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Abstract

Message queues are used widely in parallel processing sys-
tems for worker thread synchronization. When there is
a throughput mismatch between the upstream and down-
stream tasks, the message queue buffer will often exist as
either empty or full. Polling on an empty or full queue will
affect the performance of upstream or downstream threads,
since such polling cycles could have been spent on other
computation. Non-blocking queue is an alternative that al-
low polling cycles to be spared for other tasks per appli-
cations’ choice. However, application programmers are not
supposed to bear the burden, because a good decision of
what to do upon blocking has to take many runtime envi-
ronment information into consideration.
This paper proposes Blocking-Less Queuing Runtime

(BLQ), a systematic solution capable of finding the proper
strategies at (or before) blocking, as well as lightening
the programmers’ burden. BLQ collects a set of solutions,
including yielding, advanced dynamic queue buffer resiz-
ing, and resource-aware task scheduling. The evaluation on
high-end servers shows that a set of diverse parallel queuing
workloads could reduce blocking and lower cache misses
with BLQ. BLQ outperforms the baseline runtime consider-
ably (with up to 3.8× peak speedup).

CCS Concepts: • Software and its engineering→Appli-

cation specific development environments; Software li-
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1 Introduction

For modern computing systems, task-level-parallelism
is widely used to make full utilize of multi-core proses-
sors [3, 35, 39, 45]. Under this computing paradigm, message
queues [8, 22, 50] stand out as an important structure that
streams data from producer tasks to consumer tasks run-
ning concurrently and implicitly synchronizes dependent
tasks. This integration of task-level parallelism andmessage
queue, referred to as message queue task parallelism in the
rest of the paper, is particularly suitable for scenarios where
streaming data processing is required, such as in digital sig-
nal processing [30, 43], network packet processing [14, 25],
and so on [5, 16, 18, 32]. In other words, message queue
task parallelism provides flexibility for both software devel-
opment and system management: the applications loosely
organized by the granularity of tasks allow programmers to
create different versions of applications with partial substi-
tution, while the deployment can be dynamically adjusted
based on the resources available and load level.
While message queue task parallelism is highly advanta-

geous in terms of parallelism and scalability, there could
be performance regressions. Given that a large volume of
data might go through stages of computations, message
queue task parallel workloads without taking specific care
on scheduling will suffer from significant data movement.
Another issue that can arise is blocking, which occurs when
the producer fills up a queue or the consumer drains a queue
entirely. Full queues or empty queues would eventually oc-
cur unless the arrival rate and service rate are deterministic
and managed to match (like Synchronous Data Flow [27]).
Facing blocking, repeatedly polling a full or empty queue
may not be an optimal solution for core utilization and
throughput, especially when there are insufficient cores to
execute oversubscribing tasks. Nevertheless, the potential
performance gains of message queue task parallelism out-
weight the drawbacks if we handle blocking properly.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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(a) An Example Pipeline Workload [48]

(b) Core 3 Time Breakdown (c) Core 7 Time Breakdown

(d) Queue 1 Occupancy (e) Queue 3 Occupancy

Figure 1. An example pipeline message queue task parallel work-

load suffering from blocking. Cores are wasting a lot of time trying

push/pop on full/empty queues.

To understand the impact of blocking, we trace a message
queue task parallel workload with a common pipeline pat-
tern seen in network packet processing [48] as shown in
Figure 1a. Based on the trace, we break down every time
slice into queue operations and computation (Figure 1b, 1c),
and visualize the queue occupancy changes over time (Fig-
ure 1d, 1e). Aswe can see that Core 3 spends nearly 90% of its
time on popping (i.e., shade in blue) an empty queue as be-
ing blocked. Core 7, on the other hand, is pushing to Queue
3 together with three other cores, while the only consumer
of Queue 3, Core 9, is slower, causing Queue 3 to quickly
become full and block Core 7 from doing useful computa-
tion. Thus, while message queue task parallelism offers sig-
nificant advantages, we have to be aware of the potential
performance degradation caused by blocking.
Non-blocking queue might sound like the penicillin, but

it actually does not touch the fundamental issue. It is still
challenging and awkward for applications to embed a user-
level solution. User-level solutions based on non-blocking
queues, are limited by portability since the effectiveness is
highly related to the runtime systems. Instead of user-level

solutions, a system-level runtime framework is desired. To
be more specific, an ideal system-level runtime framework
should satisfy three desirable properties. First, the runtime
execution scheme should be orthogonal and invisible to ex-
ecution of the application. Second, execution of the runtime
should be a small fraction of the overall application execu-
tion. Third, modern cache-based memory hierarchy is opti-
mized for re-use, and requires that the runtime understands
the hierarchy and take this into account, in order to mini-
mize data movements where possible.
In this paper, we present Blocking-Less Queuing Runtime

(BLQ) to address the blocking problem in message queue
task parallel workloads at a system level. The contributions
of the paper are listed as follows:

1. We develop BLQ template runtime library1 that pro-
vides a set of several approaches to address the block-
ing issue, facilitating users/developers to explore and
pick the suitable scheme for their applications;

2. BLQ implements a chunk-based ringbuffer with lower
resizing overheads, such as copying buffer, locking or
synchronizing pointers with atomic instructions. BLQ
also customizes a state-of-the-art userspace threading
library, which supports BLQ to create the schedule
tasks with lower overhead (at nanosecond-level);

3. BLQ proposes a novel mix scheduling (§ 3.5.2) which
spawnsOneShot tasks where the data is produced and
when the data remains hot in cache;

4. We evaluate BLQ on two high-end servers with a set
of message queue task parallel workloads and find dif-
ferent BLQ schemes achieve 1.14× to 1.61× speedup,
and has considerable cache miss reduction as well.

2 Motivation

There exist several runtime systems [1, 7, 12, 13, 38, 46]
designed for message queue task parallel workloads, but
they do little exploration on anti-blocking strategies. Taking
RaftLib [7] (the more popular one among well-maintained
open-sourced frameworks) for example, the focus is onmak-
ing it easier for programmers to utilize multi-core proces-
sors for parallel streaming processing. RaftLib provides C++

templates of computation kernels and graphs as the easy-to-
use programming interface, and its modular design allows
RaftLib to switch threading libraries, buffer management
schemes and so on. When it comes to a blocking situation,
RaftLib lets the thread poll on the full or empty queue for
certain number of times then yield the threads. RaftLib run-
time could also optionally launch a buffermonitoring thread
to dynamically doubling the capacity of full queues. Unfor-
tunately, concurrent access to the queue buffer and copy-
ing complicated message types (e.g., std::string cannot
be copied by memcpy()) makes resizing a non-trivial opera-
tion. RaftLib also miss opportunities to address the blocking
issue via more efficient approaches as Figure 2 lists.
When enqueuing to a full queue, a condition that would

result in blocking (and wasted cycles), the kernel/task pro-
ducing data can take one (or more) of the actions shown
in Figure 2. Actions poll and yield are the most general
actions, and the most seen. When the hardware running
the tasks is over-subscribed (often the case for data-center
systems) poll alone could cause deadlock [21]. To prevent
this, it is often necessary to yield after poll to allow other
tasks to make forward progress. Nevertheless, yield leaves
the scheduler [24] to blindly try another task, which might
also be blocked, not to mention the context switch overhead

1https://github.com/UT-LCA/RaftLib/tree/CC2024_BLQ_Release
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Figure 2. There are several actions a producer task might take

when the queue is full: 1) poll: continuously check if buffer space

available; 2) yield: lower the schedule priority; 3) sleep: remove task

from execution until conditions change; 4) new: enlarge the buffer

to accept the overflowed message; 5) help: schedule a helper task

for the computation defined by the consumer kernel.

incurred by yielding. A technique to prevent this from hap-
pening is to use a condition variable [4] so that the sched-
uler has enough information to know when conditions are
correct for this task to perform useful work, enabling the
scheduler to safely exclude this task from running (e.g., it is
sleep). Such a exclusion method relies on passing informa-
tion to the scheduler from the application, making sched-
uling more precise. Considering locality and resources con-
tention, the scheduler might require additional information
(e.g., system topology, traffic heaviness between tasks) to
further refine the successor task selection.
There are two additional proactive steps to reduce cycle-

wastage when blocking on enqueue: new and help. Instead
of rescheduling the compute kernel when an enqueue is
blocked due to buffer exhaustion, the new action allocates a
larger buffer to hold the overflowing message, thereby pre-
venting blockage and reducing the probability of blocking
in the future. On the other hand, the action help unblocks
the producer via changing the running task itself to be the
consumer, on the same core that was previously executing
the producer. This has the advantage of consuming queue
elements (thereby emptying it) plus it takes advantage of
data-locality (e.g., recently produced elements are assumed
to be closer to the producing core within a cache hierarchy).
BLQ runtime system presented in the paper provides op-

tions to practice the five actions discussed above to avoid
blocking on both producer and consumer side, which have
not been tried in prior message queue parallel frameworks.

3 BLQ Runtime

Given the advantages of RaftLib [7] in parallel streaming
processing (e.g., programming style, modular design), we de-
velop BLQ on top of RaftLib with about 48% lines of code
being heavily modified. Hence, we first introduce RaftLib in
brief and highlight what make BLQ different from RaftLib.

The programming interface of RaftLib is composed of two
parts: 1) Based on the C++ templates from RaftLib, users can
write computation functions and easily wrap them as com-
putation kernels; 2) RaftLib uses several C++ operator over-
loads to define its own Domain Specific Language (DSL),
with which connections between two computation kernels
are specified by a stream operator (»). Only the topology is

Figure 3. BLQ architecture.

specified at this point; changing the transport layer below
the programming interface is totally transparent to users.
The RaftLib runtime modules take care of the streaming ap-
plication execution. Those modules are provided as options
for users to pick without requiring any changes of the user
code. RaftLib automatically allocates ringbuffers for each
connection and optionally enables the dynamic buffer man-
agement module to adjust the ringbuffer size during execu-
tion. By default, RaftLib launches a thread per computation
kernel to parallelize the application, and could switch on the
QThread [49] module for thread pool scheduling.

As pointed in Section 2, RaftLib does not handle blocking
verywell, and this is where this paper adds innovations. The
following list compares BLQ and RaftLib from a few aspects
we will discuss in details later this section:

• Modular design (§ 3.1): Making the runtime frame-
work flexible, extensible with modules is one thing
BLQ learns from RaftLib. Section 4will showhow BLQ

techniques could form different combinations and im-
pact the performance differently.

• Streaming programming style (§ 3.2): BLQ is mostly
compatible to the neat, easy-to-use programming in-
terface of RaftLib, but also extends hints (§ 3.2.2).

• Partitioning (§ 3.3): BLQ takes more information (user
hints, hardware hierarchy) than RaftLib into partition-
ing consideration.

• Buffer management (§ 3.4): RaftLib supports dynam-
ically resizing ringbuffer through memory copying,
while BLQ comes up with the chunk-based ringbuffer,
which resizes at lower cost and collaborates with
other BLQ techniques to address the blocking issue.

• Scheduling (§ 3.5): Most optimizations of BLQ are
in scheduling. BLQ defines tasks (§ 3.5.1) on top
of computational kernels, and introduces scheduling
schemes mixing different actions (§ 2), as well as the
light userspace threading library, libut. All of those
are beyond what RaftLib can do.

3.1 Modular Architecture

Figure 3 visualizes BLQ design at high level. At the
top there are the applications written as Directed Acyclic
Graphs (DAG, a graph cycle otherwise inherently intro-
duces complexity and risks [44]) of computation kernels.
Programmers are expected to merely focus on the com-
putation logic and the dependencies between the kernels.
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1 class Filter : public blq::Kernel {

2 public:

3 Filter() : blq::Kernel() {

4 add_input<int>("0"_port); // add an input

5 add_output<int>("0"_port); // add an output

6 }

7 virtual blq::kstatus::value_t

8 compute(blq::StreamingData &dataIn, blq::StreamingData &bufOut) {

9 auto val(dataIn.pop<int>()); // pop message

10 if (0 != val) { bufOut.push(val); } // filter away zero values

11 // proceed to next task

12 return blq::kstatus::proceed;

13 }

14 };

Listing 1. An example BLQ computation kernel doing filtering.

1 int main() {

2 Generater gen; // random number generate kernel

3 Filter f; // the filter kernel

4 Print p; // a kernel printing received values

5 blq::DAG dag; // the Directed Acyclic Graph

6 // add a 3-stage pipeline to DAG

7 dag += gen >> f >> p; // streaming style

8 // dag += ( gen >> f * 4 ) >> p * 0; // w/ user hints

9 // execute DAG with specific runtime scheme

10 dag.exe< blq::RuntimeBasic >();

11 return 0;

12 }

Listing 2. An example 3-stage pipeline BLQ application.

The execution of the applications are delegated to the run-
time modules. It is allowed to exercise a variety of runtime
schemes suiting to the characteristics of different applica-
tions alongside. The runtime scheme is the combination of
three modules: 1) partitioner analyzes the application DAG
and groups kernels; 2) allocator is responsible tomanage the
queue buffers where the data resides; and 3) scheduler cre-
ates tasks (and maps to threads) to fulfill the computation of
each kernel. A system-wide daemon balances the CPU core
allocation across all applications.

3.2 Application Programming Interfaces

BLQ aims to keep the programming interface simple and
intuitive thereby minimizing the effort to use. BLQ borrows
the stream programming API (§ 3.2.1) from the C++ template
library RaftLib [7], and extends it with hints (§ 3.2.2).
3.2.1 Streaming Programming. The BLQ application
programming interface enables passage of two essential
pieces of information from programmers to the underlying
runtime: the first (and most obvious) is the computation to
perform in each compute kernel, the second, which is criti-
cal for BLQ, is connectivity information with critical meta-
data to describe how messages are passed between kernels.
Listing 1 is an example of computation kernel (referred

to simply as kernel from this point forward) described us-
ing BLQ. The user-defined kernel, Filter, inherits from the
blq::Kernel base class which has a set of structures and
methods that are designed to be used by the runtime. The
implementation of the compute() function defines the com-
putation of the kernel. The compute() function receives in-
put data, applies the computation written by the program-
mer, then sends output data (e.g., the kernel receives data

streams, acts on it, then if there is an output, streams out-
put data). This compute() function is only invoked when
conditions set by the runtime are met (e.g., it could be called
constantly, or only when data is available on input streams).
Listing 2 is an example three stage application pipeline

composed using BLQ. The three kernels that make up this
pipeline are: 1) Generator generates and sends out random
values, 2) Filter passes only the non-zero values received
to the next stage, 3) Print prints out every received value.
BLQ extends the usage of operator reloading in RaftLib to
capture extra heuristic information (§ 3.2.2) from the right-
hand-side of the add-increment operator (+=) into the in-
ternal BLQ representation of the compute Directed Acyclic
Graph (DAG). Upon calling the exe() function of BLQ, a
runtime execution scheme is selected (i.e., in Listing 2, it is
a preset runtime scheme defined by blq::RuntimeBasic).
3.2.2 Hints for the Runtime. BLQ extends RaftLib API
with several runtime hints. These hints provide information
that assists BLQ with optimizing allocation and scheduling.
The actual usage of the hints is determined by the underly-
ing execution scheme; hints are safely ignored if they are
not of usage to a given scheme. Line 8 in Listing 2 shows
how Line 7 could be augmented with user hints. These hints
use the overloaded * operator to indicate a kernel rate mul-
tiplier, and parenthesis for grouping. The rate multiplier is
an estimation of howmany parallel workers may be needed
to match the throughput of the upstream paths. As an exam-
ple, f * 4 means the Filter kernel runs likely 4× slower
than the Generator kernel. On the other end of the spec-
trum, a zero multiplier would indicate an upstream filtering
effect where we would expect this kernel to run fewer times
for a given rate. The grouping hint informs the runtime that
traffic between the indicated DAG partitions is considered
heavier (i.e., larger and/or higher frequency messages).

3.3 Partitioning

Before the application DAG is executed by BLQ, it is an-
alyzed by a partitioner. Two aspects considered in BLQ par-
titioning are data locality and load balance. If the traffic (a
product of message size and frequency) between two ker-
nels is heavy, then it would likely be better to group the
two so that they could be assigned to the same or clustered
cores (i.e., sharing cache at some layers of the hierarchy).
The application thereby increases the potential sharing of
data within the cache memory hierarchy, taking advantage
of data locality. Managing shared resource utilization is syn-
onymouswith load balancing. If two kernels are heavy users
of a shared resource (e.g., CPU core, cache and memory
bandwidth), then it would likely be better to distance these
kernels in order to avoid contention and the potential for
hardware resource starvation.
Because BLQ partitions DAG statically at the time of ex-

ecution, there is only the topology and the message size in-
formation available. When confronted with pointers within
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the message queue, the true size of this indirect buffer is
often hard to determine without further information (indi-
rect buffers could even have further nested indirect buffers),
which is one place where the hints provided by BLQ (§ 3.2.2)
can have an impact. When statically partitioning for load-
balance, BLQ makes the assumption that parallel tasks of
the same kernel type will likely require the same resource
types, and therefore BLQ implicitly tries to distribute tasks
of the same kernel to different cores.

3.4 Allocation

Per-message-demand allocator simply wraps the system-
provided memory allocation library, allocating buffer from
heap whenever a message needs to be stored. This approach
is flexible and portable. An added advantage is that mes-
sage to cache line alignment can be customized on a per-
message basis, reducing the potential of false sharing. The
downside is that the system allocator does not know the
message queue usage pattern and optimize accordingly.
ringbuffer is another common approach which pre-

allocates a chunk of large enough memory then repeatedly
uses the slots to enqueue messages. With this approach,
the same buffer space would be repeatedly used in the se-
quential order, so the better spatial locality would improve
cache performance. RaftLib [7], for example, implements a
single-producer-single-consumer (SPSC) ringbuffer. Multi-
producer or multi-consumer message queues are emulated
by letting the threads select data from the set of SPSC queues
connected to it, in round-robin order. RaftLib also has an op-
tion to launch a buffer monitoring thread. This thread moni-
tors each ringbuffer to check for blocking over a window of
time, doubling the capacity of the buffer (with limits) when
needed. However, resizing a ringbuffer in RaftLib could suf-
fer from several overheads: 1) the monitoring thread needs
to acquire exclusive access to the ring buffer before resizing;
2) the monitoring thread have to copy the content from the
old buffer (likely full) over to the new buffer. One could ar-
gue that the runtime should simply pick an arbitrarily large
buffer, however, doing so (or also growing the ringbuffer in-
definitely) can exhaust valuable system resources, lead to
more paging and cache misses, and overall performance re-
gression [7]. It can also be shown that choosing the exact
ringbuffer size for a streaming system is a NP-Hard problem,
this is known as the Buffer Allocation Problem [2]. There-
fore, we extend the iterative approach to dynamic allocation
adopted by RaftLib, and make it far more efficient.
BLQ redesigns the ringbuffer to support zero-copy resiz-

ing. The ringbuffer that BLQ uses is chunk-based, with each
chunk holding up to # messages (where # is configurable)
as Figure 4 elaborates. To facilitate resizing of the buffer, ad-
ditional chunks can be added via memory pointers, forming
a linked-list of chunks. The linked-list of chunks forms a
loop where the last chunks points back to the start of the

(a) almost full, before resizing
(b) new chunk, after resizing

Figure 4. Resizing chunk-based ringbuffer without copying.

pbase/cbase is the pointer pointing to the chunk currently used

by the producer/consumer, and head/tail is the monotonically in-

creasing counter indexing the slot where to enqueue/dequeue a

message. Chunks are linked to form a ringbuffer.

new chunk, making a resizble ringbuffer. For both producer
and consumer, when they reach the end of a chunk, their
base pointers (i.e., pbase, cbase in Figure 4) would be ad-
vanced to the next chunk using this link pointer. Because all
chunks together forms a loop, the producer and consumer
would repeatedly access the chunks as it is a ringbuffer.

Before a producer advances to the next chunk after filling
up the current one, it also checks whether the ringbuffer is
almost full (i.e., the consumer base pointer, cbase, is point-
ing to the immediate next chunk, as shown in Figure 4a). To
resize an almost full ringbuffer, the producer allocates a new
chunk and updates the link pointer (analogous to a linked-
list, mid-link, insertion) then advances to the new chunk
(i.e., Figure 4b). This ringbuffer is meant to serve single pro-
ducer and single consumer, and it synchronizes the local
head/tail counters in batch/chunk to reduce cache bounc-
ing [28]. Unlike the dynamically-resizeable ringbuffer in
RaftLib, the BLQ design avoids copying when resizing and
this resizing strategy is applicable to non-trivially-copyable
data types [54] (e.g., std::string), as well as saves time
from copying. LCRQ [33] designs a similar linked-list style
ringbuffer, and outperforms “combining” queues which are
bottle-necked by the single proxy thread bridging multiple
producers and consumers. BLQ gets both the advantages
of “combining” queues (no contending atomic memory ac-
cesses) and LCRQ (parallelism and resizing). This is because
the number of SPSCringbuffers that BLQ uses to directly
connects " producers and # consumers are equal to the
smallest common multiple of" and # .

3.5 Scheduling

As observed in Figure 1, enqueue and dequeue opera-
tions block on a full or empty queue. Blocking can arise
from two conditions. The first condition (that of buffer siz-
ing), was covered in § 3.4. The second condition is that of
a rate mismatch between producer and consumer kernels.
Queuing theory [26] states that the consumer must have
a throughput greater than the producer (or equal to if all
rates are perfectly deterministic) to ensure a bounded queue
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(a) PollingWorker Task
(b) OneShot Task

Figure 5. PollingWorker tasks vs. OneShot tasks.

1 class Task { // task is computation plus data

2 Kernel *kernel;

3 StreamingData dataIn, bufOut;

4 }; //

5 class PollingWorker : public Task {

6 void exe() {

7 while (! shouldExit()) { // loop until done

8 if (dataReady()) { kernel->compute(dataIn, bufOut); }

9 if (loopedNTimes()) { yield(); } // no deadlock

10 }

11 }

12 };

13 class OneShot : public Task {

14 void exe() {

15 while (! isSink(kernel)) { // run-to-completion

16 kernel->compute(dataIn, bufOut);

17 reload(); // update kernel, load output as input

18 }

19 }

20 };

Listing 3. Different BLQ tasks.

depth. Many real dataflow systems have unbalanced flows;
indeed, evenwhen programmers attempt to design perfectly
deterministic systems they find that execution varies in
unexpected ways [6]. BLQ scheduling module modulates
the throughput of a computation kernel, thereby mitigating
cycle-wasting blocking behavior induced by rate-mismatch.
3.5.1 PollingWorker andOneShot Task. Kernels are de-
fined by users (§ 3.2) and focus purely on the computation,
while BLQ will internally creates tasks to carry out the com-
putations. As defined in Listing 3 Line 1–4, each task has not
only an associated computation kernel but also the stream-
ing data/message (either the actual data or a queue). Natu-
rally, there are two types of tasks from the perspective of
affinity. Either we move data to computation, or the other
way around that data is stationary. In BLQ, the two types of
tasks are called PollingWorker and OneShot tasks.

The PollingWorker task is the long-lasting task that per-
forms the same series of computations on a sliding window
of streaming data, and yields after certain number of iter-
ations (to avoid deadlock as discussed earlier). A OneShot

task is initially designed to compute just once on a set of
data and vanish, hence the name OneShot. An improved ver-
sion of OneShot task reloads the task structure with a down-
stream consumer kernel, so that it can operate on the data

that was just produced. The reloading continues until the
OneShot task reaches a sink node in the computation graph
(i.e., no output), then the OneShot task would be destroyed.
Such a “run-to-completion” optimization reduces the num-
ber of task creations and destructions. As illustrated by Fig-
ure 5, a PollingWorker task repeats the same computation on
differentmessages, while aOneShot tasks performs different
computation on the “same” data buffer. Listing 3 presents
the simplified version of task definitions in BLQ.
3.5.2 Mix Scheduling. BLQ starts with a basic scheduler
design where each kernel in the programmer specified ap-
plication DAG is set as a basic PollingWorker task (the base-
line runtime RaftLib [7] follows this pattern). BLQ augments
this basic pattern with hints to assist the basic scheduler
in assigning computation (§ 3.2.2). Assuming programmers
estimate the throughput ratio accurately, all PollingWorker

tasks get data to compute almost every iteration. Otherwise
if estimation is inaccurate, the PollingWorker tasks suffer
from blocking overheads.
Alternatively, a OneShot scheduler creates OneShot tasks

for the source kernels, and lets them run to completion.
There would be no blocked producer during the execution,
however, it would be too frequent to create an OneShot task
for every message and the scheduling overhead on task cre-
ation becomes a concern.
In order to avoid blocking or paying too much schedul-

ing cost, BLQ proposes a mix scheduling. The mix sched-
uling initializes with PollingWorker tasks only. The multi-
plier hints (§ 3.2.2) guide the mix scheduler as to how many
PollingWorker tasks to create per kernel. Please note a dif-
ference between the basic scheduler and themix one is that
mix scheduling only spawn OneShot tasks for kernels hav-
ing zero multiplier hint, while the basic scheduler creates at
least one PollingWorker task per kernel. Zero multiplier in-
dicates likely there is no data in the incoming queue, somix

scheduling skips the kernel to reduce the polling on empty
queues. During the execution, if a PollingWorker task gen-
erates an outgoing message but is blocked on enqueue, the
mix scheduler creates a consumerOneShot task instead, and
switch to theOneShot task immediately. Given the producer
and consumer task are now run consecutively, and on the
same core, there should be fewer data cache misses when
accessing messages from the producer.
3.5.3 User-space Threading Library: libut. Unlike the
basic scheduling that spends one-time cost on creating
PollingWorker tasks and switches tasks only after certain
rounds of polls, the mix scheduling (§ 3.5.2) invokes task
creation and switching more frequently, so it is especially
important to keep the task management as low-latency as
possible. In addition to the “run-to-completion” optimiza-
tion (§ 3.5.1) that reduces the number of OneShot tasks cre-
ated, we also apply lightweight user-space threading for fast
task creation and context switching. To that end, we develop
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a user-space threading library called libut atop of the cus-
tomized threading library from Shenango [36]. Many tech-
niques are employed to push the threading overhead down
to nanosecond-level on a 3.0GHz machine:

1. libut pre-allocates Thread Local Storage (TLS) as
thread cache for user-space task stacks allocated and
freed frequently, and also use local task queue per
kernel-level-thread to avoid unnecessary contention;

2. libut understands the cache and memory hierarchy
for locality-aware work stealing and scheduling;

3. It sets task affinity to support the task grouping (§ 3.3);
4. It supports Hoare-style condition variables and low-

overhead task spawn followed by immediate execu-
tion to preserve more data locality (§ 3.5.2).

4 Evaluation

After describing the setup, the evaluation will begin with
whether the chunk-based ringbuffer and libut threading li-
brary (two components could alsowork independently from
BLQ) effectively reduce overheads (§ 4.1– 4.2). Section 4.3
shows the overall performance gains that BLQ achieves, and
is followed by digging speedup contributors from the per-
spectives of blockingmitigation (§ 4.4) and locality enhance-
ment (§ 4.5). We also present case studies (§ 4.6) at the end.
We evaluate BLQ on two server systems with differing

topologies; Table 2 lists the relevant specifications of each.
Notably, SystemA has an L2 (mixed instructions/data) that
is shared between groups of two cores, while System B has
a private L2 cache; System B has two sockets and two asso-
ciated NUMA nodes whereas System A has only one. We re-
port the evaluation results achieved on SystemA unless oth-
erwise noted. During the experiments, we turn off Dynamic

Table 1. Benchmarks.

Benchmark Description, (#producer:#consumer) × #queue

incast [42] all threads sending data to the master thread, (4:1)

outcast all threads receiving data from the master thread, (1:4)

pipeline [48]
4-stage pipeline with middle stages multi-threaded, (1:4) + (4:4) +
(4:1) + (1:1)

firewall [48] filter and dispatch packages, (1:1)×3+(2:1)

FIR data streams through 32-stage FIR filter, (1:1)×31

chasing
pointer-chasing buffer access pattern on messages passed filter,
(1:4) + (4:1) + (1:1)×10

search [7] search a given word in a file, (1:4) + (4:1)

tc [34] triangle count on a graph, (1:1) + (1:4) + (4:1)

dc [34] degree count on a graph, (1:4)

bc [34] calculate betweeness centrality of a graph, (1:4) + (4:1)

Voltage Frequency Scaling (DVFS) to ensure all CPU cores
are running at their maximum speed. Performance metrics
given are derived by instrumenting the Region of Interest
(ROI , that is the dag.exe() function, § 3.2) via C++ chrono

library. In order to see the impact of data locality, the linux
perf tool is used to read each SoC’s Performance Monitor-
ing Unit (PMU) for the cache statistics.
We use a set of diverse benchmarks that have different

message queue types and communication patterns. Table 1
summarizes the benchmarks used in evaluation. incast, out-
cast, pipeline, and firewall represents some common pat-
terns in network packet processing [42, 48]. FIR from digi-
tal signal processing is an important way processing stream-
ing data. chasing does extensive chasing pointer style access
(a well-known challenging memory access pattern) on the
passing message buffer. search dispatches file chunks to per-
form word search in parallel then aggregates the results [7].
tc, dc, and bc are the graph analytic benchmarks fromGraph-
BIG [34]. The graph computing tasks are mainly divided by
vertices as well as steps in the algorithms (e.g., searching
within an adjacency list, counting intersections of two lists,
and accumulating the triangle counts as a vertex property).
As marked in Table 1, those benchmarks cover all message
queue types (i.e., four combinations of single/multiple pro-
ducer/consumer), and have queue numbers varying from 1
to 31. Proper hints (§ 3.2.2) are included as part of the code
of each benchmark and are used consistently through the
evaluation. All benchmarks are compiled by gcc with level
3 (-O3) compiler optimizations as listed in Table 2.

4.1 Zero-Copy Resizeable Ringbuffer

This section evaluates the ringbuffer resizing overheads
with amicrobenchmark (u-benchmark). Please note that the
u-benchmark is single-threaded and does no push or pop
operation, while in real applications, the monitoring thread
(which resizes full queues) in the baseline would suffer from
extra overhead caused by concurrent push/pop operations.
It is also worth mentioning that the chunk- based ringbuffer
resizing latency reported in this section likely will overlap
with the dequeue operations on the consumer side, thanks
to the relaxed requirement on exclusiveness, whereas the
baseline (RaftLib ringbuffer) pauses both the producer and
consumer.
The u-benchmark tests ringbuffers of three different mes-

sages: the small message is a plain data type with a data

Table 2. Specifications of Systems

Core-Coupled System A Two-Socket System B

Cores 32× ARMv8 X-Gene CPU @ 3.3GHz 2 sockets × 80× ARMv8.2+ Neoverse-N1 CPU @ 3.0GHz

Caches
32KiB 8-way L1D, 32KiB 8-way L1I, 256KiB 32-way L2 per 2 cores 64KiB 4-way L1D, 64KiB 4-way L1I, 1MiB 8-way private L2

32MiB shared SLC 32MiB 16-way mostly-exclusive SLC per socket

DRAM 128GiB 2666MT/s DDR4 256GiB 3200MT/s DDR4, 2 NUMA nodes

kernel Linux 5.4.0-80-generic Linux 5.14.0-69-generic

compile g++ 10.3.0, -O3, -ltcmalloc_minimal, GLIBC 2.31 g++ 11.3.0, -O3, -ltcmalloc_minimal, GLIBC 2.35
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(a) Core-Coupled System A (b) Two-Socket System B

Figure 6. Resizing latency comparison between baseline (i.e., the

original RaftLib ringbuffer, marked by “R”) and the chunk-based

ringbuffer design in BLQ (marked by “C”). Large message ring-

buffers store message pointers (e.g., 8B).

width of 1 B; the medium message is a class type with a
width of 64 B (i.e., cacheline size of the servers); and the
large message is a C++ class-type with a width of 128 B.
When initializing, the u-benchmark creates 106 ringbuffers
of a message type, with the initial capacity set to 64 entries.
Then the u-benchmark resizes the ringbuffers, doubling the
capacity iteratively until 1024 entries is reached. For every
step doubling the capacity, the 106 ringbuffers of the same
message type are resized all together for timing. The per-
step per-ringbuffer resizing time is reported in Figure 6.
Because the large message (128 B) does not fit into a

cacheline, both the baseline runtime and BLQ adaptively
put the message pointers (8 B) in the ringbuffer instead of
the messages. Therefore, the effective message size for the
large message is in between the size of small and medium
messages. The latency for large message ringbuffer resizing
turns to be closer to the small message ringbuffer, so they
share the same left y-axis in Figure 6, while themedium bars
use the secondary y-axis. As Figure 6a shows, the baseline
(stacked bars in black and grey) always spend more time on
doubling the capacity due to the copying overhead. Notably,
BLQ speeds up the resizing more when the size is smaller:
increasing from 64 → 128 has the most speedup; small mes-
sage ringbuffers shows the most speedup. This is because
BLQ has tomakemore invocations of thememory allocation
functions to reach the designated capacity with fixed-length
chunks, while the baseline only needs to allocate memory
once per resizing.

4.2 Nanosecond-Level Userspace Threading

This section evaluates the performance of libut with some
u-benchmarks from Shenango [36]. In each u-benchmark, a
common threading operation is performed 107 iterations on
a single CPU core. Please note the experiment does not scale
up to multiple cores because in BLQ task queues are local

Table 3. The performance of common threading tasks between

threading libraries (for methodology see § 4.2)

ns per operation pthread qthread Go libut

Uncontended Mutex 56 334 35 63

Yield Ping Pong 948 2,239 240 127

Condvar Ping Pong 4,184 N/A 512 243

Spawn-Join 38,984 5,075 1,098 415

(a) Core-Coupled System A

(b) Two-Socket System B

Figure 7. Speedup of each runtime scheme relative to the baseline

runtime (the original RaftLib). Each baseline bar is labeled with

execution time in seconds for reference.

and the work stealing rarely, if not never, happens. We mea-
sure how many nanoseconds elapse to finish those thread-
ing operations and calculate the per-operation average. Ta-
ble 3 reports the results of libut and compares with three
other threading options: 1) pthread is the de facto kernel-
level threading library Linux provides; 2) qthread [49] is a
light-wight locality-aware userspace threading library used
by RaftLib; 3) the Go programming language [10] is de-
signed to have built-in concurrent threading support.
As we can see from Table 3, libut has the lowest latency

for three out of four threading operations: yielding a thread
for a voluntary context switch; waking up a thread wait-
ing for a condition variable; spawning threads to join. Go
has lower-latencymutex operations thanks to the inline op-
timization done by the compiler [36]. Only libut is able to
keep all of these operations below 1 µs.
The low-overhead threading support from libut allow

BLQ to explore scheduling options at blocking, such as
spawning OneShot tasks to help draining the pipeline and
obtain performance gains. Without the userspace threading,
the scheduling optimizations of BLQ would be offsetted.

4.3 Speedup

Our baseline implementation is RaftLib with fixed-size
queues. This is not only because BLQ shares most program-
ming interfaces with RaftLib so we can control the factors
impacting performance, but is also due to the fact that BLQ
is a popular active runtime that is still receiving plenty
of attentions from different developers. Figure 7 plots the
speed-up of this baseline (black bars labeled as “raft”) rel-
ative to our proposed runtime schemes. Another variant of
RaftLib that provides dynamically resizing ringbuffer sup-
port (gray bars labeled as “raft_dyn”) is plotted in the
same figure in order to demonstrate relative performance
of BLQ’s dynamically resizable ringbuffer implementation
(§ 4.1). Three other schemes from BLQ are PollingWorker

scheduling with dynamically ringbuffer resizing (blue bars
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(a) Blockings per 1000 Message in raft (baseline) (b) OneShot Tasks per 1000 Messages
(c) Ringbuffer Capacity over Initial Allocation

Figure 8. Statistics of blockings, OneShot tasks and ringbuffer capacity.

labelled as “pw_dyn”), PollingWorker mixed with OneShot

scheduling (orange bards labelled as “mix”), and mixwith dy-
namic ringbuffer resizing (green bars labelled as “mix_dyn”).

As we can see in Figure 7a, the dynamic ringbuffer al-
locator from the original RaftLib has limited performance
improvement for our benchmark sets (i.e., firewall, chasing,
and bc). As described in § 4.1, the RaftLib ringbuffer must
acquire exclusive access over the target ringbuffer; a condi-
tion that rarely occurs in practice (although for very long-
running applications, this may not be a huge deficit). In con-
trast, BLQ’s implementation removes the need for this, in-
stead having the producer thread to add an additional buffer
chunk to the linked-list ringbuffer when the queue would
otherwise be full (instead of blocking). For our benchmarks,
BLQ achieves an appreciable performance gain when resiz-
ing is enabled. On average, the speedup for pw_dyn, and
mix_dyn is ∼ 1.52× and ∼ 1.34×, respectively.
Mix scheduling, even with no dynamic resizing, is able

to reduce blocking as well. Figure 7a shows benchmarks
that benefiting from mix scheduling usually have struc-
tures like incast (i.e., incast) or long pipelines (e.g., FIR)
or both (e.g., chasing). The rationales behind this are that:
1) the incast/fan-in pattern has more producers than con-
sumers and it is more likely to have producer blocking and
OneShot tasks would help; 2) long pipeline creates more
starving PollingWorker tasks that waste time on polling,
while OneShot tasks always occupy cores with useful com-
putation and have better data locality (as all the stages of the
long pipeline are executed in one place). On other hand, cre-
ating too many OneShot tasks may lead to load imbalance
and hurt the performance, which is observed in bc. The geo-
metric mean of speedup achieved by mix across all bench-
marks is ∼ 1.29×. Figure 7b shows on System B, thanks to
the larger memory capacity, BLQ dynamic-resizing enabled
schemes (i.e., pw_dyn, and mix_dyn) achieve even higher
speedups on some of the benchmarks. One more observa-
tion from Figure 7 is that the combining of mix schedul-
ing with dynamic ringbuffer (i.e., mix_dyn) resizing does
not yield a speedup higher than dynamic ringbuffer resizing
alone (i.e., pw_dyn). This is likely becausewith dynamic ring-
buffer resizing, blocking on full queue would never happen
(Figure 8b), however, mix_dyn still pays the cost of checking
whether to spawn OneShot tasks or not.

4.4 Statistics for Blocking and Countermeasures

Figure 8a reports the statistics of how often producer
tasks and consumer tasks are blocked in the baseline run-
time. As we can see, blocking on producer enqueue and con-
sumer dequeue exist in most benchmarks. On average, ev-
ery message passed would experience blocked at least once.
This frequency of blockage implies that considerable execu-
tion cycles are wasted (recall from § 3.5 that existing strate-
gies to deal with stalls often do not contribute to forward
progress of the application).
Mix scheduling avoids blocking via spawning OneShot

tasks. Figure 8b shows how many OneShot tasks mix sched-
uling (i.e., mix, mix_dyn) issues out of every 1000 messages.
The difference between mix and mix_dyn is that queues in
mix_dyn never get filled up, so mix_dyn will only spawn
OneShot tasks for kernels having no PollingWorker tasks
(i.e., marked by zero-multiplier hint). For instance, the print
stage after the search stage in search have relatively low
chance to execute, but contributes many consumer block-
ings (Figure 8a), so zero-multiplier is added to the print ker-
nel, then mix_dyn spawns OneShot tasks for it. It is simi-
lar for chasing (the pipeline stages after filter are marked
by zero-multiplier hints) except the fan-in structure in chas-

ing occasionally triggers producer blockings, so mix would
spawn more OneShot tasks than mix_dyn. Although libut

makes the cost of task creation very low (§ 4.2), it is also
observed that spawning OneShot tasks too frequently leads
to performance degradation: about 86% of the message in bc
is processed by OneShot tasks (Figure 8b), and bc is the only
one that mix is slower than the baseline (Figure 7).
Dynamically resizing the ringbuffer is another approach

that BLQ takes to avoid blocking. Figure 8c presents the ra-
tio of resized ringbuffer capacity when benchmarks finish
relative to the initial buffer allocation. Unlike the baseline
(i.e., raft_dyn) that is only able to perform resizing on tc

and bc (where tasks are relatively more coarse-grain), BLQ’s
ringbuffers resized in every benchmark. Benchmarks such
as pipeline and firewall have inline (vs. in-buffer pointers),
non-trivially-copyable message types, so raft_dyn is not
able to resize the ringbuffers; this is not an issue for the BLQ
link-list-based ringbuffer. This resizing enables a producer
PollingWorker task to reduce blocking and finish execution
earlier. If the cores freed through producers finishing earlier
are then utilized to process remaining messages, then the
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Figure 9. Cache misses of different runtime schemes. Left and right benchmarks use different scales for visibility.

Figure 10. L1I cache Misses Per Kilo-Instructions (MPKI) of differ-

ent runtime schemes.

overall performance will be improved (e.g., pipeline, firewall,
FIR), otherwise the performance remains the same (like in-
cast) but the CPU utilization would go down; thereby allow-
ing external global schedulers (e.g., those like GhOSt [23])
to schedule other applications.

4.5 Cache Performance

Modern cache-heavy memory hierarchies are optimized
for data reuse [40, 41, 47]. To take advantage of these hard-
ware structures often means not only within thread reuse
but data sharing between cooperative threads, e.g., data lo-
cality. BLQ aims to improve data locality between kernels in
the DAG, this section evaluates if BLQ hits the mark.
The data shown in Figures 9 suggest that BLQ signifi-

cantly reduces the count of overall L1D and L2misses across
many benchmarks. On average (geometric mean), the L1D,
L2 cache miss reduction obtained by pw_dyn are about 40%,
and 17%, respectively. Fewer cache misses correlate with
the performance speedup of BLQ (§ 4.3). For example, FIR,
pipeline, and firewall demonstrate the greatest execution
time reduction with BLQ (pw_dyn) while also exhibiting sig-
nificant overall cache misses reduction.
When spawning and executing OneShot tasks, the same

kernel-level thread (kthread) in BLQ switches from execut-
ing the producer compute() task to the consumer one. This
“moving compute to data” approach trades instruction lo-
cality for data locality. One question that naturally arises
is that whether the more frequent task switching for mix
causes negative impact, and if so, how severe it is? To ad-
dress this concern, Figure 10 reports L1I cache Misses Per
Kilo-Instructions (MPKI). As Figure 10 shows, most bench-
marks have instruction cache MPKI lower than 0.5 in the
baseline (raft), except search, tc, and dc. Surprisingly, only
on incast and bc, BLQ gets higher L1I cache MPKI than the
baseline, and BLQ lets none of the benchmarks’ L1I cache
MPKI exceed 1.5. This is likely because the branch predic-
tors and instruction preftechers [15] in modern processors
are sophisticated enough to deal with those tasks having

(a) Blocking (b) Time

Figure 11. The impact of multiplier ratio on blocking and execu-

tion time. Blocking bars are broken down between producer (bot-

tom) and consumer (top). The little black sticks on the bars in

the time chart indicates standard deviation. From both blocking

and time perspectives, 4 is the best multiplier ratio because the

throughput ratio of the two stages in the benchmark is close to 4.

static dependencies. Therefore, although mix scheduling in-
volves more frequent task switching,the performance im-
pact on instruction cache is likely negligible.

4.6 Case Studies

Multiplier Hint: To demonstrate how the multiplier hints
affect performance, we conduct a case study with a 2-stage
microbenchmark similar to outcast. The throughput of the
first stage (the producer) is approximately four times the
throughput of the second stage (the consumers). On the sec-
ond stage, we apply a multiplier hint, which varies from 1
to 16. Only PollingWorker tasks are used, otherwise OneShot
tasks could augment the multiplier ratio. There are two set-
tings of CPU cores in the case study: either with limited core
count (i.e., 5 cores, bluish bars in Figure 11) or unlimited
(i.e., N+1 cores) cores, making sure every task running on
its own core. As shown in Figure 11a, the producer blocks
less frequently when the multiplier ratio increases, because
there are more consumers matching up the throughput of
the producer. However, if the number of the consumers is in-
creased over 4, starving consumers starts competing for lim-
ited CPU cores with others. The contention causes perfor-
mance regression in Figure 11b. When allowing core count
scales along with the number of consumers, we observe
the execution time remains stably low after multiplier ra-
tio is increased over 4, but there are many more consumer
blockings, indicating the CPU cores are actually utilized in
a wasteful way.
X86 Adoptability: All techniques that BLQ introduces are
not architecture-specific, except the userspace threading im-
plementation needs to follow the standard architecture Ap-
plication Binary Interface (ABI). libut from BLQ supports
both AArch64 and X86, making it easy to use BLQ on X86
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Figure 12. Speedup of each runtime scheme relative to the base-

line runtime on a X86 platform. On the left of each baseline bar,

execution times are labeled in seconds for reference.

machines. We conduct a case study on a X86 machine (4×
Core CPU@3.1GHz, 8 GBDRAM) to demonstrate BLQ tech-
niques are generally adoptable and gain performance across
architectures. As shown in Figure 12, as on AArch64 plat-
forms (§ 4.3), pw_dyn performs the best among all runtime
schemes, and BLQ techniques show considerable perfor-
mance gains, especially on FIR, firewall, and pipeline. The
overall performance speedup of pw_dyn over baseline on the
X86machine is about 1.40×, and the two other BLQ runtime
schemes, mix and mix_dyn, yields about 1.23× and 1.35×
average speedup, respectively. Performance degradation is
noticed on bc and chasing due to the very limited memory
capacity of the platform, indicating a future direction to im-
prove BLQ memory bounding mechanisms.

5 Related Work

Task scheduling is a well-studied topic. Many techniques
have been invented, more than what we can cover. Here we
discuss the most related prior work on task scheduling.
Optimizations with Dependency Information:

SWITCHES [12, 13] is a light-weight runtime that op-
timizes the scheduling of dependent OpenMP [11] tasks
across loops, achieving lower scheduling overhead by
such “Cross-Loop-Task” identified at compile time. But it
is difficult if not impossible to transform message queue
task parallel workloads to OpenMP-like programs, because
the number of iterations/tasks is meant to be infinite or
not statically decidable for the compiler. GRAMPS [38, 44]
invents per-stage work stealing, where producer-consumer
information guides the scheduling, to achieve better load
balance and lower memory footprint. BLQ borrows the idea
to schedule once and run dependent tasks until finish, and
prioritize downstream tasks to drain the pipeline faster as
well as getting enhanced locality.
Locality-Aware Scheduling: Many prior works have
shown the benefits of taking locality (e.g., NUMANodes [51,
55], multi-GPU nodes [9], cache [12, 13, 20]) into considera-
tion for task scheduling. For example, SLAW [20]models the
locality differences between work-first and help-first policy
in work stealing, then further proposes an adaptive policy,
and groups worker tasks to improve locality based on the
hints from programmers. BLQ follows the similar idea of
ghOSt [23] that takes hints from programmers to customize

runtime schemes to fit applications. Combined with the sys-
tem topology info, BLQ tries to further improve the cache
locality in multi-core systems.
Before the era of multi-core processor, there have been

studies [19, 46] on running streaming applications on grid-
based architectures. As parallel architectures become the
mainstream, a few more queue-based solutions [1, 7, 17, 28,
31, 37, 38] have been developed to enhance programmability
and cache locality for stream parallel processing.
Streaming Template Libraries: RaftLib [7] is a template
library that provides a streaming-style programming in-
terface (§ 3.2). RaftLib runtime takes care of many exe-
cution details for users, so that features (e.g., threadpool,
resizing) could be switched on with no change on the
user code. FastFlow [1] practices similar ideas in a layered
model: the bottom layer implements cache-friendly lock-
free single-producer single-consumer queues and locality-
aware threading support; the middle layer adds arbitra-
tor threads to enable multi-producer multi-consumer queue
support; the top layer defines several parallel algorithm pat-
terns (e.g., pipeline, divide & conquer, farm, all-to-all etc.) as
the building blocks for programmers to use.
Cache-Optimized BufferManagement:With the respect
to a specific use case: processing streaming network traffic
at line-rate, MCRingBuffer [28] proposes a multi-core syn-
chronization mechanism that is based on a lock-free, cache-
efficient ringbuffer implementation. The “packet-stealing”
technique in GRAMPS [38] applies thread cache for pack-
ets and follows Last-In-First-Out order to gain more locality
hence performance on cache-based systems.
BLQ shares some design considerations with those paral-

lel streaming processing frameworks, like reducing the pro-
gramming effort, avoiding locking in concurrent access, im-
proving cache locality and so on. Other than those, BLQ has
its own focus on minimizing overheads.
Additionally, there are several hardware queue propos-

als [29, 48, 52, 53] to accelerate the parallel processing of
data stream. The modular design of BLQ makes it definitely
possible to extend for those hardware queues (§ 3.4).

6 Conclusion

In conclusion, this paper presents BLQ, a message queue
runtime system, where applications could test different
strategies to handle queue blocking and find the most suit-
able one. BLQ reduces the overhead of resizing ringbuffers
with a chunk-based ringbuffer design, and lowers the sched-
uling overhead via a customized userspace threading library.
By taking advantages of application hints and system topol-
ogy info, BLQ groups tasks to keep the locality of heavymes-
sage traffic. BLQ proposes a scheduling policy that mixes
polling with OneShot helper threads to avoid blocking on
full queues and to improve the data locality. The evaluation
shows BLQ outperforms the baseline up to 3.8×.
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