
Analysis of Dynamic Power Management on Multi-Core
Processors

W. Lloyd Bircher and Lizy K. John
Laboratory for Computer Architecture

Department of Electrical and Computer Engineering
The University of Texas at Austin
{bircher, ljohn}@ece.utexas.edu

ABSTRACT
Power management of multi-core processors is extremely
important because it allows power/energy savings when all cores
are not used. OS directed power management according to ACPI
(Advanced Power and Configurations Interface) specifications is
the common approach that industry has adopted for this purpose.
While operating systems are capable of such power management,
heuristics for effectively managing the power are still evolving.
The granularity at which the cores are slowed down/turned off
should be designed considering the phase behavior of the
workloads. Using 3-D, video creation, office and e-learning
applications from the SYSmark benchmark suite, we study the
challenges in power management of a multi-core processor such
as the AMD Quad-Core Opteron™ and Phenom™. We unveil
effects of the idle core frequency on the performance and power
of the active cores. We adjust the idle core frequency to have the
least detrimental effect on the active core performance. We
present optimized hardware and operating system configurations
that reduce average active power by 30% while reducing
performance by an average of less than 3%. We also present
complete system measurements and power breakdown between
the various systems components using the SYSmark and SPEC
CPU workloads. It is observed that the processor core and the
disk consume the most power, with core having the highest
variability.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General

General Terms
Design, Measurement and Performance.

Keywords
power management, performance, operating system, ACPI, multi-core

1. INTRODUCTION
The recent shift to multi-threaded and multi-core processors has
created a new set of challenges for dynamic power management.
Compared to single-threaded processors, adapting power and

performance for multiple threads is more complex. The difficulty
centers around two issues: program phase behavior and resource
dependencies between threads. Program phase behavior is made
more complex by the aggregate phases created by the combination
of multiple threads. Phase behavior is used to control the
application of power adaptations, making the decision criteria
more complex. The decision criteria for adapting must primarily
consider the performance cost of the adaption and the likelihood
of encountering a particular performance demand. For example,
consider a case in which voltage and frequency scaling is used to
reduce power consumption during a phase of low performance
demand. For each voltage change the processor must briefly
suspend execution while the voltage source stabilizes at the new
operating point. This has a performance cost that is proportional
to the number of program phase changes. For a sporadic
workload this cost can outweigh the benefit of the power
adaptation. The concept also applies to other adaptations such as
resource resizing/power down. Reducing the active portion of a
cache causes a performance loss when the resource is reactivated
due to the need for warm-up. Disabling a pipeline has a similar
effect, as instructions do not complete until the newly active
pipeline refills with instructions.

In the multi-threaded case, the decision criteria are more complex
because the adaptations may affect the performance of other
threads. The cause is shared resources in a multi-threaded system.
Since the degree of resource sharing varies among processor
types, the performance dependence also varies. For example, a
typical multi-core processor shares the top-level cache among all
cores on the chip and provides an independent level one (L1)
cache. Any power adaptation that affects the performance of this
shared cache affects the performance of all cores. In contrast,
adapting performance of the L1 cache has little effect on the other
cores. The resultant increase in complexity of power adaptations
is due to the presence of multiple independent threads which have
dependent performance due to shared resources.

In this paper we seek to improve the effectiveness of power
adaptations through a study of program phase behavior and how
those phases affect performance in a multi-core processor. We
show that the performance impact of power adaptations in Quad-
Core AMD Opteron™ and AMD Phenom™ processors is
dominated by four characteristics: cache snoop activity, idle core
frequency, program phase behavior, and operating system control
of power adaptations. Workloads such as equake from SPEC
CPU 2000 and 3D workloads from SYSmark® 2007 have a
strong performance dependence on cache snoop latency. This
latency is shown to be dependent on the frequency of idle cores.
The amount of time a core spends in the idle or active state is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS’08, June 7–12, 2008, Island of Kos, Aegean Sea, Greece.
Copyright 2008 ACM 978-1-60558-158-3/08/06...$5.00.

dictated by program phase characteristics and the operating
system (OS) power adaptation policy. We study these items in the
framework of the Advanced Configuration and Power Interface
(ACPI). This interface specification was developed to establish
industry common interfaces enabling robust OS-directed power
management of both devices and entire systems. ACPI is the key
element in OS-directed configuration and power management.
From a power management perspective, ACPI promotes the
concept that systems should conserve energy by transitioning
unused devices into lower power states including placing the
entire system in a low-power state (sleeping state) when possible.
The interfaces and concepts defined within the ACPI specification
are suitable to all classes of computers including (but not limited
to) desktop, mobile, workstation, and server machines. We also
show that compared to benchmarks such as SPEC CPU 2000,
recent benchmark suites such as SPEC CPU 2006 shift power
consumption significantly from the processor to the memory
subsystem due to increased working set sizes. Using these
findings, we propose a power management configuration/policy
which has an average power reduction of 30 percent with less than
3 percent performance loss.

2. BACKGROUND
In this study we consider issues surrounding the use of dynamic
power adaptations on a real system. The objective is to make
optimal decisions regarding the tradeoff between performance and
power savings. For this purpose we consider areas such as:
program power/phase behavior, power saving techniques, and
adaptation control policies.

In the area of program phase behavior, studies which characterize
typical program phases with respect to power are most relevant.
Studies by Boher, Mahesri, and Feng [5][15][7] present power
characterizations of programs running on hardware ranging from
mobile to clustered servers. Our study differs in that the presented
power characterization includes phase duration. This information
is needed since power adaptations must be applied with
consideration for performance costs associated with transitioning
hardware to various levels of power adaption. Two studies which
do consider phase duration are presented by Bircher [3][4]. Our
study differs in that we consider desktop workloads. The
inclusion of desktop workloads is a critical difference, as it allows
the analysis of workloads that contain many more power phase
transitions. The reason is that desktop workloads, such as the
ones included here, contain user input and think time events.
These events introduce a large number of power phase transitions.
As for our phase classification technique, we make use of phase
classification metrics as described by Lau [12]. Our study differs
in that we make use of these techniques for exploring power phase
characteristics of programs running on an actual system. Their
study instead considers a range of classification techniques, but
does not characterize workloads.

To quantify the effect of power adaptations we present
performance and power consumption results for a range of
adaptation levels. Studies such as [18] [8][9] consider the
performance and power impact of applying power adaptations.
Our study differs in that we study power adaption and policies in
the framework of a multi-core processor. While these studies
consider adaptations and policies which optimize efficiency by
accounting for architecture-dependent characteristics such as
memory-boundedness, we examine policies which may only

consider program slack time in performing adaptations. To meet
the goal of increasing energy efficiency within this constraint we
analyze the inherent characteristics of the hardware power
adaptations and identify optimal configurations. Through this
approach we are able to increase performance and reduce power
consumption without runtime knowledge of program
characteristics.

3. POWER MANAGEMENT
3.1. Active and Idle Power Management
An effective power management strategy must take advantage of
program and architecture characteristics. Designers can save
energy while maintaining performance by optimizing for the
common execution characteristics. The two major power
management components are active and idle power management.
Each of these components use adaptations that are best suited to
their specific program and architecture characteristics. Active
power management seeks to select an optimal operating point
based on the performance demand of the program. This entails
reducing performance capacity during performance-insensitive
phases of programs. A common example would be reducing the
clock speed or issue width of a processor during memory-bound
program phases. Idle power management reduces power
consumption during idle program phases. However, the
application of idle adaptations is sensitive to program phases in a
slightly different manner. Rather than identifying the optimal
performance capacity given current demand, a tradeoff is made
between power savings and responsiveness. In this case the
optimization is based on the length and frequency of a program
phase (idle phases) rather than the characteristics of the phase
(memory-boundedness, IPC, cache miss rate). In the remainder of
this paper we will make reference to active power adaptations
called p-states and idle power adaptations called c-states. These
terms represent adaption operating points as defined in the ACPI
specification. ACPI [1] “…is an open industry specification co-
developed by Hewlett-Packard, Intel, Microsoft, Phoenix, and
Toshiba. ACPI establishes industry-standard interfaces enabling
OS-directed configuration, power management, and thermal
management of mobile, desktop, and server platforms.”

3.1.1. Active Power Management: P-states
A p-state (performance state) defines an operating point for the
processor. States are named numerically starting from P0 to PN,
with P0 representing the maximum performance level. As the p-
state number increases, the performance and power consumption
of the processor decrease. Table 1 shows p-state definitions for a
typical processor. The state definitions are made by the processor
designer and represent a range of performance levels which match
expected performance demand of actual workloads. P-states are
simply an implementation of dynamic voltage and frequency
scaling (DVFS). The resultant power savings obtained using
these states is largely dependent on the amount of voltage
reduction attained in the lower frequency states.

Table 1. Example P-states Definition
 Frequency (MHz) VDD (Volts)

P0 Fmax 100% Vmax 100%
P1 Fmax 85% Vmax 96%
P2 Fmax 75% Vmax 90%
P3 Fmax 65% Vmax 85%
P4 Fmax 50% Vmax 80%

Table 2. Example C-states Definition
 Response Latency(us)

C0 0
C1 10
C2 100
C3 1000
C4 10000

3.1.2. Idle Power Management: C-states
A c-state (CPU idle state) defines an idle operating point for the
processor. States are named numerically starting from C0 to CN,
with C0 representing the active state. As the c-state number
increases, the performance and power consumption of the
processor decrease. Table 2 shows c-state definitions for a typical
processor. Actual implementation of the c-state is determined by
the designer. Techniques could include low latency techniques,
clock and fetch gating, or more aggressive high latency techniques
such as voltage scaling or power gating.

3.2. Quad-Core AMD Processors and System
Description

The Quad-Core AMD Opteron™ and AMD Phenom™ processors
used in this study are 1.6GHz-2.4GHz, 3-way superscalar, four-
core processors implemented on a 65 nm process. The processor
provides an interesting vehicle for the study of dynamic power
adaptations due to its ability to operate each of its cores at an
independent frequency. This ability provides better opportunity
for power savings, but increases the complexity of configuration
due to the performance dependence introduced by the independent
operating frequencies. Two platform types were used, server and
desktop. The server system utilizes 8GB of DDR2-667
configured for dual channel operation. The desktop system uses
1GB of DD2-800 also configured for dual channel.

3.2.1. Quad-Core AMD Processor P-state
Implementation

Each core may operate at a distinct p-state. However, a voltage
dependency exists between cores in a single package. All cores in
a package must operate at the same voltage. The actual voltage
applied to all cores is the maximum required of all. Therefore, the
best power savings occurs when all cores are operating in the
same p-state.

3.2.2. Quad-Core AMD Processor C-state
Implementation

Two architecturally visible c-states are provided: C0 and C1. In
C0, the active state, fine-grain clock gating throughout the
processor provides the power savings. This gating is
automatically applied by hardware and has a negligible effect on
performance. The other available state, C1, is applied during idle
phases by execution of the HALT instruction. This state
effectively reduces frequency by a programmable power of 2. For
example, the C1 state may reduce frequency by a factor of 2, 4, 8,
16, 128 or 512. Though the responsiveness of cores in the C1
state is not greatly affected by the frequency reduction, the
performance of active cores is. This dependency is introduced
through shared cache resources. When an active core makes a
request for a cache block, a cache probe (snoop) is made to the
idle cores. Since the idle core is operating at a reduced frequency,
the time to service the probe is increased. Designers can mitigate
this effect through the use of adaptations such as increasing idle

core frequency in response to probe requests (“CPU Direct Probe
Mode”). This approach must be applied carefully since it can
greatly reduce idle power savings. In order to balance probe
responsiveness with power savings, Quad-Core AMD processors
provide a tuning parameter to control how long the idle processor
remains at an increased frequency in response to a probe. The
result is a hysteresis function. This approach is effective due to
the bursty nature of cache probe traffic.

In addition to the architecturally visible C0 and C1, an additional
state C1e (enhanced C1) is provided. C1e is applied
automatically by the hardware in response to idle phases in which
all cores are idle. This mode provides larger power savings since
there is no need to service cache coherence traffic when all cores
are idle. Additional power is saved in the on-chip memory
controller and through more aggressive power settings in the
cores. These settings are reasonable since the likelihood of
waking any one core is less when all cores are idle.

3.2.3. Quad-Core AMD Processor Power Savings
Potential

The power saving states described in this section provide a
significant range of power and performance settings for
optimizing efficiency, limiting peak power consumption, or both.
However, other parameters greatly influence the effective power
consumption. Temperature, workload phase behavior, and power
management policies are the dominant characteristics.
Temperature has the greatest effect on static leakage power. This
can be seen in Figure 1 which shows power consumption of a
synthetic workload at various combinations of temperature and
frequency. Note that ambient temperature is 20°C and “idle”
temperature is 35°C. As expected, a linear change in frequency
yields a linear change in power consumption. However, linear
changes in temperature yield exponential changes in power
consumption. Note that static power is identified by the Y-
intercept in the chart. This is a critical observation since static
power consumption represents a large portion of total power at
high temperatures. Therefore, an effective power management
scheme must also scale voltage to reduce the significant leakage
component. To see the effect of voltage scaling consider Figure
2.

Figure 1. Temperature Sensitivity of Power Reduction

through Frequency Scaling

0

10

20

30

40

0 500 1000 1500 2000

Po
w
er
 (W

at
ts
)

Frequency (MHz)

95C 80C
65C 50C
35C

C0-Max All Cores Active IPC ≈ 3
C0-Idle All Cores Active IPC ≈ 0
C1- Idle At Least One Active Core, Core ≈ 0 MHz
C1e-Idle All Idle, Core ≈ 0 MHz, MemCntrl ≈ 0 MHz

Figure 2. Power by C-state/P-state Combination
Figure 2 shows the cumulative effect of p-states and c-states.
Combinations of five p-states (x-axis) and four operating modes
are shown. The lowest power case, C1e-Idle, represents all cores
being idle for long enough that the processor remains in the C1e
state more than 90 percent of the time. The actual amount of time
spent in this state is heavily influenced by the rate of input/output
(I/O) and OS interrupts. This state also provides nearly all of the
static power savings of the low-voltage p-states even when in the
P0 state. Second, the C1-Idle case shows the power consumption
assuming at least one core remained active and prevented the
processor from entering the C1e state. This represents an extreme
case in which the system would be virtually idle, but frequent
interrupt traffic prevents all cores from being idle. This
observation is important as it suggests system and OS design can
have a significant impact on power consumption. The remaining
two cases, C0-Idle and C0-Max, show the impact of workload
characteristics on power. C0-Idle attains power savings though
fine-grain clock gating. The difference between C0-Idle and C0-
Max is determined by the amount of power spent in switching
transistors, which would otherwise be clock-gated, combined with
worst-case switching due to data dependencies. C0-Max can be
thought of as a pathological workload in which all functional units
on all cores are 100 percent utilized and the datapath constantly
switches between 0 and 1. All active phases of real workloads
exist somewhere between these two curves. High-IPC compute-
bound workloads are closer to C0-Max while low-IPC memory-
bound workloads are near C0-Idle.

3.3. Costs of Adaptation
The p-state and c-state adaptations described above define the
bounds of power consumption possible. In this section we
consider what effect these adaptations have on performance and
efficiency. The actual power/performance obtained can be quite
different due to the physical limitations of how the adaptations are
implemented, phase characteristics of workloads, and power
management policies.

3.3.1. Transition Costs
Due to physical limitations, transitioning between adaptation
states may impose some cost. The cost may be in the form of lost
performance or increased energy consumption. In the case of
DVFS, frequency increases require execution to halt while voltage
supplies ramp up to their new values. This delay is typically
proportional to the amount of voltage change (seconds/volt).

Frequency decreases typically do not incur this penalty as most
digital circuits will operate correctly at higher than required
voltages. Depending on implementation, frequency changes may
incur delays. If the change requires modifying the frequency of
clock generation circuits (phase locked loops), then execution is
halted until the circuit locks on to its new frequency. This delay
may be avoided if frequency reductions are implemented using
methods which maintain a constant frequency in the clock
generator. This is the approach used in Quad-Core AMD
processor c-state implementation. Delay may also be introduced
to limit current transients. If a large number of circuits all
transition to a new frequency, then excessive current draw may
result. This has a significant effect on reliability. Delays to limit
transients are proportional to the amount of frequency change
(seconds/MHz). Other architecture-specific adaptations may have
variable costs per transition. For example, powering down a
cache requires modified contents to be flushed to the next higher
level of memory. This reduces performance and may increase
power consumption due to the additional bus traffic. When a
predictive component is powered down it no longer records
program behavior. For example, if a branch predictor is powered
down during a phase in which poor predictability is expected, then
branch behavior is not recorded. If the phase actually contains
predictable behavior, then performance may be lost and efficiency
may be lost. If a unit is powered on and off in excess of the actual
program demand, then power and performance may be
significantly affected by the flush and warm-up cycles of the
components. In this study we focus on fixed cost per transition
effects such as those required for voltage and frequency changes.

3.3.2. Workload Phase and Policy Costs
In the ideal case the transition costs described above do not
impact performance and save maximum power. The reality is that
performance of dynamic adaption is greatly affected by the nature
of workload phases and the power manager’s policies.
Adaptations provide power savings by setting performance to the
minimum level required by the workload. If the performance
demand of a workload were known in advance, then setting
performance levels would be trivial. Since they are not known,
the policy manager must estimate future demand based on the
past. Existing power managers, such as those used in this study
(Windows Vista and SLES Linux), act in a reactive mode. They
can be considered as predictors which always predict the next
phase to be the same as the last. This approach works well if the
possible transition frequency up the adaptation is greater than the
phase transition frequency of workload. Also, the cost of each
transition must be low considering the frequency of transitions. In
real systems, these requirements cannot currently be met.
Therefore, the use of power adaptations does reduce performance
to varying degrees depending on workload. The cost of
mispredicting performance demand is summarized below.

• Underestimate: Setting performance capacity lower than the
optimal value causes reduced performance. Setting
performance capacity lower than the optimal value may
cause increased energy consumption due to increased
runtime. It is most pronounced when the processing element
has effective idle power reduction.

• Overestimate: Setting performance capacity higher than the
optimal value reduces efficiency as execution time is not
reduced yet power consumption is increased. This case is
common in memory-bound workloads.

0

20

40

60

80

100

0 1 2 3 4

Po
w
er
 (W

at
ts
)

P‐state

C0‐Max C0‐Idle
C1‐Idle C1e‐Idle

• Optimization Points: The optimal configuration may be
different depending on which characteristic is being
optimized. For example, Energy·Delay may have a different
optimal point compared to Energy·Delay2.

3.4. Workloads
To represent typical user programs, we performed all experiments
using SPEC CPU 2006, CPU 2000 and SYSmark® 2007. SPEC
workloads include the complete suite of scientific and computing
integer and floating point codes. The CPU 2006 version is
included to give representative results for current applications.
The CPU 2000 version is included due to its wide familiarity.
The most significant difference between the two benchmark suites
is working set size. Therefore, results obtained with CPU 2000
tend to be compute-bound while CPU 2006 results are more
communication-bound. This difference is made clear in our
experiments. Additionally, we present data from the SYSmark
2007 benchmark suite. This suite represents a wide range of
desktop computing applications. The major categories are: e-
learning, video creation, productivity, and 3D. The individual
subtests are listed below. This suite is particularly important to
the study of dynamic power adaptations since it provides realistic
user scenarios which include user input and think time. Since
current operating systems determine dynamic adaption levels
using thread idle time, these user interactions must be replicated
in the benchmark.

Table 3. SYSmark 2007
E-Learning 3D

Adobe® Illustrator® Autodesk® 3Ds Max
Adobe Photoshop® Google™ SketchUp

Microsoft PowerPoint®
Adobe Flash®
Productivity Video Creation

Microsoft Excel® Adobe After Effects®
Microsoft Outlook® Adobe Illustrator
Microsoft Word® Adobe Photoshop

Microsoft PowerPoint Microsoft Media Encoder
Microsoft Project® Sony Vegas

Winzip®

3.5. Measurement Environment
To measure power consumption, we instrumented a system at a
fine-grain level. For each subsystem we inserted a precision
series resistor to measure current flow. We also measured voltage
levels at the point of delivery. Using these quantities, it is
possible to measure power consumption of a particular subsystem.
We considered all major power subsystems, including: CPU core,
memory controller, DRAM, PCIe, video, I/O bus, and disk. We
performed all sampling at a rate of 1 KHz, using a National
Instruments NIUSB-6259 [17]. This granularity allowed the
measurement of most power phases which were sufficiently long
to perform adaptations. Though shorter duration phases exist,
current adaptation frameworks are not able to readily exploit
them.

3.6. Phase Classification
To understand the effect of dynamic power adaptations on power
and performance it is necessary to understand the phase behavior
of workloads. Depending on the number of phase transitions a
program contains, the performance cost to apply adaptations may
vary. Phase transitions are inherent in programs, but are also

introduced artificially through the operating system control of
scheduling. A common example is context switching. Consider a
single-processor system in which multiple software threads run
simultaneously via multiplexing. Each thread runs until its
allotted time expires. The operating system then saves the current
system state and replaces the current thread with a waiting thread.
Since the current phase of the various threads are not necessarily
the same, the effective phase observed on the processor changes
with each context switch. This presents a challenge since power
adaptations are applied based on the hardware’s perspective of the
current program phase. In this paper we quantify program phase
behavior by measuring phase characteristics of a wide range of
workloads. We measure phases in terms of power consumption
since adaptations are applied in order to control power. Also, this
data is used to motivate the use of predictive power adaptations in
a power-constrained environment. Therefore, it is necessary to
know the duration and of intensity power allocation overshoot and
undershoot.

In this study we defined a program phase as consecutive time
events in which the power level of the subsystem is constant. The
boundaries of a phase are specified by a change in the power
level. The method we use for phase classification is similar to
that used by Lau [12], in which a phase candidate is measured
using the coefficient of variation (CoV =
StandardDeviation/Average). We selected a CoV threshold using
qualitative assessment and an error analysis. If the candidate
phase has a CoV less than the threshold, then it is considered to be
a phase. To find all possible phase lengths, we searched the data
for the longest phases. Once we identified a portion of the data as
being a phase, we removed that portion and no longer considered
it in the search. The search continued with decreasing phase size
until we classified all data. In our study we considered phase
durations in the range of 1 ms to 1000 ms, as these represent cases
useful for dynamic adaptation.

3.7. OS P-state Transition Latency
With the increasing availability and aggressiveness of power
adaptations, it is becoming increasingly important to provide a
mechanism for controlling the manner in which the adaptations
are applied. In the case of Microsoft Windows® Vista® [16] , a
wide range of controlling parameters is made available to users
with a built-in utility. The major behaviors adjusted are frequency
or p-state transitions, time thresholds for promotion/demotion,
utilization thresholds for promotion/demotion, and p-state
selection policy. These parameters may be changed at runtime in
order to bias p-state selection for power savings, performance, or
any intermediate level. Means are also provided for controlling c-
state transitions, though these will not be discussed in the paper.
A summary of critical parameters follows:
Timecheck: P-state change interval
Increase/Decrease Time: How long a thread must be in excess of
the transition threshold before a transition is requested
Increase/Decrease percent: Transition threshold. A thread must
exceed this threshold in order to be eligible for a transition.
Increase/Decrease Policy: P-state transition method. Three
methods are available: Ideal, single, and rocket.
• Ideal: OS calculates ideal frequency based on current utilization.
• Single: new frequency is one step from current frequency.
• Rocket: go directly to maximum or minimum frequency.

4. RESULTS
4.1. Performance Effects
P-states and C-states impact performance in two ways: Indirect
and Direct. Indirect performance effects are due to the interaction
between active and idle cores. In the case of Quad-Core AMD
processors, this is the dominant effect. When an active core
performs a cache probe of an idle core, latency is increased
compared to probing an active core. The performance loss can be
significant for memory-bound (cache probe-intensive) workloads.
Direct performance effects are due to the current operating
frequency of an active core. The effect tends to be less compared
to indirect, since operating systems are reasonably effective at
matching current operating frequency to performance demand.
These effects are illustrated in Figure 3.

Two extremes of workloads are presented: the compute-bound
crafty and the memory-bound equake. For each workload, two
cases are presented: fixed and normal scheduling. Fixed
scheduling isolates indirect performance loss by eliminating the
effect of OS frequency scheduling and thread migration. This is
accomplished by forcing the software thread to a particular core
for the duration of the experiment. In this case, the thread runs
always run at the maximum frequency. The idle cores always run
at the minimum frequency. As a result, crafty achieves 100
percent of the performance of processor that does not use dynamic
power management. In contrast, the memory-bound equake
shows significant performance loss due to the reduced
performance of idle cores. We see direct performance loss in the
green dashed and red dotted lines, which utilize OS scheduling of
frequency and threads. Because direct performance losses are
caused by suboptimal frequency in active cores, the compute-
bound crafty shows a significant performance loss. The memory-
bound equake actually shows a performance improvement for
very low idle core frequencies. This is caused by idle cores
remaining at a high frequency following a transition from active
to idle.

60%

65%

70%

75%

80%

85%

90%

95%

100%

105%

200 700 1200 1700 2200

Pe
rf
or
m
an
ce

Idle Core Frequency (MHz)

crafty‐fixed

equake‐fixed

equake

crafty

Figure 3. Direct and Indirect Performance Impact

4.1.1. Indirect Performance Effects
The amount of indirect performance loss is mostly dependent on
the following three factors: Idle core frequency, OS p-state
transition characteristics, and OS scheduling characteristics. The
probe latency (time to respond to probe) is largely independent of
idle core frequency above the “breakover” frequency (FreqB).
Below FreqB the performance drops rapidly at an approximately
linear rate. This can be seen in Figure 3 as the dashed red line.

The value of FreqB is primarily dependent on the inherent probe
latency of the processor and the number of active and idle cores.
Increasing the active core frequency increases the demand for
probes and therefore increases FreqB. Increasing the number of
cores has the same effect. Therefore, multi-socket systems tend to
have a higher FreqB. Assuming at least one idle core, the
performance loss increases as the ratio of active-to-idle cores
increases. For an N-core processor, the worst-case is N-1 active
cores with 1 idle core. To reduce indirect performance loss, the
system should be configured to guarantee than the minimum
frequency of idle cores is greater than or equal to FreqB. Since the
recommended configuration for Quad-Core AMD processors is
“K8-style” probe response (CpuPrbEn=0) [2], the minimum idle
core frequency is determined by the minimum p-state frequency.
An explanation of these settings is provided later, in section 4.2.2.
For the majority of workloads, these recommended settings yield
less than 10 percent performance loss due to idle core probe
latency.

The other factors in indirect performance loss are due to the
operating system interaction with power management. These
factors, which include OS p-state transition and scheduling
characteristics, tend to mask the indirect performance loss.
Ideally, the OS selects a high frequency p-state for active cores
and a low frequency for idle cores. However, erratic workloads
(many phase transitions) tend to cause high error rates in the
selection of optimal frequency. Scheduling characteristics that
favor load-balancing over processor affinity worsen the problem.
Each time the OS moves a process from one core to another, a
new phase transition has effectively been introduced. We give
more details of OS p-state transitions and scheduling
characteristics in the next section on direct performance effects.

4.1.2. Direct Performance Effects
Since the OS specifies the operating frequency of all cores (p-
states), the performance loss is dependent on how the OS selects a
frequency. To match performance capacity (frequency) to
workload performance demand, the OS approximates demand by
counting the amount of slack time a process has. For example, if
a process runs for only 5ms of its 10 ms time allocation it is said
to be 50 percent idle. In addition to the performance demand
information, the OS p-state algorithm uses a form of low-pass
filtering, hysteresis, and performance estimation/bias to select an
appropriate frequency. These characteristics are intended to
prevent excessive p-state transitions. This has been important
historically since transitions tended to cause a large performance
loss (PLL settling time, VDD stabilization). However, in the case
of Quad-Core AMD processors and other recent designs, the p-
state transition times have been reduced significantly. As a result,
this approach may actually reduce performance for some
workloads and configurations. See the red dotted equake and solid
green crafty lines in Figure 3. These two cases demonstrate the
performance impact of the OS p-state transition hysteresis.

As an example, consider a workload with short compute-bound
phases interspersed with similarly short idle phases. Due to the
low-pass filter characteristic, the OS does not respond to the short
duration phases by changing frequency. Instead, the cores run at
reduced frequency with significant performance loss. In the
pathologically bad case, the OS switches the frequency just after
the completion of each active/idle phase. The cores run at high
frequency during idle phases and low frequency in active phases.

Power is increased while performance is decreased. OS
scheduling characteristics exacerbate this problem. Unless the
user makes use of explicit process affinity or an affinity library,
some operating systems will attempt to balance the workloads
across all cores. This causes a process to spend less contiguous
time on a particular core. At each migration from one core to
another there is a lag from when the core goes active to when the
active core has its frequency increased. The aggressiveness of the
p-state setting amplifies the performance loss/power increase due
to this phenomenon. Fortunately, recent operating systems such
as Microsoft Windows Vista provide means for OEMs and end
users to adjust the settings to match their workloads/hardware (see
powercfg.exe).

4.2. Workload Power Characterization
4.2.1. Subsystem Power Breakdown
In this section we consider average power consumption levels
across a range of workloads. We draw two major conclusions for
desktop workloads: the core is largest power consumer, and
contains the most variability across workloads. Though other
subsystems, such as memory controller and DIMM, have
significant variability within workloads, only the core
demonstrates significant variability in average power across
desktop workloads. Consider Figure 4: while average core power
varies by as much as 57 percent, the next most variable
subsystem, DIMM, varies by only 17 percent. Note, this
conclusion does not hold for server systems and workloads in
which much larger installations of memory modules cause greater
variability in power consumption. The cause of this core power
variation can be attributed to a combination of variable levels of
thread-level parallelism and core-level power adaptations. In the
case of 3D, the workload is able to consistently utilize multiple
cores.

At the other extreme, the productivity workload rarely utilizes
more than a single core. Since Quad-Core AMD processor power
adaptations may be applied at the core level, frequency reduction
achieves significant power savings on the three idle cores. As a
result, the productivity workload consumes much less power than
the 3D workload. The remaining workloads offer intermediate
levels of thread-level parallelism and therefore have intermediate
levels of power consumption. Also note that this level of power
reduction is due only to frequency scaling. With the addition of

core-level voltage scaling, the variation/power savings is expected
to increase considerably.

We draw a slightly different conclusion for server workloads and
systems. Due to the presence of large memory subsystems,
DIMM power is a much larger component. Also, larger working
sets such as those found in SPEC CPU2006 compared to SPEC
CPU2000 shift power consumption from the cores to the DIMMs.
Consider CPU2000 in Figure 5 and CPU20006 in Figure 6. Due
to comparatively small working sets, CPU2000 workloads are
able to achieve high core power levels. The reason is that, since
the working set fits easily within the cache, the processor is able
to maintain very high levels of utilization. This is made more
evident by the power increases seen as the number of
simultaneous threads is increased from 1 to 4. Since there is less
performance dependence on the memory interface, utilization and
power therefore continue to increase as threads are added. Result
is different for CPU2006 workloads. Due to the increased
working set size of these workloads, the memory subsystem limits
performance. Therefore, core power is reduced significantly for
the four-thread case. Differences for the single-thread case are
much less due to a reduced dependency on the memory
subsystem. The shift in utilization from the core to the memory
subsystem can be seen clearly in Figure 7. For the most compute-
bound workloads, core power is five times larger than DIMM
power. However, as the workloads become more memory-bound,
the power levels converge to the point where DIMM power
slightly exceeds core power.

0
10
20
30
40
50
60
70
80
90

W
at
ts

Core

MemCtrl

DIMM

I/O

Video

Disk

Figure 4. Desktop Subsystem Power Breakdown

Figure 5. CPU2000 Average Core Power

0

10

20

30

40

50

60

W
at
ts

SPEC2000‐1x

SPEC2000‐4x

Desktop

Figure 6. CPU2006 Average Core Power

Figure 7. CPU2006 Average Core vs. DIMM Power

4.2.2. Core Power Phase Characteristics
The previous section demonstrates the core as having the most
variable average power consumption across the various
subsystems. In this section we present the intra-workload phase
characteristics which contribute to the variation. These results are
attributable to the three dominant components of power
adaptation: hardware adaptation, workload characteristics, and OS
control of adaptations. In Figure 8 we present a distribution of the
phase length of power consumption for desktop workloads. We
draw two major conclusions: the operating system has a
significant effect on phase length and interactive workloads tend
to have longer phases.

First, the two spikes at 10 ms and 100 ms show the effect of the
operating system. These can be attributed to the period timer tick
of the scheduler and p-state transitions requested by the operating
system. In the case of Microsoft Windows Vista, the periodic
timer tick arrives every 10 ms. This affects the observed power
level since power consumed in the interrupt service routine is
distinct from “normal” power levels. In the case of high-IPC
threads, power is reduced while servicing the interrupt, which
typically has a relatively low-IPC due to cold-start misses in the
cache and branch predictor. In the case of low-power or idle
threads, power is increased since the core must be brought out of
one or more power saving states in order to service the interrupt.
This is a significant problem for power adaptations since the timer
tick is not workload dependent. Therefore, even a completely idle
system must “wake up” every 10 ms to service an interrupt, even

though no useful work is being completed. Also, 10 ms phase
transitions are artificially introduced due to thread migration.
Since thread scheduling is performed on timer tick intervals,
context switches, active-to-idle, and idle-to-active transitions
occur on 10 ms intervals. The 100 ms phases can be explained by
the OS’s application of p-state transitions. Experimentally, it can
be shown that the minimum rate at which the operating system
will request a transition from one p-state to another is 100 ms.
When p-state transitions are eliminated, the spike at the 100 ms
range of Figure 8 is eliminated.

The second conclusion from Figure 8 is that interactive workloads
have longer phase durations. In the case of 3D and video creation
workloads, a significant portion of time is spent in compute-
intensive loops. Within these loops, little or no user interaction
occurs. In contrast, the productivity and e-learning workloads
spend a greater percentage of the time receiving and waiting for
user input. This translates into relatively long idle phases which
are evident in the lack of short duration phases in Figure 8.

This is further supported by Figures 9 through 12, which group
the most common phases by combinations of amplitude and
duration. Note that all phases less than 10 ms are considered to be
10 ms. This simplifies presentation of results and is reasonable
since the OS does not apply adaptation changes any faster than 10
ms. These figures show that the highest power phases only
endure for a short time. These phases, which are present only in
3D and – to a much lesser degree – in video creation, are only

0

10

20

30

40

50

60

W
at
ts

SPEC2006‐1x

SPEC2006‐4x

Desktop

0

10

20

30

40

50

60

W
at
ts

SPEC2006‐4x

DIMM

possible when multiple cores are active. We attribute the lack of
long duration high power phases to two causes: low percent of
multithreaded phases and higher IPC dependence during
multithreaded phases. The impact of few multithreaded phases is
expected and has been demonstrated in Figures 5 and 6. The
dependence on IPC for phase length increases as the number of
active cores increases. Figure 2 from section 3.2.2 shows that
power increases significantly as IPC increases from 0 to 3.
Assuming active cores running in the P0 (highest frequency) state,
IPC has the largest effect on power consumption since IPC varies
much more quickly (nanoseconds) than transitions between power
states (10’s of milliseconds). Consistent power consumption
levels are less likely as the number of active cores increases. 1 10 100 1000

Fr
eq

ue
nc
y

PhaseLength(ms)

3D Productivity

E‐learning VideoCreation

Figure 8. Core Power Phase Duration

45W‐10ms

38W‐10ms

32W‐10ms

26W‐330ms

20W‐100ms

13W‐100ms

Idle‐34ms

3D

 Figure 9. Core Power Phases – 3D

26W‐100ms

22W‐100ms

13W‐100msIdle‐1000+ms

Idle‐
50to500ms

Idle‐10ms

Idle‐
500to1000ms

Elearning

 Figure 10. Core Power Phases – E-learning

25W‐20ms

25W‐20ms

21W‐20ms

17W‐10ms

13W‐58ms

Idle‐
200to600ms

Idle‐1to200ms

Idle‐600+ms

Productivity

Figure 11. Core Power Phases – Productivity

42W‐10ms 28W‐10ms 25W‐10ms
22W‐10ms
19W‐10ms

15W‐10ms

13W‐40ms

Idle‐78ms

VideoCreation

 Figure 12. Core Power Phases – Video Creation

4.3. Identifying Optimal Adaption Settings
In this section, we present results to show the effect that dynamic
adaptations ultimately have on performance and power
consumption. We obtained all results on a real system,
instrumented for power measurement. The two major areas
presented are probe sensitivity (indirect) and operating system
effects (direct).

First we consider probe sensitivity of SPEC CPU2006. Table 4
shows performance loss due to the use of p-states. In this
experiment the minimum p-state is set below the recommended
performance breakover point for probe response. This
emphasizes the inherent sensitivity workloads have to probe
response. Operating system frequency scheduling is biased
towards performance by fixing active cores at the maximum
frequency and idle cores at the minimum frequency. These results
suggest that floating point workloads tend to be most sensitive to
probe latency. However, in the case of SPEC CPU2000

workloads, almost no performance loss is shown. The reason, as
shown in section 4.3.1, is that smaller working set size reduces
memory traffic and, therefore, the dependence on probe latency.
For these workloads only swim, equake, and eon showed a
measureable performance loss.

Next we show that by slightly increasing the minimum p-state
frequency it is possible to recover almost the entire performance
loss. Figure 13 shows an experiment using a synthetic kernel with
very high probe sensitivity with locally and remotely allocated
memory. The remote case simply shows that the performance
penalty of accessing remote memory can obfuscate the
performance impact of minimum p-state frequency. The indirect
performance effect can be seen clearly by noting that performance
increases rapidly as the idle core frequency is increased from 800
MHz to approximately 1.1 GHz. This is a critical observation
since the increase in power for going from 800 MHz to 1.1 GHz is
much smaller than the increase in performance. The major cause
is that static power represents a large portion of total power
consumption. Since voltage dependence exists between all cores
in a package, power is only saved through the frequency
reduction. There is no possibility to reduce static power since
voltage is not decreased on the idle cores.

50%

60%

70%

80%

90%

100%

110%

800 1000 1200 1400 1600 1800 2000

Pe
rf
or
m
an
ce

Idle Core Frequency (MHz)

LocalMem

RemoteMem

Figure 13. Remote and Local Probe Sensitivity

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

0% 20% 40% 60% 80% 100%

Pe
rf
or
m
an
ce

Hysteresis

C‐State Only

P‐State + C‐State

Figure 14. C-state vs. P-state Performance
Using the same synthetic kernel we also isolate the effect of p-
states from c-states. Since the p-state experiments show that
indirect performance loss is significant below the breakover point,
we now consider c-state settings that do not impose the
performance loss. To eliminate the effect of this performance loss
we make use of K8-mode probe response. In this mode, idle cores
increase their frequency before responding to probe requests. To
obtain an optimal tradeoff between performance and power
settings, this setting mode can be modulated using hysteresis,

implemented by adjusting a hysteresis timer. The timer specifies
how long the processor remains at the increased frequency before
returning to the power saving mode. The results are shown in
Figure 14. The blue line represents the performance loss due to
slow idle cores caused by the application of c-states only. Like
the p-state experiments, performance loss reaches a clear
breakpoint. In this case, the breakover point represents 40 percent
of the maximum architected delay. Coupling c-states with p-
states, the red shows that the breakover point is not as distinct
since significant performance loss already occurs. Also, like the
p-state experiments, setting the hysteresis timer to a value of the
breakover point increases performance significantly while
increasing power consumption on slightly.

Figure 15. Varying OS P-state Transition Rates

88%

90%

92%

94%

96%

98%

100%

102%

800 1300 1800 2300

Pe
rf
or
m
an
ce

Idle Core Frequency (MHz)

Default

Fast P‐States

Figure 16. Effect of Increasing P-state Transition Rate
Next we consider the effect of operating system tuning parameters
for power adaptation selection. In order to demonstrate the
impact of slow p-state selection, we present Figure 15. The effect
is shown by varying a single OS parameter while running a phase
transition intensive kernel. In this graph, the TimeCheck value is
varied from 1 ms to 1000 ms. TimeCheck controls how often the
operating system will consider a p-state change. We found two
major issues: minimum OS scheduling quanta and
increase/decrease filter.

First, performance remains constant when scaling from 1 us to 10
ms (< 1 ms not depicted). We attribute this to the OS
implementation of scheduling. For Microsoft Windows Vista, all
processes are scheduled on the 10 ms timer interrupt. Setting
TimeCheck to values less than 10 ms will have no impact since p-
state changes, like all process scheduling, occur only on 10-ms

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 10 100 1000

Pe
rf
or
m
an

ce

TimeCheck (ms)

boundaries. Second, even at the minimum TimeCheck value,
performance loss is at 80 percent. The reason is that other settings
become dominant below 10 ms. In order for a p-state transition to
occur the workload must overcome the in-built low-pass filter.
This filter is implemented as a combination of two thresholds:
increase/decrease percent and increase/decrease time. The percent
threshold represents the utilization level that must be crossed in
order to consider a p-state change. The threshold must be
exceeded for a fixed amount of time specified by
increase/decrease time. Since the increase time is much longer
than TimeCheck (300 ms vs. 10 ms), significant performance is
lost even at the minimum setting.

To reduce the impact of slow p-state transitions we select OS
settings that increase transition rates. In a general sense, frequent
p-state transitions are not recommended due to the hardware
transition costs. However, our experiments have shown that the
performance cost for slow OS-directed transitions is much greater
than that due to hardware. This can be attributed to the relatively
fast hardware transitions possible on Quad-Core AMD processors.
Compared to OS transitions which occur at 10 ms intervals,
worst-case hardware transitions occur in a matter of 100’s of
microseconds. Figure 16 shows the effect of optimizing p-state
changes to the fastest rate of once every 10 ms. The probe-
sensitive equake is shown with and without “fast p-states.” This
approach yields between 2 percent and 4 percent performance
improvement across the range of useful idle core frequencies. As
we will see in the next section, this also improves power savings
by reducing active-to-idle transition times.
Table 4. Performance Loss Due to Low Idle Core Frequency

SPEC CPU 2006 - INT
perlbench -0.8% sjeng 0.0%
bzip2 -1.0% libquantum -7.0%
gcc -3.6% h264ref -0.8%
mcf -1.8% omnetpp -3.7%
gobmk -0.3% astar -0.5%
hmmer -0.2%

SPEC CPU 2006 - FP
bwaves -5.6% soplex -6.7%
games -0.6% povray -0.5%
milc -7.9% calculix -0.6%
zeusmp -2.1% GemsFDTD -5.9%
gromacs -0.3% tonto -0.6%
cactusADM -2.6% lbm -5.6%
leslie3D -6.0% wrf -3.2%
namd -0.1% sphinx3 -5.6%
dealII -1.3%

4.4. Power and Performance
In this section we present results for p-state and c-state settings
which reflect the findings of the previous sections. In this case we
study the Microsoft Windows Vista operating system running
desktop workloads. This approach gives the highest exposure to
the effect the operating system has on dynamic adaptations. By
choosing desktop workloads, the number of phase transitions and,
therefore, OS interaction is increased. Since these workloads
model user input and think times, idle phases are introduced.
These idle phases are required for OS study since the OS makes
use of idle time for selecting the operating point. Also, Microsoft
Windows Vista exposes tuning parameters to scale the built-in
adaptation selection algorithms for power savings versus

performance. Table 5 shows power and performance results for
SYSmark 2007 using a range of settings chosen based on the
results of the previous sections. In order to reduce p-state
performance loss, the idle core frequency is set to 1250 MHz. To
prevent c-state performance loss, K8-mode is used with the
hysteresis time set above the breakover point. Also, C1e mode is
disabled to prevent obscure idle power savings due to the
architected p-states and c-states.

Two important findings are made regarding adaption settings.
First, setting power adaptations in consideration of performance
bottlenecks reduces performance loss while retaining power
savings. Second, reducing OS p-state transition time increases
performance and power savings. Table 5 shows the resultant
power and performance for a range of hardware and software
settings. We show that performance loss can be limited to less
than 10 percent for any individual subtest while power savings
average 45 percent compared to not using power adaptations. The
effect of workload characteristics is evident in the results. E-
learning and productivity show the greatest power savings due to
their low utilization levels. These workloads frequently use only
a single core. At the other extreme, 3D and video creation have
less power savings and a greater dependence on adaption levels.
This indicates that more parallel workloads have less potential
benefit from p-state and c-state settings, since most cores are
rarely idle. For those workloads, idle power consumption is more
critical. These results also point out the limitation of existing
power adaptation algorithms. Since current implementations only
consider idle time rather than memory-boundedness, the benefit of
p-states is underutilized.

Additionally, we show the effect of adjusting operating system p-
state transition parameters. Columns Fast and Fast-perf represent
cases in which p-state transitions occur at the fastest rate and bias
towards performance respectively. Since existing operating
system such as Microsoft Windows XP and Linux bias p-state
transitions toward performance, these results can be considered
representative for those cases. The default configuration of
Microsoft Windows Vista biases toward reducing the number of
p-state transitions. Since the normal case, below, uses that
configuration, performance and power are impacted accordingly.

5. CONCLUSION
In this paper we have presented a power and performance analysis
of dynamic power adaptations in a Quad-Core AMD processor.
We have shown that performance and power are greatly affected
by direct and indirect characteristics. Direct effects are composed
of operating system thread and frequency scheduling. We show
that slow transitions by the operating system between idle and
active operation cause significant performance loss. The effect is
greater for compute-bound workloads which would otherwise be
unaffected by power adaptations. Slow active-to-idle transitions
also cause reduced power savings. Indirect effects due to shared,
power-managed resources such as caches can greatly reduce
performance if idle core frequency reductions are not limited
sufficiently. These effects are more pronounced in memory-
bound workloads since performance is directly related to
accessing shared resources between the active and idle cores.
Finally, we show that performance loss and power consumption
can be minimized through careful selection of hardware
adaptation and software control parameters. In the case of
Microsoft Windows Vista running desktop workloads,

performance loss using a naïve OS configuration is less than 8
percent on average for all workloads while saving an average of
45 percent power. Using an optimized OS configuration,
performance loss drops to less than 2 percent with power savings
of 30 percent.

Table 5. Power/Performance Study: SYSmark® 2007

6. ACKNOWLEDGEMENTS
This research was supported in part by Advanced Micro
Devices and NSF Award numbers 0429806 and 0702694.
Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
National Science Foundation.

7. REFERENCES
[1] Advanced Configuration & Power Interface.

http://www.acpi.info . November 2007.
[2] BIOS and Kernel Developer’s Guide for AMD Family 10h

Processor. http://www.amd.com . November 2007.
[3] Bircher, W. L. Measurement Based Power Phase Analysis of

a Commercial Workload. Workshop on Unique Chips and
Systems (Austin, Texas, March 2006).

[4] Bircher, W. L. and John, L. Power Phase Availability in a
Commercial Server Workload. International Symposium on
Low Power Electronics and Design (Tegernsee, Germany,
October 2006).

[5] Bohrer, P., Elnozahy, E. N., Keller, T., Kistler, M., Lefurgy,
C., McDowell, C., and Rajamony, R. The Case for Power
Management in Web Servers. IBM Research, Austin TX
78758, USA. www.research.ibm.com/arl

[6] Fan, X., Weber, W., and Barroso, L. A. Power provisioning
for a warehouse-sized computer. The 34th Annual
International Symposium on Computer Architecture, pages
13-23 (San Diego, California, June 2007).

[7] Feng, X., Ge, R., and Cameron, K. W. Power and Energy
Profiling of Scientific Applications on Distributed Systems.
International Parallel & Distributed Processing Symposium,
pages 34-50 (Denver, Colorado, April 2005).

[8] Hanson, H., Keckler, S.W. Power and Performance
Optimization: A Case Study with the Pentium M Processor.

The Austin Center for Advanced Studies Conference
(February 2006).

[9] Hanson, H., Keckler, S.W., Rajamani, K., Ghiasi, S.,
Rawson, F., and Rubio, J. Power, Performance, and Thermal
Management for High-Performance Systems. 3rd Workshop
on High-Performance, Power-Aware Computing, held in
conjunction with 21st Annual International Parallel &
Distributed Processing Symposium (Long Beach, California,
March 2007).

[10] Isci, C., Buyuktosunoglu, A., Cher, C., Bose, P., and
Martonosi, M. An Analysis of Efficient Multi-Core Global
Power Management Policies: Maximizing Performance for a
Given Power Budget. In Proceedings of the 39th Annual
IEEE/ACM international Symposium on Microarchitecture
(Orlando, Florida, December 2006).

[11] Kotla, R., Devgan, A., Ghiasi, S., Keller, T., and Rawson, F.
Characterizing the Impact of Different Memory-Intensity
Levels. IEEE 7th Annual Workshop on Workload
Characterization (Austin, Texas, October 2004).

[12] Lau, J., Schoenmackers, S., and Calder, B. Structures for
Phase Classification. IEEE International Symposium on
Performance Analysis of Systems and Software, pages 57-67
(Austin, Texas, March 2004).

[13] Li, J. and Martinez, J. Dynamic Power-Performance
Adaptation of Parallel Computation on Chip
Multiprocessors. The 12th International Symposium on High-
Performance Computer Architecture (Austin, Texas,
February 2006).

[14] Li, Y., Brooks, D., Hu, Z., and Skadron, K. Performance,
Energy, and Thermal Considerations for SMT and CMP
Architectures. The 11th International Symposium on High-
Performance Computer Architecture, pages 71-82 (San
Francisco, California, February 2005).

[15] Mahesri, A. and Vardhan, V. Power Consumption
Breakdown on a Modern Laptop. Workshop on Power
Aware Computing Systems, 37th International Symposium on
Microarchitecture (Portland, Oregon, December 2004).

[16] Processor Power Management in Windows Vista and
Windows Server 2008. http://www.microsoft.com .
November 2007.

[17] National Instruments Data Acquisition Hardware.
http://www.ni.com/dataacquisition/. April 2008.

[18] Rajamani, K., Hanson, H., Rubio, J., Ghiasi, S., and Rawson,
F. Application-Aware Power Management. IEEE
International Symposium on Workload Characterization
pages 39-48 (San Jose, California, October 2006).

[19] Inside Barcelona: AMD's Next Generation
http://www.realworldtech.com . November 2007.

[20] Siddah, S., Pallipadi, V., and Van de Ven, A. Getting
Maximum Mileage Out of Tickless. The Linux Symposium.
(Ottawa, Canada, June 2007).

© 2007 Advanced Micro Devices, Inc. AMD, the AMD Arrow
logo, AMD Opteron and combinations thereof are trademarks of
Advanced Micro Devices, Inc. Windows Vista is a registered
trademark of Microsoft Corporation. SPEC is a registered
trademark of Standard Performance Evaluation Corporation.
SYSmark is a registered trademark of Business Applications
Performance Corporation.

P‐States Perform anceLoss Pow erSavin gs

E ‐Learning Normal 8.80% 43.10%
V ideoCrea tio n Normal 6.20% 44.70%

Productivity N ormal 9.50% 45.30%

3D Normal 5.90% 45.90%

E ‐Learning Fast 6.40% 45.90%

V ideoCrea tio n Fast 5.20% 46.10%
Productivity Fast 8.00% 47.80%

3D Fast 4.60% 48.20%

E ‐Learning F ast‐perf 1.50% 32.90%
V ideoCrea tio n F ast‐perf 1.80% 25.40%

Productivity F ast‐perf 2.50% 27.90%

3D Fast‐perf 1.40% 35.10%

