
Characterization of Smartphone Governor
Strategies

Sarbartha Banerjee(&) and Lizy Kurian John

University of Texas at Austin, Austin, TX 78705, USA
{sarbartha,ljohn}@utexas.edu

Abstract. The voltage and frequency of the various components of a smart-
phone processor such as CPU cores, graphics, multimedia and display units can
be independently controlled by their own dynamic voltage and frequency
(DVFS) governors to fit the requirement of the workload. The dynamic change
of the voltage and frequency performed by governors is targeted either towards
achieving the optimal performance with the minimum energy consumption or
choosing a mode which requires minimum supervision of workload and minimal
change of DVFS modes (since changes in modes are accompanied by overheads
of switching).
This paper explores the behaviour of different governors run on a wide variety

of workloads and enlists the best strategy for different scenarios exemplifying
the need for workload characterization. We also analyze the performance and
power efficiency of workloads in a system having a common power source and
study their behavior when multiple such blocks are operating together pushing
the power source to its limit. Our results show that choosing the correct CPU
governor alone is not sufficient but tuning the DVFS of different resources is
necessary to achieve the best performance with minimum energy expenditure.
We observe that the powersave governor does not always give the best energy
efficiency. It was found to be sub-optimal for CPU intensive workloads due to
increased execution time. Moreover, the race-to-idle strategy was found to be
optimal for workloads in which one component is utilized for majority of the
time. These results demonstrate the necessity for characterizing workloads and
tuning the DVFS while distributing the power between the various components
based on the workload’s characteristics.

Keywords: SoC � Governor � Power budget � Race-to-idle � Pace-to-idle

1 Introduction

Getting desirable performance with optimum energy efficiency have become the major
design criteria for modern smartphones. This is primarily because battery technology
development has been much slower than processor development, with the form factor
of the phones limiting the battery capacity and the stringent thermal limit of the device.
To address this issue, all modern smartphones have multiple DVFS (Dynamic Voltage
Frequency Scaling) modes to run different components in the most efficient mode. In
typical DVFS, the frequency and the voltage of the processor is modified based on the
component utilization. Tuning the frequency of the essential component not only saves

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 120–134, 2018.
https://doi.org/10.1007/978-3-319-96983-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_9&domain=pdf

power but also increases performance in certain scenarios. In smartphones, sometimes a
single power source is shared among various components. There is a peak power limit
of the power source in addition to thermal constraints. These constraints led to the
development of new governor strategies which are not only focused on increasing
performance but also tackling the workload in the most energy efficient way.

The availability of DVFS in different components and a high number of DVFS
modes within a component makes the optimal choice very difficult. Moreover, pro-
viding the user with a satisfactory performance for prolonged period with high energy
and thermal efficiency has become a new paradigm.

One simple heuristic for power management using DVFS is to run the job on the
target system at the maximum possible frequency (maximum performance mode) and
then throttle down to minimum or deep-sleep state as quickly as possible. This method
is termed as race-to-idle. This method is simple, reduces latency and saves energy in
certain use cases. The energy saving comes from the fact that the processing unit is
active for the minimum amount of time and leakage power is saved in inactive modes.
But, its validity and usefulness is yet to be conclusively established for smartphones as
workloads tend to use different resources intermittently sometimes using multiple
processing units at the same time. More complex methods can optimally switch the
processor frequently to the optimum DVFS mode based on the workload performance
requirement by polling the resource usage and trying to finish it in the most energy
efficient manner. This is termed as pace-to-idle. But in such cases, some energy is
wasted monitoring the workload continuously. Moreover, mapping a workload
dynamically into heterogeneous clusters of multicore processors and various acceler-
ators like the GPU cannot be done without efficient workload behavior characterization.

Furthermore, there are situations when the smartphone is running on low battery.
Normally, the frequency of all the blocks are toned down to consume less energy. But
the increasing leakage current raises the question if it really increases the energy
efficiency when we need to run an application on the system at lower frequency?

Thus, understanding the workload behavior is essential while choosing the gov-
ernor. At least if one can classify the workload and figure out the functional units
needed, it will greatly help in choosing an appropriate governor for each resource.
Also, most of the governors are designed for the CPU. But global decision of the
various DVFS modes in an energy constrained system based on the workload improves
the power efficiency and less temperature rise of the smartphone system-on-chip (SoC).

Our study encompasses the analysis of various categories of governors for different
kind of workloads to explain the optimal strategy in a mobile platform. The race-to-idle
strategy has been shown to be effective for servers where the quality of service and
latency of the requests are important. But for mobile devices, an acceptable quality of
service is desirable within the bounds of power limit of the source must be provided
while respecting the thermal limits making it an optimization problem.

Some power-hungry governors are good for performance while some relaxed
governors might be power saving. With the availability of multiple DVFS modes, finite
DVFS switching time and workload detection, researchers are coming up with
improved governors that predict the pattern of the workload and choose the appropriate
DVFS point. The analysis shown in the paper is a start point for any governor designer
to make reasonable decisions for a governor.

Characterization of Smartphone Governor Strategies 121

The rest of the paper is organized in the following format: Sect. 2 provides
background about the DVFS modes, the governors and their characteristics. Section 3
elaborates on the experimental setup. Section 4 explains the workloads and bench-
marks used. Section 5 shows results of our experiments. Section 6 explains the
benchmark characteristics and their behavior with different governors. Section 7 pro-
vides our observations from the experiments conducted and conclusion in Sect. 8.

2 Background

The smartphone system on a chip (SoC) comprises of multi-core CPUs, a GPU and
multimedia units running on a separate DVFS point while sharing the same current
source. With the demand for new aggressive power saving techniques, designers have
added more voltage-frequency (VF) points to individual units and added governors for
independent control of different units. Power can be saved if one enables the desired
unit at the appropriate frequency. But switching the DVFS modes consumes energy
and has non-zero latency. Too much switching is also not desirable. In addition, every
unit can also be separately put in the different idle power modes like clock gating,
retention or deep sleep. All these low power modes have different wake up latency and
leakage current consumed.

2.1 Governors

In this section, we will first give a brief overview of the types of CPU governors present
in the Linux kernel of an android smartphone today and then go over some of the
common governors and frequency scaling points of other units in the SoC.

Performance Governor. This governor is a constant frequency governor which keeps
the system in highest possible voltage and frequency irrespective of the workload. This
is highly power hungry and the core latches itself to maximum frequency. Worth noting
is that this governor works best when a series of compute intensive job is run in the
system. Moreover, it also keeps the bus to DDR at its peak frequency. It doesn’t waste
extra time and power in DVFS switching. But keeping the processor in this frequency
can cause thermal throttling and unnecessarily running it near the peak current of the
supply. But once the processor run queue is empty, it goes back to the sleep state. It is
considered as a ‘race’ governor which finishes the job as quickly and goes to idle.

Interactive and Ondemand Governor. The ondemand governor [2] switches the
system in highest possible voltage and frequency whenever a job is scheduled and
immediately ramps down to lower frequency when the resource utilization fades. The
interactive governor find the optimal frequency based on the load average of the
system. If the load average is more than a pre-specified value, it switches to higher
frequencies. Similarly, if the load average is low, the ondemand ramps down imme-
diately while the interactive waits for a certain hysteresis time. This works well when
we have a sequence of compute intensive jobs interspersed with long delays. The
immediate return to low frequency ensures that it spends minimum time in the highest
DVFS mode. However, if the idle time between jobs is very low, this governor hops

122 S. Banerjee and L. K. John

between frequencies repeatedly. The Interactive governor adds a hysteresis timer on top
of the ondemand governor to filter some of the switching. This governor can be
considered as a pace’ governor which will adapt the frequency based on the workload
requirement.

Powersave Governor. Powersave governor is designed to save energy by running the
CPU at the lowest possible operating frequency. This gives slow response but reduces
average power in many situations and is often used when battery is low or during
thermal throttling. It also gives good performance when the application is using another
component of the SoC like the GPU with minimal CPU utilization but might falter in
certain cases as the overall energy consumption may exceed others due to significantly
higher runtime. It also fails to attain desirable QoS and provide poor user experience.

GPU Governors. Most of the chips have GPU as a proprietary unit, so the governors
supported are specific to the hardware used in the experiment. Since our test setup had a
Qualcomm Snapdragon processor, we will list down a couple of GPU governors.

Most of the fancy governors are largely pacing governors whose performance lie
between the performance and the powersave governors. Msm-adreno-tz is one such
governor which works like the interactive governor and tunes based on the GPUbusy
data stating GPU utilization. It also has performance and powersave governors which
are like the CPU counterparts working of GPU frequencies.

The optimization of the GPU governors can improve energy efficiency of the
overall system as it is a high-power resource. Thus, the above options do tell us that
battery power saving is not only limited to the CPUs but in every units of the SoC.
Similar changes can be done to the DDR frequency and multimedia components.

2.2 DVFS Points

Owing to the need to save power and to provide flexibility to choose the appropriate
mode to perform a task, hardware designers provide several DVFS points for different
resources. Our testing platform is a Dragonboard 410c [14] platform consisting of a
Qualcomm Snapdragon 410 processor having Quad-core ARM A53 processor with all
four cores running at the same voltage & frequency. The cores can be independently
put into low power mode but they cannot be run at different frequency. This Snap-
dragon processor supports the following eight different frequency points each having a
different voltage.

Apart from that the DDR memory also has different frequencies of 533, 400 or
200 MHz. Either it can be scaled independently or in tandem with the CPU frequency.
Similarly, the GPU has its own independent DVFS modes but shares the same power
rail as the CPU and others.

• 1209 MHz
• 1152 MHz
• 1094 MHz
• 998 MHz

• 800 MHz
• 533 MHz
• 400 MHz
• 200 MHz

Characterization of Smartphone Governor Strategies 123

Choosing wrong DVFS points for individual components may prevent providing
enough budget to the crucial component adversely affect performance. For instance, if
there are a lot of I/O operation or if a multimedia application is running, keeping the
CPU in performance mode will allocate a larger power budget from the current source
to the CPU and the multimedia unit will simply perform poorer due to lack of power
budget for this unit. In our test setup, we have observed a similar scenario by running
Geekbench 3 by keeping the CPU at different frequencies. It is observed that the
memory intensive tests that perform occasional computation perform poorly when the
CPU is in its highest frequency as simple computations can be performed in lower
frequency with same latency but without reaching the power limit of the device.
Moreover, there can be thermal throttling forcing all units to tone down its activity. It is
unique in smartphones as a lot of blocks share a single power source. Not only does it
show poor performance but also consumes higher leakage and clock tree power when
the processor fails to shut down when it is not required. Thus, choosing the correct
DVFS point for each resource is essential for efficient power budget distribution for
maximizing performance of the highest used resource.

2.3 Quality of Service

A governor should not only work towards energy efficiency but also provide user
acceptable performance. The performance need not be the best but needs to comply to
some standard. Researchers have collected user surveys to determine the level of user
satisfaction for mobile devices. We compiled QoS data from prior research [7–10] and
enlist them in the result section. Furthermore, we specify that the benchmark scores
should be within 95% of the maximum possible score attained by the device.

3 Experimental Setup

We used Dragonboard 410c [14] for the analysis of energy consumption across various
workloads and benchmarks. It contains a Qualcomm Snapdragon 410 consisting of
Quad-core ARM Cortex A53 processors running Android 5.1.1. There are shunt reg-
isters provided on board [15] to check the incoming current to the processor. The
reason of choice for this processor is its prevalence in value-tier market and the fact that
it has a shared power source. Below are some of the specifications of this processor are
listed in Table 1.

Table 1. Snapdragon 410c specification

CPU 4 x ARM Cortex A53 1.2 GHz
CPU arch 64 bit ARM V8 architecture
GPU Qualcomm Adreno 306 400 MHz
DSP Qualcomm Hexagon DSP
Memory 1 GB LPDDR3 533 MHz

124 S. Banerjee and L. K. John

The points across the shunt resistor (R77) on the board are tapped and a INA219 current
sensor is connected to measure the current. The output of the current sensor is sampled
using a microcontroller to get the data. A block diagram of the setup is shown in Fig. 1.

Some of the parameters of the hardware are tuned during the study of governor
behavior. It includes CPU governor, Governor tuning, DDR frequency, GPU fre-
quency, Thermal throttler, Hotplugging setting. All the parameters are tuned for every
run and then the workload is run in the system. The android debug bridge [14]
(ADB) is used for the measurements and various comparisons are performed.

4 Applications and Benchmarks

A brief analysis of some of the experiments performed are described in this section.
The results in term of scores and the normalized energy consumed in reported in
Table 2. Linaro workload Automation suite [16] is used to run a host of applications
explained in the Table 2 and standard benchmarks which includes the following:

Fig. 1. Block diagram of the experimental setup

Table 2. A description of the applications

Applaunch Launches either the calculator, browser or google Maps application when no other
application is running in the system

Multi_applaunch Launches calculator, browser and maps application in a sequence on top of one another

Video Playing a 720p video file in the native android video player
Audio Plays an audio file in the native android audio player

Maps Open google maps and perform a navigation task
Adobereader Scrolls, zooms and searches a word after opening a pdf file
Facebook Performs a series of tasks after logging in a facebook account including scrolling

through the wall, like a friend’s photo, post a status and comment on an existing post

Iozone Performs a series of IO performance tasks

• Antutu
• Geekbench
• BBench
• Nenamark

• Ebizzy
• Dhrystone
• Linpack
• Memcpy

Characterization of Smartphone Governor Strategies 125

5 Results

First, we provide a distinction between race-to-idle and pace-to-idle governor strate-
gies. The performance and powersave governors keep the CPU frequency at the max
and the min operating point. This accounts for the least governor software overhead
and no time wasted on voltage and frequency modulation. However, they cannot adapt
to phase changes. Performance governor is a race-to-idle governor. On the other hand,
the pace-to-idle strategies like the interactive and ondemand frequently changes DVFS
points based on CPU utilization. These works better in the application workloads which
interleaves different resources. A view of the number of switching is shown in Table 3.
Antutu shows frequency toggles in performance mode because of thermal throttling
pointing out the drawback of race-to-idle strategy in mobile devices. Interactive filters
out some modulation using hysteresis as compared to ondemand governor and per-
forms better in terms of performance and energy efficiency in most applications.
Moreover, the performance must meet minimum standards which we compile from
prior research and is enlisted in Table 4.

Some of these are benchmarks like the Antutu, Geekbench, Dhrystone and
Nenamark whose scores are directly reported in Table 5 when run with different
governors. Antutu and Dhrystone primarily stresses the CPU. The interactive governor
gives similar performance as performance governor but consumes more power because

Table 3. DVFS mode switching of different governors

Benchmarks Performance
governor

Interactive
governor

Ondemand
governor

Powersave
governor

Antutu 18 842 3809 0
Applaunch 0 1897 7463 0
Audio 0 43 112 0
Dhrystone 0 8 12 0
Geekbench 0 229 887 0
Homescreen 0 44 51 0
Linpack 0 31 83 0
Memcpy 0 10 12 0
Nenamark 0 1178 8383 0

Table 4. Quality of service of different user actions

Behavior Quality Application

Webpage load time 4 s BBench, firefox
Online video loading time 2–10 s Stream, Youtube
Facebook comment post 3 s Facebook
Interactive tasks 100 ms Applaunch, Adobereader
Video playback 30 fps–60 fps Video/Game rendering
PDF rendering 1–10 s Adobereader

126 S. Banerjee and L. K. John

it unnecessarily toggles the frequency. Nenamark is a graphics benchmark running
OpenGL-ES 2.0. The powersave governor gives best frame rate as the GPU governor is
tweaked to performance and bus frequency is changed while the CPU is in powersave
mode. This shows that changing the DVFS modes for the critical component not only
increases performance but also consumes less power. Applaunch of both single and
multiple application works best when the CPU is in performance mode as the QoS is
for the quickest application load time. Moreover, there is not much difference in
response time whenever we are launching light application like the calculator. The
effect is more pronounced when heavier or multiple applications are launched. Table 5
shows the performance of different applications and benchmarks. The values are
marked in green for the acceptable QoS and red for unacceptable ones.

6 Benchmark and Application Classification

A host of benchmarks and user workloads were run with different governors. The
workloads are classified in this section into the following categories:

6.1 CPU Intensive Workloads

These are the workloads that are compute intensive and works best when the processors
are at peak frequency. Race-to-idle scheme gives better performance and is often
energy efficient as well by reducing the number of DVFS switches and also keeping the
SoC active for the minimum amount of time. The pace-to-idle governors on the other
hand, suffer from too many unnecessary DVFS modulations. Interactive and ondemand
governor works good if the workload is continuously CPU demanding and behaves like
performance in Dhrystone [1]. This can be viewed in the minimal number of DVFS
modulations in Table 3. Figure 2 shows the average current of CPU intensive

Table 5. Performance comparison among different CPU governors and green ones have
acceptable QoS.

Workload metric Governors
performance interactive ondemand powersave

Antutu Score 19246 19038 19027 12201
Dhrystone DMIPS 4053 4053 4052 2679
Applaunch
calculator Launch time (s) 0.71 0.74 0.79 0.89
Applaunch
Browser Launch time (s) 1.007 1.02 1.07 1.46

BBench Runtime(s) 190.9 184.17 187.2 246.24
Adobereader Runtime(s) 77.14 79.14 79.95 103.61
ebizzy Total records/sec 2017 2011 1757 472
Nenamark Frames per second 35.6 35.2 34.9 37.4

Memcpy Bandwidth (in
MB/s) 3114 3060 2970 588

Characterization of Smartphone Governor Strategies 127

benchmarks. Applaunch of calculator (simple application) and firefox works fastest in
performance governor. Antutu benchmark shows that the performance has the highest
power efficiency while meeting QoS. Powersave consumes the least power as its
frequency is clipped to the lowest operating mode but it gives drastically poor per-
formance. Thus, if we can categorize a phase of a workload as compute intensive, we
can move to performance mode until the phase completes to get the maximum per-
formance and minimal DVFS switching overhead.

6.2 Intermittent CPU Workloads with I/O Operation

Some of the workload we tested like the BBench which loads saved webpages by I/O
operation and scrolls through the webpages which is CPU intensive works best in
pace-to-idle type of governors. Since the CPU is only used intermittently, interactive
governor is the most efficient as it lowers the frequency of the CPU while doing I/O
operation. The lowering of CPU frequency also provides more power budget to the I/O
unit and it can provide better response. Figure 3 shows that BBench is a heavy
benchmark and consumes good amount of current throughout its execution. Facebook,
Adobereader also are I/O intensive and saves CPU power during user interactions.
Geekbench also has a lot of memory operations where interactive aces out. Perfor-
mance governor scores better in the CPU intensive workloads of the Geekbench suite.

Fig. 2. Power comparison of CPU intensive benchmarks of different governors.

Fig. 3. Power comparison of user interactive applications of different governors.

128 S. Banerjee and L. K. John

We went in deeper into the Geekbench 3 workload and compared the race-to-idle
(performance) and pace-to-idle(interactive) strategies closely. The performance gov-
ernor aced in the compute intensive integer and floating point benchmarks. But due to
constrained power budget, it performs poorly in most of the memory benchmarks.
Since it clocked the CPU continuously at the highest frequency, it failed to provide
enough power to the memory bus degrading performance. On the other hand, the
interactive governor clocked the CPU at minimum operating point for simple opera-
tions and redirected the entire power to the memory bus giving better bandwidth as
shown in Fig. 4(a).

6.3 Application Requiring Other Blocks in the SoC

There are other applications like playing a video which requires the multimedia unit to
be active. The CPU can stay in the powersave mode while providing power budget to
the DDR and the multimedia unit to perform. Moreover, playing games require the
GPU to be in higher performance mode to render better user experience.

Fig. 4. (a) Geekbench 3 memory perf comparison between performance and interactive
governor (b) Geekbench 3 score comparison of different types of workloads.

Fig. 5. Power comparison of governors running applications using other resource

Characterization of Smartphone Governor Strategies 129

In Fig. 5, the GPU is in performance mode in the Nenamark benchmark and the
powersave not only consumes least power but also provides the highest fps as more
power budget is allocated to the accelerator. Thus, application-wise characterization is
useful to provide better power efficiency. Running in powersave ensures that the device
remains cooler for a longer period which is the normal usage pattern of video and audio
playback applications.

7 Observations

After running various types of workloads on all the different kinds of governors, it is
seen that choosing the correct governor in a battery-operated system-on-a-chip is a
multi-variable problem where one should consider the balance of activities in the
various units. Governors should also minimize thermal throttling hardware to attain
best efficiency and performance in addition to better chip life.

As mentioned in the introduction that a race-to-idle scheme works well for servers
because more importance is given on the performance, this scheme is thought to be a
poor fit for battery-operated devices. But our observation states that in compute
intensive workloads, the race-to-idle scheme performs better not only in performance
but also it gives better energy efficiency in some cases. In multicore devices, normally
there is provision of switching off each core into several idle low power states. So, if a
governor finishes the pending work in the minimum time and goes to idle, it will save
operating power. This strategy will work even better with technology shrinking as the
leakage current becomes comparable with the dynamic current. With more
application-specific units are put in the SoC, having a global governor controlling the
DVFS modes of every component based on workload characterization will be the
desired solution as we observe by classifying the workload and showing that CPU
powersave coupled with resource race-to-idle works better in scenarios which use
accelerators. The race-to-idle scheme also makes sharing of power source easier as the
units are active for the minimum amount of time. Last but not the least is the fact that
race-to-idle schemes give better performance most of the time.

The pace-to-idle strategy also performs well in multiple scenarios where multiple
resources are used together or in a sequential manner. For instance, the BBench
workload loads a set of heavy webpages from the memory making it a memory
intensive workload followed by the execution of contents in the webpages, which is
compute-intensive. In these scenarios, the pace-to-idle strategies work best as all the
units like the memory-bus and the CPUs are appropriately scaled whenever it is nee-
ded. It also performs better in applications like Facebook which requires user inter-
action where the CPU frequency can be opportunistically modulated to reduce power
and temperature of the device. It also helps in thermal distribution as the cores get
heated up when it is constantly at higher frequency reducing reliability and perfor-
mance by engaging the thermal throttler. We tested the Adobereader applications in
which we opened a document, scrolled through it and adjusted the zooming. Since
there were enough idle times between these operations, interactive was the most effi-
cient. The responsiveness of the interactive governor was like the performance

130 S. Banerjee and L. K. John

governor but it performed poorly while searching a word in the file ending up con-
suming more power. But mere scrolling through the text would have been more effi-
cient in the interactive governor.

Moreover, for video playback or a GPU-intensive game, the multimedia or GPU is
used and changing the CPU governor doesn’t make any difference in performance. But
changing the governor of the corresponding block improves both performance and
energy efficiency. Based on the above trends, we conclude that characterization of
workload would help design a high performing energy efficient governor.

8 Related Work

There has been considerable amount of research performed to enhance the native
interactive(default) governor of the system. The related works are grouped into the
following categories:

8.1 Race-to-Idle vs Pace-to-Idle Schemes

Some works suggested pace-to-idle strategy is the better strategy [3] due to the
intermittent CPU usage pattern of the workloads and waiting for I/O interrupts. With
the constrained system power/thermal budget, it is not feasible to make all resources
available simultaneously. But on the other hand, transistors are shrinking in size and
leakage is comparable to the dynamic current. The reduction in resource active time by
race-to-idle schemes are making it attractive. Moreover, Race-to-idle schemes give
better performance. Coupled with all these benefits, the race-to-idle is becoming
popular. Albers and Antoniadis [4] have proposed that the race-to-idle strategies pro-
vide better energy efficiency provided the system has multi-level and deep sleep states
which is common in smartphones. It causes the minimum DVFS transitions causing
less halts and power wastage. While Hoffman [3] claims that pace-to-idle betters than
race-to-idle in smartphones due to the intermittent use of a specific resource diluting the
effectiveness and energy efficiency of the resource. But workload characterization can
help improve the effectiveness of the resource by deploying race-to-idle strategy for the
required resource making it fully available when necessary thereby improving energy
efficiency.

8.2 Governor Design Based on Runtime Phase Behavior and QoS
Deadline

Isci et al. and others [5, 22] has used runtime phase behavior to perform dynamic
DVFS management of a device. The phase behavior was identified from the branch
predictor. On the other hand, some of the DVFS governors were designed keeping in
mind the idea of meeting a quality-of-service(QoS) deadline while running the pro-
cessor at the optimum frequency to achieve the highest energy efficiency [19, 20].
These policies explore the search space to figure out the most energy efficient DVFS
mode. Though these works [6, 11] are promising but their applicability is restricted to
limited applications like web browsing and video playback. Moreover, it doesn’t

Characterization of Smartphone Governor Strategies 131

consider system-wide power budget. A single power source can be shared among
multiple resources like multi-core CPUs, GPUs and other accelerators. Redirecting the
power to the most useful resource is important when the current consumed is near the
limit of the source.

8.3 Power Sharing Among Different Resources

Paul et al. and others [18, 21] has evaluated the need of cooperative boosting between
CPUs and GPUs in a AMD APU processor. This is critical in smartphones when
multiple resources are sharing a power source or when the device is thermally limited.
However, this work is focused on desktop CPUs. A smartphone CPU like the one used
in this work has more resources sharing a current source and the QoS metrics are quite
different. We evaluated the different smartphone governors on similar lines with higher
granularity in the type of resource.

8.4 Reducing DVFS Switch Time

Another line of radically different effort is put to reduce the DVFS switch time. The
pace-to-idle can be made even more aggressive in the switching time is reduced. New
PLLs and voltage regulators have better response time to quickly switch the modes with
minimum current spikes which improves the overall energy efficiency. Several
researchers have proposed elegantmethods [12, 13] to reduce the switch time. But still the
DVFS switching time is of the order of several micro-seconds as it involves changing the
voltage. Workload characterization and identification of phases based on usage pattern
can reduce the number of DVFS mode changes and will increase efficiency but the
algorithms can be made more aggressive when the DVFS switching time reduces.

9 Conclusion

In this paper, we studied various governor strategies and their impact on performance
and energy consumption while running various workloads for a smartphone. We con-
clude that a good governor must wisely choose the DVFS mode of not only the CPU, but
also the various non-CPU components when the workload demands varied utilization of
multiple blocks sharing a current source. System wide governors tuning the DVFS
modes of different units of SoC will provide efficient utilization of the available current.
Since, smartphone applications mostly use a specific component of the SoC, charac-
terization of workloads to boost the frequency of the corresponding component to the
required level gives better performance with increased energy efficiency. Analyzing
phase behavior and usage pattern of the program can further help in selection of the
optimum DVFS mode. It was observed that turning on the powersave mode does not
necessarily save battery in many scenarios. The powersave governor led to increased
energy consumption for CPU intensive workloads because of higher run time causing
more leakage energy consumption. Hence, characterization of a workload and wise
current distribution to the critical components is imperative in designing a governor
giving it desirable performance but also yields high energy and thermal efficiency.

132 S. Banerjee and L. K. John

Acknowledgement. This work was partially supported by National Science Foundation
(NSF) under grant numbers 1725743 and 1745813. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of NSF or other sponsors.

References

1. Weicker, R.P.: Dhrystone: a synthetic systems programming benchmark. Commun. ACM 27
(10), 1013–1030 (1984)

2. Pallipadi, V., Starikovskiy, A.: The ondemand governor. In: Proceedings of the Linux
Symposium, vol. 2, pp. 215–230 (2006)

3. Hoffmann, H.: Racing and pacing to idle: an evaluation of heuristics for energy-aware
resource allocation. In: Proceedings of the Workshop on Power-Aware Computing and
Systems, p. 13. ACM (2013)

4. Albers, S., Antoniadis, A.: Race to idle: new algorithms for speed scaling with a sleep state.
ACM Trans. Algorithms (TALG) 10(2), 9 (2014)

5. Isci, C., Contreras, G., Martonosi, M.: Live, runtime phase monitoring and prediction on real
systems with application to dynamic power management. In: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society (2006)

6. Rao, K., Wang, J., Yalamanchili, S., Wardi, Y., Handong, Y.: Application-specific
performance-aware energy optimization on android mobile devices. In: 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pp. 169–
180 (2017)

7. Halpern, M., Zhu, Y., Reddi, V.J.: Mobile CPU’s rise to power: quantifying the impact of
generational mobile cpu design trends on performance, energy, and user satisfaction. In:
2016 IEEE International Symposium on High Performance Computer Architecture (HPCA).
IEEE (2016)

8. Shneiderman, B.: Designing the User Interface. Addison-Wesley, Boston (1992)
9. Zhu, Y., Halpern, M., Reddi, V.J.: Event-based scheduling for energy-efficient QoS (eQoS)

in mobile web applications. In: 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). IEEE (2015)

10. https://blog.kissmetrics.com/speed-is-a-killer/
11. Zhu, Y., Reddi, V.J.: Optimizing general-purpose cpus for energy-efficient mobile web

computing. ACM Trans. Comput. Syst. 35, 1 (2017)
12. Eyerman, S., Eeckhout, L.: Fine-grained DVFS using on-chip regulators. ACM Trans.

Archit. Code Optim. (TACO) 8(1), 1 (2011)
13. Kim, W., Gupta, M.S., Wei, G.Y., Brooks, D.: System level analysis of fast, per-core DVFS

using on-chip switching regulators. In: 2008 IEEE 14th International Symposium on High
Performance Computer Architecture, HPCA 2008, pp. 123–134. IEEE (2008)

14. Dragonboard 410c. https://developer.qualcomm.com/hardware/dragonboard-410c
15. Measuring power consumption for Dragonboard 410c. https://developer.qualcomm.com/

download/db410c/power-measurement-appnote.pdf
16. Linaro workload automation. https://media.readthedocs.org/pdf/workload-automation/latest/

workload-automation.pdf
17. Android debug bridge. https://developer.android.com/studio/command-line/adb.html
18. Paul, I., et al.: Cooperative boosting: needy versus greedy power management. In:

ACM SIGARCH Computer Architecture News, vol. 41, no. 3. ACM (2013)

Characterization of Smartphone Governor Strategies 133

https://blog.kissmetrics.com/speed-is-a-killer/
https://developer.qualcomm.com/hardware/dragonboard-410c
https://developer.qualcomm.com/download/db410c/power-measurement-appnote.pdf
https://developer.qualcomm.com/download/db410c/power-measurement-appnote.pdf
https://media.readthedocs.org/pdf/workload-automation/latest/workload-automation.pdf
https://media.readthedocs.org/pdf/workload-automation/latest/workload-automation.pdf
https://developer.android.com/studio/command-line/adb.html

19. Shingari, D., et al.: DORA: optimizing smartphone energy efficiency and web browser
performance under interference. In: 2018 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE (2018)

20. Gaudette, B., Wu, C.J., Vrudhula, S.: Improving smartphone user experience by balancing
performance and energy with probabilistic QoS guarantee. In: 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE (2016)

21. Kim, Y., John, L., Paul, I., Manne, S., Schulte, M.: Performance boosting under reliability
and power constraints. In: International Conference on Computer Aided Design (ICCAD),
November 2013

22. Bircher, W.L., John, L.: Predictive power management for multi-core processors. In:
Varbanescu, A.L., Molnos, A., van Nieuwpoort, R. (eds.) ISCA 2010. LNCS, vol. 6161,
pp. 243–255. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24322-6_21

134 S. Banerjee and L. K. John

http://dx.doi.org/10.1007/978-3-642-24322-6_21

	Characterization of Smartphone Governor Strategies
	Abstract
	1 Introduction
	2 Background
	2.1 Governors
	2.2 DVFS Points
	2.3 Quality of Service

	3 Experimental Setup
	4 Applications and Benchmarks
	5 Results
	6 Benchmark and Application Classification
	6.1 CPU Intensive Workloads
	6.2 Intermittent CPU Workloads with I/O Operation
	6.3 Application Requiring Other Blocks in the SoC

	7 Observations
	8 Related Work
	8.1 Race-to-Idle vs Pace-to-Idle Schemes
	8.2 Governor Design Based on Runtime Phase Behavior and QoS Deadline
	8.3 Power Sharing Among Different Resources
	8.4 Reducing DVFS Switch Time

	9 Conclusion
	Acknowledgement
	References

