadata | including achieved clock period, overall latency and resource utilization
Architecture] Availablg resource counts on the Qevice, # of rows and c_olumns of FSR,
Metadata A vector of size 21: Eyes||Et # of valid rows and columns of tiles, technology node (1n.nan0meters),
voltage levels on the device (Vecint,Vechram €tc.), the size of FPGA

DataBase via RapidWright |

o
2
8
i
g
2

Device oo Tite[][] collection
%EE EE% i i o FSR extraction l:lD D D Dl:l
o o o i [Devesgmonregony || |UOIL
ool 1000 O i bovengemest |(JJ0| |O0C]
%E E D EE% i i ClockRegion.ContainsTile() l:l D D D D l:l
— = Extract tile map
—— IRmENE__§EE e Tile.getName()

String table with Tile names

CLEL_L_X13Y39|...
CLEL_L_X13v38]...
CLEL_L_X13Y37|..
CLEL_L_X13V36|...

INT_INTERFACE_L_X14Y19 |...
INT_INTERFACE_L_X14Y18 |...
INT_INTERFACE_L_X14Y17 |...
INT_INTERFACE_L_X14Y16 |...

CLE_M_X15Y39|...
CLE_M_X15Y38|...
CLE_M_X15Y37 ...
CLE_M_X15Y36 ...

CLEL_L—> CLEL
CLEM_L—> CLEM

INT_R—> INT > LR
...... CLEL_X13Y39 |.. |INT_INTERFACE_X14Y19 .. |CLEM_X15Y39
CLEL_X13Y38 .. |INT_INTERFACE_X14Y18 . |CLEM_X15Y38
CLEL_X13Y37 ... [INT_INTERFACE_X14Y17 .. |CLEM_X15Y37
CLEL_X13Y36 |.. |INT_INTERFACE_X14Y16 . |CLEM_X15Y36
6 Dimensionality reduction o Encode each tile type
A 4 |
Comp ; d Featt"e i N (360X1X4) CLEL>1, CLEM—>2, INT->3, Paddng—> 0
[E11 Ez: Ezeonl |||
ie Positional Encoding E'1 1 E2 1 000 E'3 Gt 1
Output Embeddings E E E
1,2 2,2 360,2
[P(E11) P(E31) P(E360,4)] ; : :
1,1 2,1 360,1 : : :
(B, Ei, Ej01] E180 Ezs80 E360,80

Fig. 4. FPGA Architecture Encoding

create a representation of the entire FPGA architecture. There-
fore, we choose to extract tile information from one of the FSRs.
Specifically, Device.getDevice () is firstly used to choose
the FPGA we want to extract, Device.getClockRegion ()
is used to extract the clock region. The FPGA tile collection
is extracted with Device.getTiles (). We check all the tiles
and reduce the tile collection down to the selected FSR with
ClockRegion.containsTile (). Since every device may have
different number of FSRs, the number of rows and columns of FSRs
should be also included. They are included in the metadata and
appended to the final embeddings.

@ Extract tile map. Once we obtain the tile collection of the
selected FSR, the next step is to transfer these tile objects into a
string table that is easy to understand and parse. Tile.getName ()
is used to find the name of each tile. Every tile name is composed
of the resource type as its prefix and the grid location as its suffix.
For example, INT_X14Y519 refers to a switch box tile located at
grid (14, 519). Before we advance to the next step to encode the
string table, we need to reduce the resource space first, since the
total number of unique tile types can be too large and not all of them
are frequently used in the device. The tile type counts range from
180 up to around 360, and to encode all of them incurs too much
sparsity when generating the embedding and training may become
difficult as a consequence. Therefore, we select the tile that includes

a specific resource type and remove others from our string table.
Seven tile types are selected and they include CLEL, CLEM, INT,
INT_INTERFACE, DSP, BRAM, BRK where CLEL, CLEM refer
to the tile containing CLB, INT, INT_INTERFACE refer to the tile
containing switch box and BRK refers to a break tile that disallows
any crossing. However, each tile name cannot exactly fall into the
seven categories due to the inconsistent naming nature in the FPGA
series, for example, CLBLL_L is used in 7Series FPGAs but CLEL_L
is used in others. Therefore, we check the name of each tile and
determine where it belongs: @ All tiles with name containing CLEL
belong to CLEL. @ CLBLL is encoded as CLEL. CLBLM and CLE_M
are encoded as CLEM. @ NULL tiles encoded as one of DSP, BRAM
and BRK based on its column. @ INT and INT_INTERFACE are
encoded seperately. With the above rules, more than 97% tiles from
FSR can be encoded into our selected seven tile types and almost all
the grids are occupied by them.

© Encode each tile type. Once we complete the renaming of the
string table. We should encode the table into a matrix of embeddings.
We notice that each grid location, which is identified by the suffix
_X#Y# of each string, contain no more than 4 tiles. Therefore, each
embedding should be a size 4 vector. For the grid which has less
than 4 tiles, pad the embedding with a dummy 0. An example
tile [CLEM_X31Y815, INT_X31Y815, CLEL_X31Y815] can
be encoded as a single embedding [2, 3, 1, 0].Considering that
the grid size for FSR is not identical across different devices, we de-
fine the matrix size to be 360 columns x 80 rows which is larger than
the largest grid size of our selected FPGAs (350x77). We add zero
padding to the matrices for the empty place. We end up generating
a 3d matrix with size of 360x80x4 (#columns x#rows X #channels).

O Dimensionality reduction. Xilinx leverages a columnar archi-
tectural approach to tile layout. That is, with a few exceptions, all tiles
within a column are of the same type but tiles occupying the same row
are typically different types. Therefore we can further compress the
matrix size from 360x80x4 into 360 1 x4 since each row is simply
a replicate of the first row. Extra metadata is needed to indicate the
number of rows and columns with valid tiles (not padding zero). The
embeddings eventually becomes a 360x1x4 with zero-padding at
the end.

©® Positional Encoding. Since the sequence to place the tiles on
fabric is critical to solving the power prediction, we use Positional
Encoding (PE) to encode the resource layout of FPGA devices. PE
is a key concept in transformer models [43], designed to provide
information about the order of sequence or spatial elements. Since
transformer architectures are inherently permutation-invariant, they
lack an innate sense of sequence order, which is critical for tasks
involving sequential/spatial data. Hence, PE is added to the input
embeddings to include order information. This encoding can be
learned or predefined; a popular approach uses sinusoidal functions
with different frequencies to generate unique values for each position
in the sequence. This method ensures that the positional encoding
generalizes to sequences of varying lengths and maintains properties
conducive to understanding relative and absolute positions. A typical

Ccode

int foo() {
k = a0*b0+c0;
out =k —al*bhl;

IR code

int foo() {
id=1: %1 = mul i32 %2, %3
id=2: %4 = add i32 %1, %5
id=3: %6 = mul i32 %7, %8
id=4: %9 = sub i32 %4, %6

IR code with tracer

int foo() {
id=1: %1 = mul i32 %2, %3
trace(0, mull, %1, %2, %3)
id=2: %4 = add i32 %1, %5
trace(1, add1, %4, %1, %5)
id=3: %6 = mul i32 %7, %8
trace(2, mull, %6, %7, %8)
id=4: %9 = sub i32 %4, %6
trace(3, subl, %9, %4, %6)

FSMD info

<obj>
<id>1</id>
<opcode>mul</opcode>
<rtihame>mul1</rtihame>

°

Timing | RTLid Switching

)

1 mull %1, %2, %3

2 mull %6, %7, %8

Resource info
Instance | BRAM | DSP | FF | LUT

o

! SA%6)
| AR(%6) |

| mmmmmmm el
_ | IRtype
y IR opcode
! resource info

1 toggling info

fu_19251p1|0 |2 |121]700

Fig. 5. Design representation generation flow
PE equation is defined as:
PE(pos 21y = sin(pos /10000%/ %)
PE(1os,2i41) = cos(pos/10000%"/%)

where pos is the position of the input embedding in the sequence.
i is the index of the dimension in the embedding vector and d is
the dimensionality of the embedding which is 4 in our case. The
positional encoding is calculated and directly added to the input
embeddings to generate output architecture embeddings AF.

B. Design representation

The power-aware design representation is mainly composed of
two parts. The first is the design itself including the number and
types of operators and the path to link these operators. The second
component is the behavior of these operators which is normally
represented as switching activities. Therefore, in order to correctly
represent the two factors, IR codes with FSMD model generated by
HLS tools are chosen. Similarly in [1], [41], the design generation
flow used in ATAPP is summarized in Fig. 5. Three main files
generated from HLS tools are used: IR codes, FSMD model and
resource utilization for each operator. In order to trace the toggling
behavior of each operator, a trace function is inserted after every
important IR instruction. With the IR-level simulation, the behavior
of each IR operator can be recorded. With the FSMD model, each IR
operator can be mapped to a specific RTL hardware operator, the IR
operators sharing the same hardware resources can be merged and
a graph close to the hardware can be generated. For the generated
graph G = (V, E), where V and E represent the node and edge
set, respectively, every node in the graph Vv € V represents a IR
operator with attributes that include opcode, opcode type, input, and
output switching activities. Every edge in the graph Ve; ; € E where
e;,; is the edge with ¢ as the source and j as the sink. The edge e; ;
contains switching activities SA; ; and the activation ratio AR, ;:

SA;, = S HD(vi(k),vi(k—1)) AR, = N 3)

L L

where HD refers to hamming distance, L refers to the latency of
the design and N refers to the number of execution cycles that
cause the change of the vertices v;. The H D inside S A accumulates
in every cycle when the vertices change. In addition to these two
switching features, the edge type is also encoded and added to the
edge attributes.

C. Predictive Model

The features and format of the features used in our model are
listed in Table II. The detailed structure of ATAPP is shown in Fig.
6. It is made up of three major neural networks: a GNN encoder to

generate graph embeddings for design representation, a MLP model
used to generate architecture embeddings, and another MLP model
used to perform power regression task.

GNN encoder: Edge attributes, including switching features, are
essential to perform power prediction. However, both GCN [44] and
GAT [45] overlook the edge embeddings. Although PowerGear [1]
propose an edge-expressive GNN, the convolution is performed on
each node with neighbor edges where the neighbor nodes and further
edges are not fully utilized. Moreover, the number of learnable edge
weights is restricted by the number of edge relation types that cannot
represent varieties of capacitance in circuits. UniMP [6], inspired by
Transformer [43] used a different aggregation mechanism on each
edge. It builds attention coefficients a;,; with both edge and node
attributes in every UniMP layer:

(W) (W B+ Wae,)

(C))
vD

where [refers to the layer, e; ; represents the edge pointing from

vertices v; to v;, h; refers to the node embedding at vertices v;,

D is the hidden size of each head. In the end of the layer, Each

node embedding is updated with message aggregation from the
destination j to the source ¢:

hé“’l): Z aflz (W4U§l)+6i,j)
JEN()

0 _
a; ;=softmaz (

(&)

To generate one vector representation hy; for the entire graph, we
aggregate all the node embeddings for every UniMP layer in the
last sum layer and further concatenate the graph embedding with
the design metadata hp; extracted from post-HLS reports and it
includes achieved clock period and latency. The aggregation and
concatenation are formularized as follows:

he=Y_ > h,
leLveV
where L is the set of indexes of GNN layers and V is the set of
vertices in the graph. The aggregation of all nodes across layers can
enhance the generalization ability of the model. Our GNN model is
made up of 4 UniMP layers, 3 ReLU activation layers, and 1 sum
layer.

MLP encoder and MLP decoder: we use the MLP to encode
the architecture because the feature space is relatively simple. The
MLP encoder is made up of 2 hidden layers. The MLP decoder is
used to perform power regression task and is composed of 2 hidden
layers. Every MLP hidden layer is followed by ReLU activation.
The power estimation Pe.s: is calculated as follows:

ha=hg||hm 6)

Pest=MLPi(hg||ha), ha=MLP(hagl|Et||Eres) (7)

V. EXPERIMENTAL RESULTS

A. Experiment Setup

Our dataset includes 5,391 designs for each FPGA (over 43,000
in total). These designs are generated from benchmark kernels of
intermediate complexity that can be used as building blocks of larger
applications. Specifically, we selected kernels from the widely used
MachSuite [46], CHStone [47], and Polybench [48] benchmark.
They include kernels with different computation intensities including
linear algebra operations on matrices and vectors, data mining
(correlation and covariance), stencil operations, encryption, and
a dynamic programming application as shown in Table III. We
automate the HLS design generation using HLSFactory [49], which
is a framework designed specifically for the HLS dataset generation.

ion1
ayer2
ion2
ayer3
ion3

Activa
UniMP
Activaf

S a
=
&S

Graph Data Generated
with IR codes and

Design\

= Metadata
o
o g (clock,
Q —> vg’ — latency)

~

Graph embeddings

FSMD model etc.

Aggregate node and
metadata into a vector

Training

[T

8 o o
Dataset , — MultiL

HiEtEn e —> @ - [El 1 Enr 1] ulti-Layer
miin i om Embeddings AE Concatenation ~ Perceptron
T Positional of embeddings decoder

FPGAlayoutfrom g, jing Architecture Multi-Layer Architecture

RaPIderght Metadata (Tech, E, Perceptron embeddings

Archit m in, neration| and Resource, E,) encoder

Fig. 6. Detail structure of ATAPP composed of design embeddings generatio
power regression is conducted with a MLP

Since it does not support the simulated power evaluation on the
implemented designs, we further run the simulation on the generated
designs to collect ground-truth power for each FPGA.

AMD/Xilinx Vivado HLS 2018.3 and Vivado 2018.3 are used
to synthesize and simulate the design to collect the design features
and ground-truth power. We selected 8 different FPGA devices
from AMD/Xilinx for our experiments as shown in Table IV, and
these 8 devices cover all the families supported by current Vivado
tool chain. The FPGA architecture representation is processed with
the raw data from RapidWright as discussed in section IV-A. Our
model is implemented and trained using PyTorch. The dataset of
designs for each FPGA is split into 85% for training, 15% are
reserved for testing purpose. The specific split of FPGA is discussed
together with the results in the evaluation section. We use the Adam
optimizer and a learning rate of 0.001 during the training.

We use three metrics to evaluate the prediction accuracy: corre-
lation coefficient (R), Mean Absolute Error Percentage (MAPE) and
Root Relative Square Error (RRSE), which are defined as following:

1 n
MAPE = 72
n3

Yi 7:’92

| % 100% Lz (i—9:)*
Yi

P (yi—1)?

where n refers to the number of samples, y; is the actual power and
y; is the predicted power of i), design, ¥ is the mean of the actual
power. These metrics bring a comprehensive and fair evaluation of
ML models from three aspects, where higher correlation R, lower
MAPE and RRSE indicate better model performance and accuracy.

RRSE=)]

TABLE III
BENCHMARK KERNELS USED FOR THE DESIGN DATASET PER FPGA
Benchmark suite Kernel application # Designs
atax, bicg, gemm, gesummv, k2mm,
Polybench k3mm, mvt, syrk, syr2k 4779
Machsuite spmv_crs, gtenc1l3d, 376
stencil2d
CHStone aes, gsm, sha 281

B. Baseline Solutions

While there exists no prior architecture-based power model with
ML technique to our best knowledge, AMD/Xilinx Power Estima-
tor(XPE) [4] and PowerGear [1] are selected to compare against
our work. XPE is a spreadsheet based tool that estimates the power
consumption of the design at any stage during the design cycle. It
is typically used in the pre-design and pre-implementation stages. It
accepts design information through simple design wizards, analyzes

n using GNN encoder and architecture embeddings generation using MLP; the

TABLE IV
OVERVIEW OF CHARACTERISTICS OF FPGAS USED IN EXPERIMENTS

Series Device | Tech #LUTs #BRAMs | #DSPs
1 UltraScale+ zu9eg 16nm 274,080 912 2,520
2 | UltraScale+ vu3p 16nm 394,080 720 2,280
3 | UltraScale+ au25p 16nm 141,000 300 1,200
4 UltraScale vud40 | 20nm | 2,532,000 2,520 2,880
5 UltraScale kulls 20nm 663,360 2,160 5,520
6 7Series 7a200t | 28nm 134,600 365 740
7 7Series 7k480t | 28nm 298,600 955 1,920
8 7Series 7v585t | 28nm 364,200 795 1,260

them and provides detailed power and thermal information. However,
XPE is designed to estimate worst-case power and therefore the esti-
mated power tends to be larger than the ground-truth power, which is
generated with Vivado synthesis and simulation tools as described in
Section V-A. PowerGear, on the other hand, is a state-of-the-art GNN-
based power model for HLS designs. It constructs graph samples for
designs with HLS-generated reports and switching activities from
simulation. Their objective is to generate the model for single FPGA,
therefore, the model performs poorly when directly used in other
FPGAs. Before we delve into our major experimental results, some
preliminary experiments are conducted with these baseline solutions.

TABLE V
XPE ESTIMATION ERROR COMPARED TO
VIVADO IN DIFFERENT DESIGN PHASES FOR ULTRASCALE VIRTEX VU440
Psyn,Pimpi: POWER ESTIMATED BY VIVADO AFTER SYN AND IMPL

S'y"’lempl POWER ESTIMATED BY XPE AFTER SYN AND IMPL
{Act. Est.} {Psyn,Plyn} {Pimplvpilmpz}
MAPE 26.26% 5.03%
{ACt. ES[.} {P'melzp.;yn} {P'meh hls}
MAPE 37.78% 390.07%

XPE can estimate the power from any design cycle, but the
accuracy of XPE is largely dependent on how much information can
be entered into it. XPE considers the design resource usage, toggle
rates and many factors which it combines with the device models
to calculate the estimated power distribution. It accepts two primary
sets of inputs: @ device usage, component configuration, clock,
enable, and toggle rates, and @ device data models which are already
integrated into the tool. With the specification of designs extracted
from Vivado, XPE results still deviate from the Vivado results. A
preliminary experiment is conducted: we simulate the implemented
design and generate the switching activity in a vector file (. saif).
The vectors are then used in Vivado power estimator on both

ATAPP(MAPE=13.27%, R=0.89)
PowerGear(MAPE=44.56%, R=0.76)
) XPE(MAPE=471.93%, R=0.66)

)@ o ap®

ATAPP(MAPE=13.35%, R=0.90)
PowerGear(MAPE=54.00%, R=0.72)

103 4 XPE(MAPE=385.64%, R=0.58) C

o

102 4 102 4

10! 4

Predicted Power(mWw)

ATAPP(MAPE=12.75%, R=0.90)
PowerGear(MAPE=40.22%, R=0.74)
> XPE(MAPE=390.07%, R=0.62)

LR X =)

1034

8\

1034

102 4
102 4

101y

ATAPP(MAPE=13.18%, R=0.89)
PowerGear(MAPE=48.43%, R=0.71)
© XPE(MAPE=385.64%, R=0.59)

100 4

T T T T
103 10t 102 103

FPGA1l Measured Power(mW)

T T T T
10t 102 103 103

FPGA2 Measured Power(mW)
W, _

A

103 4

102 4 102 4

he &Y
ATAPP(MAPE=12.74%, R=0.90)
PowerGear(MAPE=43.09%, R=0.74)
XPE(MAPE=419.32%, R=0.64)

ATAPP(MAPE=13.12%, R=0.88)
PowerGear(MAPE=41.83%, R=0.74)
XPE(MAPE=405.17%, R=0.60)

10t 4

Predicted Power(mW)

FPGA3 Measured Power(mW)

103 4

ATAPP(MAPE=13.49%, R=0.89)
PowerGear(MAPE=42.28%, R=0.75)
XPE(MAPE=387.79%, R=0.52)

10" 4 10t 4

ATAPP(MAPE=12.78%, R=0.91)
PowerGear(MAPE=42.59%, R=0.74)
XPE(MAPE=387.96%, R=0.65)

1004

102 10°
FPGA6 Measured Power(mW)

102 10°
FPGA5 Measured Power(mW)

102 10°
FPGA8 Measured Power(mW)

102 10°
FPGA7 Measured Power(mW)

Fig. 7. Prediction vs ground-truth for dynamic power consumption of all designs. The black line in the middle of each figure indicates zero error (i.e.
predicted power equals to the ground-truth power). ATAPP: leave-one-out strategy is used, the model is tested with the designs on one FPGA and trained
with the designs on all other FPGAs. 8 models are trained and tested independently. PowerGear: train with the designs on FPGAS8 and test with the designs
on FPGA1-FPGAT7; train with the designs on FPGA1 and test with the designs on FPGAS. Blue - ATAPP; Red - PowerGear; Green - Vivado XPE.

synthesized and implemented design to generate dynamic power
Poyn, Pimpr respectively, the settings are also extracted as XPE
compatible files syn.xpe, impl.xpe. These files are then used
in XPE to estimate the core dynamic power P;yn,Pi’mpl. Vivado does
not support power report at HLS stage and there is no way to extract
.xpe file right after HLS. We use the HLS estimated resource and
default toggling rate 12.5% to estimate power with XPE, the core
dynamic power is denoted as P,;,. The XPE error is concluded in
Table V. The first tow {Psyn, Psyn} and {Pimpi, Pippi} indicate
that even with the same configuration, XPE still deviates from the
actual value. Compared to the predicted power of the target Pjypi,
as the amount of information accepted by XPE decreases, the error
increases significantly if no appropriate switching activity is entered.
PowerGear trains GNN models to predict the post-implementation
dynamic power. We use simulated power as ground truth power
rather than the measured power in the original paper. The GNN
model takes graph representation of HLS designs as input to make
prediction. Although it performs quite well on the same FPGA it is
trained on (MAPE=5.08%), since it is designed for prediction for
unseen FPGA power the error increases greatly when the FPGA
changes (MAPE=44.63%). The error comes from the difference in
FPGA architectures between unseen FPGAs and trained FPGAs,
and the model is not able to adapt to unseen FPGAs without
consideration of FPGA architectures since PowerGear is not an
architecture-aware power model, therefore, ATAPP is needed.

C. Model Evaluation

Fig. 7 and Table VI show the comparison of ATAPP over
PowerGear and XPE. ©® For ATAPP, 15% designs are split out for
testing purpose, these designs across all the FPGAs are not used
during the training. When it comes to the actual training, we split
all the data samples from one FPGA out, and train the model with
the rest of the data samples. Our model is tested with the separate
designs on the separate FPGA to ensure that both designs and FPGA
are unseen to our model. This level-one-out strategy is iterated and
applied to all 8 FPGAs. Specifically, all the designs on one FPGA
are reserved and not used for training, 85% designs on the rest

FPGAs are used for training. 15% designs on the reserved FPGA are
used for testing. Therefore, 8 models are generated independently
and each model is tested with unseen designs on an unseen FPGA.
@ For PowerGear, same 15% designs are split out in advance for
testing. The model is trained with all the rest designs on FPGAS8
and tested on all other FPGAs with the separate design. For the
result on FPGAS, the model is trained with the designs on FPGAI.
® For XPE results, we use the HLS estimated resource and default
toggling rate 12.5% to conduct the power estimation across all the
FPGAs. We do not use any post-HLS reports to make sure the
power estimated by three methods are from before the HLS stage.
In this way a fair comparison is guaranteed.

We have several key observations from the table and figure. First
of all, our ATAPP significantly outperforms original prior works for
all the power estimations on 8 FPGAs with much lower RRSE and
MAPE and higher correlation R. Secondly, the correlation of all
three methods are larger than 0.5. It can be seen from Fig. 7 that all
three methods follow the same trend as the ground-truth power and
it implies that all the three methods can correctly capture the design
complexity. Meanwhile, ATAPP is more aligned with the ground-
truth line with higher R value. It is expected that most of the green
dots (XPE estimation) are beyond the ground-truth line since XPE
tends to estimate worst-case power. Thirdly, XPE performs the worst
among the three methods due to the poor estimation of switching
activity. PowerGear can infer the switching activity from high-level
code simulation which leads to better estimation than XPE, however,
ATAPP performs better with the encoding of the FPGA architecture.
Fourthly, ATAPP performance is quite stable across the experimental
FPGAs: MAPEs are varying within [12.74%, 13.49%] (smaller is
better) and RRSEs are within [0.20, 0.24] (smaller is better). The
correlation metrics of ATAPP are around 0.90 (larger is better).
Therefore, ATAPP has good generalizability.

Further experiments are conducted to study the effects of the
positional encoding on our model performance. We remove the ©
Positional Encoding step in subsection IV-A and use the compressed
embeddings directly to train and test the model. Results are shown

TABLE VI
ACCURACY COMPARISON OF DIFFERENT METHODS
ATAPP: PREDICTION WITH DESIGN AND ARCH FEATURES (POS ENC=POSITIONAL ENCODING); LEAVE-ONE-OUT FOR TRAINING AND TESTING;
POWERGEAR: TRAIN WITH THE DESIGNS ON FPGAS8 AND TEST WITH THE DESIGNS ON FPGA 1-FPGA7;TRAIN ON FPGA1 AND TEST ON FPGAS;
XPE: ESTIMATES WITH DESIGN CHARACTERISTICS ON EACH FPGA SHEET

[Settings for ATAPP | ATAPP w/ Pos Enc | ATAPP w/o Pos Enc] PowerGear I Vivado+XPE |
Test Training Set MAPE RRSE R MAPE RRSE R MAPE RRSE R MAPE RRSE R
FPGA1 FPGA 2-8 13.27% 0.22 0.89 | 27.39% 0.48 0.81 44.56% 0.74 0.76 471.93% 9.73 0.66
FPGA2 FPGA 1, 3-8 13.35% 0.21 0.90 | 28.48% 0.47 0.80 54.00% 0.72 0.61 385.64% 5.34 0.58
FPGA3 | FPGA 1-2,4-8 | 13.18% 0.23 0.89 | 26.86% 0.46 0.79 48.43% 0.68 0.71 395.37% 6.74 0.59
FPGA4 | FPGA 1-3,5-8 | 12.75% 0.24 0.90 | 29.39% 0.48 0.82 40.22% 0.62 0.74 390.07% 7.58 0.62
FPGAS | FPGA 1-4, 6-8 | 13.12% 0.20 0.88 | 26.42% 0.45 0.81 41.83% 0.61 0.74 405.17% 6.86 0.60
FPGA6 | FPGA 1-5,7-8 | 12.74% 0.23 0.90 | 26.54% 0.47 0.81 43.09% 0.67 0.74 419.32% 6.96 0.64
FPGA7 FPGA 1-6, 7 12.78% 0.20 091 | 28.76% 0.48 0.79 42.59% 0.60 0.74 387.96% 6.99 0.65
FPGAS FPGA 1-7 13.49% 0.23 0.89 | 27.38% 0.46 0.79 42.28% 0.64 0.75 387.79% 5.85 0.52

Average 13.09% 0.22 0.89 | 27.34% 0.49 0.80 44.63% 0.66 0.72 405.41% 7.01 0.61

[0 ATTAP_FPGA1
[0 ATTAP_FPGA2

60 .0

[ATTAP_FPGA3
[ATTAP_FPGA4

73 PowerGear_FPGA1l

B PowerGear_FPGA3
ZA PowerGear_FPGA2

[ZA PowerGear_FPGA4

]
y

[
o
1
s

MAPE (%)
S
o

S
SN,
===
S

[

||l

i A TRl

Target Clock Period (ns)

=
=)

S

=
=

.
.

=)
=
o

Fig. 8. Both ATAPP and PowerGear are tested on designs with different
target clock periods on different FPGAs. The training settings, leave-one-out
strategy, are the same as shown in Table VI.

in the columns ATAPP w/o PE of Table VI. Compared to PowerGear
and XPE, it shows that ATAPP is able to provide better performance
with lower MAPE ranging within [26.42%, 29.39%], lower RRSE
[0.45, 0.49] and higher R [0.79, 0.81] due to the introduction of
FPGA architecture representation. However, ATAPP w/ PE performs
even better due to the feature embeddings with additional resource
positions over the FPGA fabric.

D. Robustness study on clock period

Designs generated by HLS are greatly affected by the user-defined
target clock period. Even with the same pragma and directive
settings, the HLS tool can still generate different designs depending
on the constraints, and one of the important constraints is the target
clock period. In order to achieve the target clock period, HLS
tools perform different operator scheduling and therefore generated
designs are different. We conducted further experiments to test the
model sensitivity to the designs synthesized under different target
clock period settings and results are shown in Fig. 8.

We used ATAPP which is trained with leave-one-out strategy to
guarantee one FPGA is unseen to the model (all the designs on one
FPGA are reserved and not used for training, 85% designs on the rest
FPGA are used for training), 4 models (FPGA1-4) are generated inde-
pendently. Every model is tested with 100 designs selected from the
rest 15% designs in its reserved FPGA. Since most of the designs in
the training are synthesized with the same target clock period (10ns),
we explicitly tune the 100 designs with different target clock periods,
we use the same pragmas/settings but different target clock periods
(Ins, 2ns, 3ns, 5ns, 10ns) to generate 500 designs (100 designs for
each clock period) per FPGA. The 100 designs on each FPGA are
used for testing the model sensitivity and results are shown in the Fig.

8. It is observed that ATAPP performs the best (~13%) when making
prediction for the designs with 10ns target clock period due to the
training designs are under the same configuration, but when testing
for the designs on the other target clock period, ATAPP can still main-
tain similar performance (13% - 15%) since the design representation
used in ATAPP is generated at post-HLS stage and it covers sufficient
information of the generated designs with different clock period.

In comparison, we also tested PowerGear with these designs and
results are shown in the bars of Fig. 8, the model is trained with 85%
designs on FPGAS8. PowerGear is not designed for predict power
for unseen FPGAs, therefore, we can observe an obvious accuracy
degradation compared to ATAPP. There is a similar observation
that the model performs the best on the designs synthesized with
10ns target clock period but maintain close MAPE for other designs
because PowerGear takes achieved clock period from HLS reports
as one of the features in the prediction.

VI. CONCLUSION

In this paper, we present ATAPP, an architecture and technology
aware power predictor for unseen FPGA architecture and designs. The
proposed method combines both FPGA architectural representation
and design representation to predict average dynamic power.
ATAPP extracts FPGA architectural features at the tile level to
form embeddings and further augments these embeddings with a
positional encoding mechanism to generate a better representation.
The design representation is a graph generated from the IR data flow
with FSMD model and operator switching activities at IR level. Our
experiments show that ATAPP provides an accurate estimate with
13.9% error in unseen designs with unseen FPGA architectures.
We also perform robust studies on clock period to ATAPP and
results show that our model can maintain similar error with designs
synthesized using different target clock periods.

VII. ACKNOWLEDGEMENT

We thank all anonymous reviewers for their detailed comments
on the paper and Nanditha Rao for her help on RapidWright
exploration. This work was partially supported by the National
Science Foundation grants 2326894, 2425655, and 2417658. Any
opinions, findings, conclusions or recommendations are those of the
authors and do not necessarily reflect the views of these funding
agencies. The authors also acknowledge the computing resources
provided by the Texas Advanced Computing Center (TACC).

[1]

[2

—

—
(98]
[t

[4]

[5]

[6]

[7

—

[8

=

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

Z. Lin, Z. Yuan, J. Zhao, W. Zhang, H. Wang, and Y. Tian, “PowerGear:
Early-Stage Power Estimation in FPGA HLS via Heterogeneous Edge-
Centric GNNS,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2022.

Z. Lin, J. Zhao, S. Sinha, and W. Zhang, “HL-Pow: A Learning-Based
Power Modeling Framework for High-Level Synthesis,” in Asia and
South Pacific Design Automation Conference (ASP-DAC), 2020.

P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An Introduction
to High Level Synthesis,” in IEEE Design Test of Computers, 2009.
“AMD Power Estimator (XPE).” [Online]. Avail-
able: https://www.amd.com/en/products/adaptive-socs-and-
fpgas/technologies/power-efficiency/power-estimator.html

K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. ElDafrawy, J.-P.
Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng, P. Pa-
tros, J. Luu, K. B. Kent, and V. Betz, “VTR 8: High Performance CAD
and Customizable FPGA Architecture Modelling,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), 2020.

Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and Y. Sun,
“Masked Label Prediction: Unified Message Passing Model for
Semi-Supervised Classification,” in International Joint Conference on
Artificial Intelligence (IJCAI), 2021.

G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen, J. Wu, Y. Xu, H. Zhang,
K. Zhong, X. Ning, Y. Ma, H. Yang, B. Yu, H. Yang, and Y. Wang, “Ma-
chine learning for electronic design automation: A survey,” ACM Trans-
actions on Design Automation of Electronic Systems (TODAES), 2021.
A. Sohrabizadeh, Y. Bai, Y. Sun, and J. Cong, “Automated accelerator
optimization aided by graph neural networks,” in ACM/IEEE Design
Automation Conference (DAC), 2022.

A. Sohrabizadeh, Y. Bai, Y. Sun, and J. Cong, “Robust GNN-based
Representation Learning for HLS,” in [EEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2023.

H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-
space exploration with High-Level Synthesis,” in ACM/EDAC/IEEE
Design Automation Conference (DAC), 2013.

E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang, “Accurate operation
delay prediction for FPGA HLS using graph neural networks,” in
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2020.

N. Wu, Y. Xie, and C. Hao, “IronMan-Pro: Multiobjective Design Space
Exploration in HLS via Reinforcement Learning and Graph Neural
Network-Based Modeling,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2023.

K. O’Neal, M. Liu, H. Tang, A. Kalantar, K. DeRenard, and P. Brisk,
“HLSPredict: cross platform performance prediction for FPGA
high-level synthesis,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2018.

N. Wu, H. Yang, Y. Xie, P. Li, and C. Hao, “High-Level Synthesis
Performance Prediction Using GNNs: Benchmarking, Modeling, and
Advancing,” in ACM/IEEE Design Automation Conference (DAC), 2022.
H. Mohammadi Makrani, F. Farahmand, H. Sayadi, S. Bondi, S. M.
Pudukotai Dinakarrao, H. Homayoun, and S. Rafatirad, “Pyramid:
Machine Learning Framework to Estimate the Optimal Timing and
Resource Usage of a High-Level Synthesis Design,” in International
Conference on Field Programmable Logic and Applications (FPL), 2019.
C. Yu, H. Xiao, and G. De Micheli, “Developing synthesis flows
without human knowledge,” in ACM/IEEE Design Automation
Conference (DAC), 2018.

W. L. Neto, M. Austin, S. Temple, L. Amaru, X. Tang, and P.-E.
Gaillardon, “LSOracle: a Logic Synthesis Framework Driven by
Artificial Intelligence: Invited Paper,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2019.

M. B. Alawieh, W. Li, Y. Lin, L. Singhal, M. A. Iyer, and D. Z.
Pan, “High-Definition Routing Congestion Prediction for Large-Scale
FPGASs,” in Asia and South Pacific Design Automation Conference
(ASP-DAC), 2020.

M. Kou, J. Zeng, B. Han, F. Xu, J. Gu, and H. Yao, “GEML: GNN-
based efficient mapping method for large loop applications on CGRA,”
in ACM/IEEE Design Automation Conference (DAC), 2022.

Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen, and
J. Hu, “RouteNet: Routability prediction for Mixed-Size Designs
Using Convolutional Neural Network,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2018.

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

(36]

[37]

[38]

(39]

[40]

C.-C. Chang, J. Pan, T. Zhang, Z. Xie, J. Hu, W. Qi, C.-W. Lin, R. Liang,
J. Mitra, E. Fallon, and Y. Chen, “Automatic Routability Predictor
Development Using Neural Architecture Search,” in [IEEE/ACM
International Conference On Computer Aided Design (ICCAD), 2021.
Y.-H. Huang, Z. Xie, G.-Q. Fang, T.-C. Yu, H. Ren, S.-Y. Fang,
Y. Chen, and J. Hu, “Routability-Driven Macro Placement with
Embedded CNN-Based Prediction Model,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2019.

S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Young, and Z. Zhang, “Fast
and accurate estimation of quality of results in high-level synthesis with
machine learning,” in International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2018.

H. M. Makrani, H. Sayadi, T. Mohsenin, S. rafatirad, A. Sasan, and
H. Homayoun, “XPPE: cross-platform performance estimation of
hardware accelerators using machine learning,” in Asia and South
Pacific Design Automation Conference (ASP-DAC), 2019.

P. Meng, A. Althoff, Q. Gautier, and R. Kastner, “Adaptive Threshold
Non-Pareto Elimination: Re-thinking machine learning for system level
design space exploration on FPGAs,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2016.

R. G. Kim, J. R. Doppa, and P. P. Pande, “Machine Learning for
Design Space Exploration and Optimization of Manycore Systems,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2018.

Z. Wang and B. C. Schafer, “Machine Leaming to Set Meta-Heuristic
Specific Parameters for High-Level Synthesis Design Space Explo-
ration,” in ACM/IEEE Design Automation Conference (DAC), 2020.

J. Zhai, C. Bai, B. Zhu, Y. Cai, Q. Zhou, and B. Yu, “McPAT-Calib:
A Microarchitecture Power Modeling Framework for Modern CPUs,”
in IEEE/ACM International Conference On Computer Aided Design
(ICCAD), 2021.

Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-RTL,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” in IEEE/ACM International
Symposium on Computer Architecture (ISCA), 2014.

Q. Zhang, S. Li, G. Zhou, J. Pan, C.-C. Chang, Y. Chen, and Z. Xie,
“PANDA: Architecture-Level Power Evaluation by Unifying Analytical
and Machine Learning Solutions,” in [EEE/ACM International
Conference on Computer Aided Design (ICCAD), 2023.

Z. Xie, X. Xu, M. Walker, J. Knebel, K. Palaniswamy, N. Hebert,
J. Hu, H. Yang, Y. Chen, and S. Das, “APOLLO: An Automated Power
Modeling Framework for Runtime Power Introspection in High-Volume
Commercial Microprocessors,” in IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2021.

Y. Zhou, H. Ren, Y. Zhang, B. Keller, B. Khailany, and Z. Zhang,
PRIMAL: Power Inference using Machine Learning,” in ACM/IEEE
Design Automation Conference (DAC), 2019.

Z. Xie, S. Li, M. Ma, C.-C. Chang, J. Pan, Y. Chen, and J. Hu, “DEEP:
Developing Extremely Efficient Runtime On-Chip Power Meters,”
in IEEE/ACM International Conference On Computer Aided Design
(ICCAD), 2022.

J. Yang, L. Ma, K. Zhao, Y. Cai, and T.-F. Ngai, “Early stage real-time
SoC power estimation using RTL instrumentation,” in Asia and South
Pacific Design Automation Conference (ASP-DAC), 2015.

W. Fang, Y. Lu, S. Liu, Q. Zhang, C. Xu, L. W. Wills, H. Zhang,
and Z. Xie, “MasterRTL: A Pre-Synthesis PPA Estimation Framework
for Any RTL Design,” in IEEE/ACM International Conference on
Computer Aided Design (ICCAD), 2023.

P. Sengupta, A. Tyagi, Y. Chen, and J. Hu, “How Good Is Your Verilog
RTL Code? A Quick Answer from Machine Learning,” in IEEE/ACM
International Conference On Computer Aided Design (ICCAD), 2022.
C. Xu, C. Kjellgvist, and L. W. Wills, “SNS’s not a synthesizer: a
deep-learning-based synthesis predictor,” in IEEE/ACM International
Symposium on Computer Architecture (ISCA), 2022.

Y. Zhang, H. Ren, and B. Khailany, “GRANNITE: Graph Neural
Network Inference for Transferable Power Estimation,” in ACM/IEEE
Design Automation Conference (DAC), 2020.

W. R. Davis, P. Franzon, L. Francisco, B. Huggins, and R. Jain, “Fast
and Accurate PPA Modeling with Transfer Learning,” in IEEE/ACM
International Conference On Computer Aided Design (ICCAD), 2021.
J. Kwon and L. P. Carloni, “Transfer Learning for Design-Space
Exploration with High-Level Synthesis,” in ACM/IEEE Workshop on
Machine Learning for CAD (MLCAD), 2020.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

D. Lee, L. K. John, and A. Gerstlauer, “Dynamic Power and
Performance Back-Annotation for Fast and Accurate Functional
Hardware Simulation,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2015.

C. Lavin and A. Kaviani, “RapidWright: Enabling Custom Crafted
Implementations for FPGAs,” in International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in International
Conference on Neural Information Processing Systems (NeurIPS), 2017.
T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning
Representations (ICLR), 2017.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations (ICLR), 2018.

B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “MachSuite:
Benchmarks for accelerator design and customized architectures,” in
IEEE International Symposium on Workload Characterization (IISWC),
2014.

Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “CHStone: A
benchmark program suite for practical C-based high-level synthesis,” in
IEEE International Symposium on Circuits and Systems (ISCAS), 2008.
L.-N. Pouchet, “Polybench: The polyhedral benchmark suite,” 2012.
[Online]. Available: http://web.cs.ucla.edu/ pouchet/software/polybench/
S. Abi-Karam, R. Sarkar, A. Seigler, S. Lowe, Z. Wei, H. Chen,
N. Rao, L. John, A. Arora, and C. Hao, “HLSFactory: A Framework
Empowering High-Level Synthesis Datasets for Machine Learning and
Beyond,” in ACM/IEEE International Symposium on Machine Learning
for CAD (MLCAD), 2024.

