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Abstract— Machine Learning (ML) has been widely adopted
in design exploration using high level synthesis (HLS) for faster
resource, timing and power estimation at very early stages for
FPGA-based design. To perform prediction accurately, high-
quality and large-volume datasets are required for training ML
models. However, the current datasets used in this domain
are proprietary or limited in use, and practitioners have to
generate their own dataset to train HLS-related ML models.
This paper presents a dataset for ML-assisted FPGA design
using HLS, called HLSDataset. The dataset is generated from
widely used HLS C benchmarks including Polybench, Machsuite,
CHStone and Rossetta. The Verilog samples are generated with
a variety of directives including loop unroll, loop pipeline, and
array partition to make sure optimized and realistic designs
are covered. The total number of generated Verilog samples is
nearly 9,000 per FPGA type. The dataset repository includes
CSV (comma separated values) files containing both HLS and
implementation metrics which can be easily consumed by ML
model. We also include original C source code with directives,
Verilog designs, post-HLS reports, post-implementation reports
for each sample in the dataset, so that any metrics not present in
the CSV can be easily extracted. In order to extend the dataset
for future benchmarks, generation and extraction scripts are also
provided. To demonstrate the effectiveness of our dataset, we
undertake case studies to perform power estimation and resource
usage estimation with ML models trained with our dataset.
All the code and dataset are public at our github page1. We
believe that HLSDataset can save valuable time for researchers
by avoiding the tedious process of running tools, scripting and
parsing files to generate the dataset, and enable them to spend
more time where it counts, that is, in training ML models.

I. INTRODUCTION

High-level synthesis (HLS) is able to convert software

applications into FPGA hardware designs with different op-

timization strategies. It can greatly improve the productivity

since hardware designers do not need to write low-level

hardware description language (HDL) from scratch given an

application written in a high-level language (HLL) like C, C++

or SystemC.

While HLS greatly helps to reduce the effort for the

software to FPGA implementation conversion, it is quite time-

consuming, especially when large design spaces need to be

explored using various pragma settings. This is a common

usecase when designing application-specific optimized designs

targeting FPGAs, for example, when designing FPGA based

1https://github.com/UT-LCA/ML4Accel-Dataset/tree/main/fpga ml dataset

accelerators for ML applications. Metrics such as resource

usage and achieved clock frequency reported after HLS are

estimates. To find the final metrics, the even slower imple-

mentation process (synthesis, place and route) is required.

Even more efforts are needed to estimate power consumption

accurately, since low-level simulation is required. For these

reasons, efficient design space exploration targeting optimiza-

tion of such metrics is hard. To address this challenge, machine

learning (ML) based techniques are widely adopted to provide

accurate resource usage and power estimation at early stage

in HLS. S. Dai et al. [1] uses Lasso linear model, XGB and

artificial neural network (ANN) to calibrate the resource usage

and timing results from HLS reports. Graph neural networks

(GNNs) and HLS reports are used to predict performance in

the work by N. Wu et al. [2]. HL-Pow [3] and PowerGear

[4] give solutions to predict power consumption using convo-

lutional neural networks (CNNs) and GNNs respectively. E.

Ustun et al. [5] builds graph samples using the IR (intermediate

representation) generated during HLS and use them as input

to GNNs to predict operation delay.
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Fig. 1: The flow of general ML-based methods in HLS

The flow of general ML-based methods in HLS domain

is shown in Fig 1. ML based methods can provide fast
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and accurate metrics estimation with HLS reports, however,

extensive dataset is needed to train the models to produce

acceptable results. To generate task-specific dataset in HLS

domain requires lots of effort:

• Software source code should cover enough domains

• Source code should be well manipulated with HLS directives

so that HLS optimization can be applied

• Varieties of optimization strategies need to be applied to the

source code so that wide range of hardware designs can be

generated

• Implementation is needed if the post-implementation metrics

are the prediction goal

• Extensive scripting is required to extract the data from

reports and preprocess before it can be consumed directly

in ML models

• Significant computing resources may be needed for large

number of tool runs to collect enough data

Researchers have to generate their own dataset, which can

be extremely time-consuming because of the aforementioned

reasons. Due to the different prediction goal and ML models,

existing datasets are proprietary and not shareable or reusable.

However, there is an opportunity to reduce, and even eliminate,

the redundant work for various researchers by creating a

dataset that contains common usable information, allowing

them to focus on training the ML models instead of generating

the dataset. We observe that resource usage reports, Inter-

mediate Representation (IR) code, IR operator information,

Finite State Machine Data path (FSMD) model from HLS

are commonly used as the source of features. The resource

utilization, timing information and power consumption values

from post-implementation phase are the common metrics that

researchers are interested to predict.

With the above observation, we propose HLSDataset: a

well-curated open-source dataset for ML-assisted FPGA de-

sign using HLS. Our dataset can be used by a large subset of

problems in this domain. The dataset currently contains nearly

9,000 Verilog designs per FPGA type, and two FPGA types are

covered. To ensure diversity of designs, HLSDataset are gen-

erated from multiple applications across various benchmarks:

Polybench [6], Machsuite [7], CHStone [8] and Rosetta [9],

and each application is tuned to generate a variety of hardware

design samples. Our dataset contains all necessary files and

reports for every design (or, sample) so that features and target

metrics can be easily extracted. In this paper, we describe

the dataset, how it can be used, and showcase its utility by

conducting two case studies. We expect this dataset to be

widely usable and get even more useful with time through

contributions by the FPGA research community.

Our contributions in this paper are as follows:

• Introduce HLSDataset and describe both the properties and

usage of the dataset.

• Present the methodology how HLSDataset is generated. This

methodology can be easily replicated to extend the dataset.

• Two case studies are conducted to demonstrate the effec-

tiveness of HLSDataset.

Our dataset (including C code, Verilog code, CSV files,

reports, and scripts) is open-sourced. The rest of this paper

is organized as follows: Section II summarizes the existing

datasets and compares our dataset with them; Section III

illustrates the methods we use to generate HLSDataset; Section

IV describes the contents of HLSDataset; Section V gives a

general overview of where HLSDataset can be used; Section

VI presents two case studies that use the dataset to successfully

accomplish the prediction tasks, followed by a summary of this

work and future work in Section VII.

II. RELATED WORK

The success of ML-based models depends on well-curated

datasets. There are a few datasets for training ML models to

assist in chip design problems in the ASIC domain. OpenABC-

D [10] from NYU is a large-scale, labeled dataset produced by

synthesizing open source designs with an open-source ASIC

logic synthesis tool. This dataset can be used in developing,

evaluating and benchmarking ML-guided logic synthesis but is

applicable to a very small subset of problems i.e. prediction of

ASIC synthesis results. CircuitNet [11] is another open-source

dataset targeted for three prediction tasks in backend ASIC

flows - congestion prediction, DRC (Design Rule Check)

violation prediction, and IR drop prediction. It contains more

than 10000 samples (in form of 2D image-like data) obtained

by running open-source RISC-V designs through commercial

EDA tools. This dataset is applicable to only a few physical

design problems.

For FPGA HLS design flow, which is the focus of this paper,

there are a few open-source datasets as well. Dai et al. [1]

have open-sourced a dataset that is applicable to prediction

of resource usage and delay (or frequency) for FPGAs from

high-level applications written in C. The dataset is generated

by using applications from suites such as CHStone, Machsuite

and Rosetta, and the Vivado tool chain from Xilinx/AMD. This

dataset is restricted to use only in estimation of resource usage

and timing for FPGA, and contains only limited data. The data

provided is only for 1 FPGA device, implying that this dataset

can not be used for cross-FPGA predictions.

MLSBench [12] is an open-source dataset generated from

17 C/C++ and 13 SystemC benchmarks using Xilinx Vivado

HLS tool flow. The C sources to generate the designs are

from S2CBench [14], CHStone [8] and MachSuite [7]. The

dataset contains only log files and reports generated from

Xilinx Vivado HLS tool flow, but without directly consumable

features, labels and RTL codes. Also, this dataset is limited to

only one FPGA. Therefore, MLSBench is hard to extend and

quite limited in ML usage.

Spector [13] is a benchmark suite that contains applications

written in OpenCL. The authors run the benchmarks through

Intel OpenCL SDK to generate 8300 hardware designs targeted

for Intel FPGAs. In addition to just the benchmarks, several

metrics for each design sample (based on compilation using

Intel OpenCL SDK) are also provided. The focus is on HLS

tool flows and design space exploration.
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Work # Samples # Sources Platform &
Abstraction level Tools Use Case in ML

OpenABC-D [10] 870,000 29 ASIC RTL OpenROAD Estimation of quality of a synthesis recipe

CircuitNet [11] 12,960 6
ASIC Physical

Design
Synopsys DC

Congestion prediction, DRC violation
Prediction, IR drop prediction

Dai [1] 1,300 65 FPGA HLS Xilinx Vivado Quality of Results Estimation on one FPGA

MLSBench [12] 6,000 30 FPGA HLS Xilinx Vivado NA

Spector [13] 8,300 9 FPGA HLS Altera OpenCL SDK NA

Ours 18,876 34 FPGA HLS Xilinx Vivado
Power Estimates, resource and timing
estimation, operation delay estimate,

cross-FPGAs studies, and more

TABLE I: Comparing HLSDataset with prior open-source datasets for training ML models for chip design

Table I compares the various properties of these datasets.

We show the number of samples contained in the dataset

and number of sources used for generating the dataset. These

datasets generally cater to limited usecases (eg: physical

design prediction in [11], or RTL synthesis quality prediction

in OpenABC-D [10] or resource usage prediction in Dai

et al.[1]). Some need further expansion and curation to be

readily usable by others. Retargeting the few available datasets

for a new ML model requires significant manipulation and

augmentation. So, researchers often generate their own dataset

every time they want to solve a new problem. In this process,

they have to rerun tool flows to generate reports and then write

scripts to parse those reports repeatedly. This motivates us to

develop a dataset that is retargetable, versatile and robust, so

that researchers do not need to replicate the tedious process

of generating the dataset.

We focus on developing a dataset for predictions from appli-

cations written in high-level languages (HLLs) because high-

language models of applications are available in early stages

of development of customized designs such as application-

specific accelerators. In other words, we focus on prediction

at the HLS level. Predicting at the HLS level provides the most

benefit in design space exploration. We present HLSDataset,

an open-source dataset for ML-Assisted FPGA Design for

HLS.

III. HLSDATASET CONSTRUCTION

Table II gives a general overview of our HLSDataset. We

use HLL sources belonging to various application domains

such as multimedia, arithmetic, signal processing and machine

learning, from multiple popular benchmark suites such as

Polybench [6], Machsuite [7], CHStone [8] and Rosetta [9].

Xilinx Vivado/Vitis tool chains are used for HLS and imple-

mentation. Two FPGAs are used: ZU9EG and XC7V585T. We

plan to expand the dataset to include more FPGAs, including

Intel FPGAs. One target frequency of 100 MHz is used. We

are working on using more target frequencies as well.

A. C source code manipulation

Verilog designs generated from C benchmarks are highly

dependent on HLS directives, pragmas and the target clock

frequency. For generating our dataset, we focus on the design

space of loop unroll, loop pipeline and array partition. Loops

Category Details
Num samples 18,876

Num applications 34

Application sources Polybench, Machsuite, CHStone, Rosetta

FPGAs ZU9EG, XC7V585T

Clock frequency 100MHz

Domains Multimedia, Arithmetic, Signal processing, ML

Size 50 GB

Machines 9 16-core Intel Xeon 5218 2.3GHz 384 GB RAM

Time More than 1,500 hours

Tools Xilinx Vivado/Vitis

TABLE II: General overview of HLSDataset

in C code need to be labelled so that loop unroll and loop

pipeline can be applied to generate efficient designs. Machsuite

and Rosetta are already well-written with HLS directives, and

we directly use their code for our dataset generation. We

manipulate the Polybench and CHStone source code with HLS

directives.

B. Auto-generation of Tcl scripts

The scope of generated Verilog designs can be huge, since

the factors for array partition and loop unroll can vary greatly.

The number of generated designs is determined by the number

or the dimension of the factors we want to explore in our

dataset. However, manually writing every Tcl script (Xilinx

Vivado/Vitis tools use a Tcl script based interface), which

is used to tune HLS solution for the generation of Verilog

designs in our dataset, is time-consuming and unrealistic. In

order to generate designs more efficiently, we write a template

Tcl script for every C source code and a script to parse it. The

script will auto-generate Tcl files which can be directly used

by the HLS tool.

An example template.tcl is shown in Fig 2. It contains 4

blocks of lines which are classified into three types: static

lines, array partition lines and loop optimization lines.

• Static lines: The directive lines under static lines are not

subject to change, they should be the same and written into

every generated Tcl file.

• Array partition lines: The first line indicates the sets of

parameters applied for HLS. It contains a number denoting

the number of directive lines, a list of numbers denoting

the factor sets for array partition and a set of types for
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array partition. The rest of lines are the directive lines with

placeholder that should be replaced with the parameters

defined by the first line. The placeholders inside the directive

lines are replaced with the combination of factor sets and

type sets, and every Tcl file will contain one combination

of directive parameter. The array partition lines 2 in the Fig

2 generates 8 combination directive parameters in this case

due to 4 factors and 2 types. Note that factor equalling to 1

means no array partition is applied.

• Loop optimization lines: The first line denotes the number

of nested loops and the number of directive lines for loop

optimization. It is followed by loop optimization parameter

lines, each of which indicates the depth of a loop, the name

of a loop, whether to apply pipeline to the loop, whether

to apply unroll to the loop and unroll factor sets. The rest

of the lines are directive lines with placeholders that should

be filled with settings from the loop optimization parameter

lines. Unroll and pipeline are applied to at most one layer of

nested loops, therefore, the number of generated directives

is equal to the sum of the number of unroll factors among all

the loops and the one without any loop optimization. The

loop optimization lines in Fig 2 generates 8 combination

directives for the loop optimization.

Fig. 2: Example template Tcl file to generate the optimization

strategy for the application bfs from Machsuite

The blocks of directive lines are independent of each other,

therefore the number of Tcl files is equal to the products of

the number of directive parameter combination among all the

blocks. In this example template, 384 Tcl files are generated,

and different optimization strategies are expected. The method

to generate multiple versions of Tcl files is summarized in

Algorithm 1, each block of lines will be parsed into an object.

C. Data collection

IR code, IR operator information, FSMD model files from

HLS, and resource utilization reports from both HLS and

implementation are included in our dataset. In order to get the

high-confidence power estimation, we write testbench and run

post-implementation functional simulation for vector-based

power estimation.

Algorithm 1: Method to generate multiple Tcl files

Input: template.tcl
Output: N different versions of Tcl files
s lines,array ob js, loop ob js from template.tcl;
Generate N empty Tcl files
/* static lines for each Tcl file */
for i← 1 to N do

Write s lines to Tcl file
end
/* array partition directives */
foreach o ∈ array ob js, f ∈ o. f actors, t ∈ o.types do

array partition with factor f and type t
Write array partition to Tcl file

end
/* loop unroll and pipeline */
foreach o ∈ loop ob js, f ∈ o. f actors do

Get the loop from loop list in o
Apply pipeline to loop if pipeline applies
Apply unroll to loop with factor f if unroll applies
Write pipeline and unroll to Tcl file

end

We observe that there is a chance that the HLS tool

generates the same design even though different optimization

strategies are provided in the Tcl script. This can be caused

by aggressive optimization parameters, which are identified

as unachievable by the HLS tool. The tool then automat-

ically downgrades the optimization parameters, which can

match optimization parameters during another run. Therefore,

redundant designs can be generated. We identify redundant

designs by checking the hierarchical resource utilization from

HLS reports. If two or more designs have exactly the same

utilization, only one will be kept in our dataset.

IV. PROPERTIES OF HLSDATASET

A. The contents of HLSDataset

HLSDataset contains nearly 9,000 hardware design samples

for each FPGA type and we consider the features listed below

to sufficiently characterize each design sample:

1) Resource usage (the number of BRAM, DSP, FF and LUT)

2) Application domain (e.g., video/graph processing, linear

algebra etc)

3) The number of arithmetic operators (e.g., add, mul), the

number of logic operators (e.g., or, shift)

4) The number/size of primary inputs and outputs

5) The number of registers, memory and multiplexers

6) Clock period

Power consumption is also included, since it is crucial when

low-power hardware designs are the final target. We preprocess

the raw reports and files from both HLS and implementation

phases and generate two CSV files for each benchmark. Each

CSV file contains multiple entries depending on the number

of generated hardware designs for the benchmark. The user

can directly use the data in the CSV files to train their ML

models, thereby avoiding any effort in changing source code,

setting up and running tools, and parsing reports. The detailed

contents of the CSV files are listed in Table III.
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Fig. 3: Resource utilization of designs generated for ZU9EG, applications are from Rosetta, Polybench, Machsuite and CHStone

It is possible that the features that other researchers are

interested in, are not present in the CSV files. Therefore, we

also create tar balls containing all the necessary files for feature

extraction to do ML training. These files are selected according

to how prior works generate their own dataset. Each tar ball

contains:

• Generated Verilog code (*.v)

• IR code (*.bc)

• IR operator information (*.adb)

• FSMD model (*.adb.xml)
• Resource usage estimation from HLS (*.verbose.rpt and

*.verbose.rpt.xml)
• Resource utilization reports (utilization.xls) and timing re-

ports (timing.xls) generated after implementation

Considering the reusability and ease-of-use of the dataset,

Tcl scripts and source code files are included in the dataset

so that researchers can easily extend the dataset with other

benchmarks. The detail of how the Tcl script templates can

be used is discussed in Section III. We also include Verilog

testbenches so that the generated designs can be easily evalu-

ated with simulation-based power estimation.

Overall, the contents of HLSDataset are summarized as:

1) The CSV files containing features for each hardware design

listed in Table III

2) Tcl templates and actual scripts to generate the dataset

3) C source code files manipulated with HLS pragmas
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Category post hls info.csv description
Resource # Estimated usage and available number of BRAM, DSP,

FF and LUT

Clock Target, estimation and uncertainty of the clock period

Logic ops The number of C and RTL logic operators and associated
resource usage

Arith ops The number of C and RTL arithmetic operators and
associated resource usage

Data ports Width and the number of data input and output ports

Category post implementation info.csv description
Power Simulation-based dynamic power consumption

Resource # Actual usage of BRAM, DSP, FF and LUT

Clock Achieved clock frequency

TABLE III: Descriptions of features included in the CSV files
provided with HLSDataset

4) Testbenches in Verilog to test generated Verilog designs

5) Tar balls containing raw files and reports from HLS and

reports from implementation stage

Compared to the datasets used by prior works, HLSDataset

gives a wider coverage of information for each design, and

it gives higher chance for researchers to use or extract useful

features directly, meanwhile, no efforts are needed to run the

time-consuming HLS and implementation tool flows.

B. Statistical overview of HLSDataset

Fig 3 provides a view of the diversity of the HLSDataset,

through the resource usage metrics of the designs (or samples)

contained in the dataset. We use box and whisker plots to

show the distribution of LUTs (Look Up Tables), FFs (Flip

Flops), DSPs (Digital Signal Processing Blocks) and BRAMs

(Block RAMs) consumed by the designs generated from each

application. As mentioned earlier, we use 4 widely used

benchmark sets - Polybench, Machsuite, CHStone and Rosetta

- to generate our dataset. Machsuite and Polybench are mainly

composed of short programs and kernels, however, tuning

the directives aggressively can still lead to large resource

usage on FPGA. Rosetta, on the other hand, is composed of

applications from ML and image or video processing domains.

Each application of Rosetta contains multiple kernels, and it

leads to larger resource usage on FPGA. The secure hash

algorithm SHA and linear predictive coding analysis GSM

are picked from CHStone due to their representative in the

domain. We chose not to include arithmetic operation pro-

grams from CHStone due to the limited HLS design space in

those applications.

V. HLSDATASET APPLICATIONS

HLSDataset can be applied to a multitude of prediction

applications. Table IV summarizes the prior works in the

area of prediction at the HLS level. The data required for

training ML models for each of these prior works is included

in HLSDataset. Hence, HLSDataset can be effectively used

for these and similar works.

Resource utilization estimates: HLSDataset can be directly

used for post-implementation resource utilization estimates.

Dai et al. [1] use Lasso linear model, XGB and artificial neural

network (ANN) to improve the quality of HLS-generated

resource utilization values with features extracted from HLS

reports. Wu et al. [2] predict post-implementation resource

usage by using the graph structure obtained from the IR

codes generated by front-end of HLS tools. Fast estimation

of resource usage find application in design space exploration

while generating overlay architectures for FPGAs [15]. The

features and feature source used to conduct the studies can be

easily found and extracted from HLSDataset.

Timing and operation delay prediction: Wu et al. [2]

demonstrates prediction of post-implementation critical path

timing using IR codes and features from HLS reports. D-

SAGE [5] builds graph samples using the IR generated during

HLS and use them as input to GNNs to predict operation

delay. HLSDataset contains the IR code files as well as HLS

reports generated by Vivado HLS, and can be used to train

such models to predict timing related information.

Power estimates: HL-Pow [3] and PowerGear [4] train

ML models to predict power consumption using convolutional

neural networks (CNNs) and GNNs respectively. Predicting

power consumption needs data such as signal activities and

operators obtained from the IR. While those signal activities

are not directly included in HLSDataset, testbenches and

stimulus are provided so that both RTL-level simulation and

C-level simulation can be conducted. Necessary codes to run

the simulation: IR codes and RTL designs are included in

HLSDataset.

Beyond the above tasks, HLSDataset can be applied to many

more potential use cases. While the mentioned works target

single-FPGA prediction, HLSDataset includes samples from

multiple FPGAs. We believe HLSDataset has the potential

to be used for cross-FPGAs metric prediction, although no

existing work shows this usecase. In addition to prediction

of results, HLSDataset can be used to train models to opti-

mize EDA tools and help on faster design space exploration.

Moreover, HLSDataset can also be used to evaluate the ML

model efficiency in HLS domain with the advancing of ML

techniques.

The features and labels used by each ML models vary

widely depending on the task and ML algorithm used, as we

can see from table IV. By including information from different

levels in the CSV files and TAR balls in HLSDataset, we

ensure that all such ML models can be trained. Researchers

can extract information from TAR balls and apply HLSDataset

to many other applications.

VI. CASE STUDIES

Our dataset covers large amount of features and metrics

from post-HLS and post-implementation reports which can be

used in machine learning models directly. Therefore, users can

simply extract the necessary information from our dataset to

train and test their models. In this section, we perform two case

studies by training and testing ML models with HLSDataset

to demonstrate the usage of it.
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Work ML model Task C source Feature and source

[1]
Lasso, XGB,

ANN
Resource usage and

timing

CHStone,
Machsuite,
S2CBench,

Rosetta

Resource usage estimation for logic ops, arithmetic ops, memory and
multiplexer; achieved clock period and uncertainty from HLS reports

[2] GNN
Resource usage and

timing

CHStone,
Machsuite,
Polybench

Graph samples based on IR code; operator type, used resource type and
timing information from HLS reports

[3] CNN Power estimates Polybench
Resource utilization and clock estimation by HLS reports; signal

activities track and IR operator information from IR code; RTL operator
information from FSMD model

[4] GNN Power estimates Polybench
Signal activities track and IR operator information from IR code, Graph

samples built with IR code and FSMD model, RTL operators
information in FSMD model

[5] GNN Operation delay Machsuite Graph structures, operation type and bitwidth from IR code

TABLE IV: Prior ML-based prediction via HLS work, the used ML model, prediction tasks, the used dataset for training and the availability
of the dataset.

A. Case Study 1: Power Estimation in FPGA HLS via GNNs

HLSDataset
post_hls_info.csv

post_impl_info.csv
IR

FSMD
HLS Raw reports
Impl Raw reports

RTL codes

GNNs

Topology
Node Features
Edge Features

Graph Samples

Dynamic Power

Labels

Graph 
Construction

Simulation and 
Total Power Est

Stimulus

Fig. 4: Usage of HLSDataset to construct machine learning

based power model

In our first case study, we replicate the graph neural

networks (GNNs) in PowerGear [4] to predict the post-

implementation power using both post-HLS features and signal

information extracted from C-level simulation. We use simu-

lation power as our ground truth power. The GNN models

are trained and tested with the subset of HLSDataset on the

same FPGA. IR code can be directly used to build graph

samples which serve as the inputs to the GNNs. The usage

of HLSDataset in this case study is shown in Fig 4.
The model is trained using the dataset from Polybench. We

leave one target application out of the nine applications as

the test dataset and use all the rest for training. With the

iteration of the approach, we generate one model for every

application. We perform 10-fold cross-validation for model

generation. All the above steps are repeated for the dataset

from the other FPGA. All the training and testing run on

Nvidia Ampere A100 GPU. The results for two FPGA devices,

ZU9EG and XC7V585T, can be found in Table V. The test

errors for dynamic power range from 3.89% to 7.93% on

ZU9EG and from 5.25% to 9.43% on XC7V585T, and the

average errors are 5.08% and 6.40% respectively. The results

show that HLSDataset can be used to perform ML-based

power estimation tasks for FPGA.

B. Case Study 2: Estimation of Quality of Results in HLS with
ML

The resource usage estimation (LUTs, FFs, DSPs, BRAMs)

generated by HLS tools are fast but inaccurate compared to the

Application Error of Dynamic Power (%)
ZU9EG XC7V585T

atax 3.89 5.25

bicg 3.90 5.60

gemm 5.24 6.50

gesummv 7.93 9.43

k2mm 4.25 6.00

k3mm 4.15 6.47

mvt 4.64 5.62

syrk 5.31 6.22

syr2k 6.41 6.46

average 5.08 6.40

TABLE V: Dynamic power estimation errors - Training dataset and
testing dataset are from Polybench subset of HLSDataset. Results for
ZU9EG and XC7V585T.

HLSDataset
post_hls_info.csv

post_impl_info.csv
IR

FSMD
HLS Raw reports
Impl Raw reports

RTL codes

Lasso

Resource #
Clock periods

Logic ops
Arithmetic ops

Memory
Multiplexer

Features

#LUT
#FF

#DSP
#BRAM

Labels
XGB

Fig. 5: Usage of HLSDataset to construct machine learning

model for estimation of resource utilization

post-implementation reports because HLS tools simply sum

up the contributions of instantiated functional units during the

synthesis. This approach fails to capture the optimization ef-

fects and limitations imposed by resources on-chip. However,

as S. Dai et al. [1] indicates, ML can help to predict more-

accurate resource usage from estimates in the HLS reports.

We replicate the ML model but use our HLSDataset as
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training and test set to evaluate the ML model on estima-

tion of post-implementation resource usage. The way to use

HLSDataset is illustrated in Fig 5. Machsuite, Polybench

subsets from HLSDataset are used to train the XGB and

Lasso linear model. The features are extracted from FSMD file

(.adb.xml) and resource estimates reports (.verbose.rpt.xml).

The ground-truth resource utilization is extracted from post-

implementation reports. All the files and reports are included

in our dataset, only a parser is needed to extract necessary

data to be used in the ML model. Single-task XGB and Lasso

model are used in our case. We randomly select 20% of

8735 samples from the subsets as the testing set and the rest

as the training/validation test set. 10-fold cross-validation is

performed during training, and 75% of the training/validation

set is selected for training and 25% for validation. The results

are shown in Table VI. The HLS tool fails to provide good

estimates for LUT and FF usage, while DSP and BRAM esti-

mates are accurate. XGB and Lasso demonstrate a significant

accuracy improvement in the estimation of LUT and FF usage.

The results shown in this table differ from those in the original

paper because there are differences in target FPGA, the dataset,

features used to train the model and the version of HLS tools

used for the dataset generation. Therefore, we do not show a

comparison with the original work here.

Resource LUT FF DSP BRAM
HLS Estimate 63.2% 34.1% 0.0% 1.8%

XGB 3.2% 2.3% NA 0.1%

Lasso 13.2% 15.4% NA NA

TABLE VI: Resource estimation errors - Training dataset and test-
ing dataset are from Machsuite and Polybench subsets of HLSDataset.
Results for ZU9EG.

VII. CONCLUSION

This work presents HLSDataset, a dataset for ML-assisted

FPGA design using HLS. HLSDataset covers a wider range of

data than other datasets in this domain, and is the first open-

source dataset of its kind that can be used for multiple studies.

We demonstrate that HLSDataset can be used in training

ML models targeting different applications such as resource

usage prediction, power prediction, etc. We also present the

methodology to generate the dataset so that HLSDataset can

be futher extended.

We are currently expanding HLSDataset by including data

for more target frequencies (e.g. clock period = 5ns, 2.5ns,

etc.). For future work, we plan to extend HLSDataset to

include more benchmarks (e.g., S2CBench) and more FPGAs

(including Intel FPGAs). While the design samples in HLS-

Dataset are generated from C benchmark so that ML-assisted

HLS based studies can be conducted, we plan to extend the

dataset to include data from native Verilog benchmarks so

that ML-assisted Verilog based studies are possible with our

dataset.
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