
FAWS: FPGA Acceleration of Large-Scale Wave

Simulations

Dimitrios Gourounas∗, Bagus Hanindhito∗, Arash Fathi†, Dimitar Trenev†, Lizy K. John∗ and Andreas Gerstlauer∗

∗ The University of Texas at Austin, Austin, TX, USA
† ExxonMobil Technology and Engineering, Annandale, NJ, USA

{dimitrisgrn,bagus}@utexas.edu, {arash.fathi,dimitar.trenev}@exxonmobil.com, {ljohn,gerstl}@utexas.edu

Abstract—Efficiently solving large-scale scientific problems
described by partial differential equations (PDEs) is a critical task
in high-performance computing. Application-specific hardware
design is a well-known solution, but the wide range of kernels
makes it infeasible to provision supercomputers with accelerators
for all applications. This makes reconfigurable platforms a
promising direction. In this work, we focus on wave simulations
using discontinuous Galerkin solvers, as an important class of
PDE applications. Existing work using FPGAs is limited to
accelerating specific kernels or small problems that fit into
FPGA BRAM. We present FAWS, a generic and configurable
architecture for large-scale accelerated wave simulation problems
running on FPGAs out of DRAM. FAWS exploits fine- and coarse-
grain parallelism using a scalable array of application-specific
processing cores, and incorporates novel dataflow optimizations,
including prefetching, kernel fusion, and memory layout op-
timizations to minimize data transfers and maximize DRAM
bandwidth utilization.

We demonstrate FAWS on the simulation of elastic wave
equations. Results show that a single FPGA core achieves 2.2x
higher performance than 24 Xeon cores with 18.64x better energy
efficiency, when given ∼1.94x less peak DRAM bandwidth.
Scaling to the same peak DRAM bandwidth, an FPGA is 4.27x
and 1.96x faster than 24 CPU cores and an Nvidia P100 GPU,
with 31.33x and 5.29x better efficiency, respectively.

I. INTRODUCTION

Many scientific computing problems are modeled by partial

differential equations (PDEs). The size and complexity of

these models necessitate their numerical solution on high-

performance computing (HPC) systems, where increasing

model fidelity, reducing time-to-solution, and improving com-

putational performance is often desired. These requirements

motivate designing more powerful and more efficient comput-

ing systems, along with algorithms that perform well on them.

In this paper, we consider wave simulations as an important

class of PDEs that fall under the category of hyperbolic

PDEs, characterized by their local communication patterns.

We demonstrate our approach on a member of this class, the

elastic wave equation [1], which has applications in seismic

hazard mitigation [2], exploration geophysics [3], [4], medical

imaging [5], nondestructive testing [6], physical oceanography

[7], and defense [8], [9], among others. We explore high-

performance and scalable system designs that use discontinu-

ous Galerkin (dG) methods [10] to numerically solve PDEs

in a discretized manner. Such approaches are attractive in

many applications [11] due to their appealing characteristics

in modern hardware, such as locality, lower communication,

and ease of parallelization [12]. Such problems are massively

parallel, but are typically memory-bound when given enough

compute resources. As such, this domain represents an ex-

ample of memory-bound applications characterized by unique

mesh-type data dependencies.

Traditionally, supercomputing clusters utilizing many-core

CPUs are used to solve such problems. However, CPUs have

a high complexity and are inefficient in achieving peak utiliza-

tion. GPUs can better exploit available parallelism, but still

come with inherent overheads of programmability. Hardware

specialization is well known to significantly improve both

performance and energy efficiency. However, unlike in other

fields, such as machine learning, the large diversity of PDE

kernels makes reconfigurable hardware platforms attractive for

such HPC problems. Prior work has explored wave simulations

using dG methods on FPGAs, but only for specific applications

where selected kernels are accelerated [13] or for small

problem sizes that fit entirely in the FPGA’s BRAMs [14].

In this work, we propose FAWS, a generic and config-

urable FPGA architecture for large-scale accelerated wave

simulations using dG methods. FAWS is composed as a

scalable array of reconfigurable element processor (EP) cores

to exploit and trade off fine- versus coarse-grain parallelism.

FAWS specifically applies a range of optimizations to improve

memory behavior and attainable DRAM bandwidth. Our main

contributions include:

• We explore the design space of EP micro-architectures

to demonstrate performance-efficiency tradeoffs in exe-

cution of basic PDE kernels.

• We apply a range of dataflow optimizations that employ

kernel fusion to improve data movement and locality,

as well as element scheduling and pipelining to exploit

available parallelism.

• We further propose novel memory layout and memory

channel parallelism optimizations to improve memory ac-

cess patterns and maximize DRAM bandwidth utilization.

• We present a scalable wave simulation system architec-

ture composed as a configurable array of EPs.

• FAWS is evaluated on an elastic wave simulation applica-

tion running on an Intel Stratix 10 FPGA. Results show

that, when scaled to the same bandwidth, a 2-EP and 11-

EP FAWS design outperforms a 24-core Xeon CPU and

an Nvidia P100 GPU, respectively, by 327% and 96%,

with 31.33x and 5.29x better energy efficiency.

76

2023 IEEE 34th International Conference on Application-specific Systems, Architectures and Processors (ASAP)

DOI 10.1109/ASAP57973.2023.00025

20
23

 IE
EE

 3
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
pp

lic
at

io
n-

sp
ec

ifi
c

Sy
st

em
s,

 A
rc

hi
te

ct
ur

es
 a

nd
 P

ro
ce

ss
or

s (
AS

AP
) |

 9
79

-8
-3

50
3-

46
85

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
AS

AP
57

97
3.

20
23

.0
00

25

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 01,2023 at 15:10:01 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Various software libraries [15], [16] have been proposed for

mesh-based stencil computations on multi-node CPU and GPU

clusters. Such libraries allow for mesh/graph generation, par-

allel kernel executions and optimizations such as loop fusion

and tiling to maximize data reuse and parallelism [17], [18].

However, these works do not support FPGA implementations.

Wave simulations using dG methods have been widely

studied on traditional supercomputers using many-core CPU

nodes [19]. More recently, various works [20] have explored

GPUs for the same task. Krueger et al. [21] conducted a

study to compare the energy efficiency between CPU, GPU

and a general-purpose many-core design for seismic modeling

problems. However, GPU implementations for our particular

dG setup on general elastic wave applications are limited [22].

Some recent work [23] has examined emerging Processing-in-

Memory (PIM) architectures for the solution of acoustic and

elastic wave simulations, but they rely on emerging technolo-

gies not readily deployable in near-term supercomputers.

FPGAs have been studied for acceleration of stencil-based

PDE solvers [24]–[26]. However, their optimizations are lim-

ited to small-size stencils. Several groups have specifically

investigated acceleration of wave simulations using Finite-

Element [27] or Spectral-Element [28] methods on FPGAs.

However, dG-based works are still limited. Kenter et al. [13]

developed an FPGA accelerator using dG with unstructured

meshes and tetrahedral elements. However, this solution only

accelerates selected kernels and does not map the entire

simulation on-chip. In a later work [14], they ported the entire

simulation onto an FPGA for a shallow-water model, but they

only target small problem sizes, where the full mesh fits into

the FPGA’s on-chip SRAM. Tomczak et al. [29] implemented

a full simulation process on FPGAs for the Navier-Stokes

equation, but this falls under the category of parabolic PDEs.

By contrast, we present the first configurable and scalable

FPGA design for large-scale, hyperbolic wave simulation

problems running out of DRAM under a dG scheme.

III. BACKGROUND

Hyperbolic PDEs (e.g., acoustic, elastic, and electromag-

netic waves, and Euler equations) are commonly solved using

methods that discretize problems in space and time. Spatial

discretization using a discontinuous Galerkin method (Fig. 1)

results in a discrete form for each spatial element e where u
e

is a vector of 3D tensors holding discrete unknown variables

on the nodes of each element. We focus on problems that

permit using straight-faced hexahedral elements with Gauss-

Lobatto-Legendre (GLL) quadrature integration, which arise in

many compute-intensive, industry-relevant problems [30]. This

leads to the reduction of local computations, which decreases

the time-to-solution, but increases the ratio of communication

to computation. Temporal discretization, e.g. by using a low-

storage Runge-Kutta time-stepping, then results in repeated

updates of solution vectors u
e for each element in each time

step as shown in Alg. 1, where a
e is an auxiliary vector, M

is the element’s mass matrix and α, β, and γ are scalars that

Fig. 1: Discontinuous Galerkin discretization. (a) The problem

domain is represented by 3D hexahedral elements (mesh). (b)

Each element contains N ×N ×N(N = 3 in this schematic)

nodes, at which the unknown variables u
e are computed.

The Volume computations take place on all of the element’s

nodes. (c) Flux computations on each face reconcile possibly

discontinuous solution values among nodes on both sides.

characterize the time-stepping scheme. F ,V indicate Flux and

Volume computations, respectively. The vector of 3D tensors

c
e stores their contributions, and e′ ∈ N (e) denotes the

immediate neighbors of an element.

Volume computations determine the local contributions to

unknown variables at given node locations within the element.

Computing V(ue) only needs information from that element

(Fig. 1(b)). By contrast, Flux computations reconcile discon-

tinuities at nodes that live on the faces between neighboring

elements. They are non-local, i.e., computing F(ue,ue′) needs

the corresponding nodal information of immediate neighbors

(Fig. 1(c)). Using straight-faced hexahedral elements along

with GLL quadrature simplifies: a) V(ue) into dot-product

operations of a constant differentiation vector and subsets of

u
e of size N to compute O(N3) derivatives along each spatial

dimension; b) F(ue,ue′) into vector additions and scaling that

depend on material properties; and c) M
−1 into a diagonal

matrix, reducing all computations to Level-1 BLAS.

In this paper, we specifically demonstrate our approach

on the elastic wave equation with unknown stress S =
S(x, y, z, t) and velocity v = v(x, y, z, t), which consist of six

and three distinct variables, respectively. Strategies we report

on herein are quite versatile. They can almost identically be

applied to other hyperbolic PDEs, which are characterized by

having local communication patterns. With minor adjustments,

these strategies can be applied to problems discretized by

other element types, such as tetrahedral elements, which are

typically needed for problems that involve complex geome-

try, or other quadrature. These choices lead to significantly

more local computations in the form of Level-2 and Level-3

BLAS operations, which then decrease the communication to

computation ratio, thus making it easier to hide latency.

IV. DATAFLOW OPTIMIZATIONS

There are different ways of realizing the computations of

Alg. 1, which affect locality and parallelism. In this section,

we discuss the data dependencies, as well as dataflow opti-

mizations to improve the memory behavior.

77

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 01,2023 at 15:10:01 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Wave simulation

1 for all time steps and integration stages do

2 for all elements e do

3 c
e =

∑
e′∈N(e) F(u

e,ue
′

) + V(ue)

4 a
e = α a

e + β M
−1

c
e

5 u
e = u

e + γ a
e

A. Original dataflow

Fig. 2 shows the dataflow graph corresponding to Alg. 1.

The Volume kernel calculates the Volume contributions V(ue)
on all the N3 nodes of element e. It is independent from other

elements. The Flux kernel runs once for each face between

elements and computes the Flux contributions F(ue,ue′) on

the N2 face nodes using the face node variables u
e of e

and u
e′ of the neighbor e′. The contributions calculated from

Volume and Flux are forwarded to the Integrate kernel, where

the variables u
e and auxiliaries a

e are updated for the next

time step. This process is repeated for all elements and all

stages of the Runge-Kutta time-stepping.

There are multiple possible patterns to traverse the graph.

Prior CPU and GPU implementations first iterate over the

Volume kernels of all elements. Since Volume kernels are

independent, they can be processed in parallel. The Flux

contributions for the face nodes of both neighboring elements

are then calculated and added to the corresponding Volume

contributions by iterating over all faces between elements.

Different faces can be processed in parallel. However, there is

pseudo-dependency when the Flux kernel runs on two or more

faces that share nodes on a cube’s edges and/or corners. A race

condition occurs when they try to update shared contributions

simultaneously. A synchronization of the faces is needed to

avoid this dependency. Finally, the Integrate kernel is invoked

for every element in parallel.

This dataflow, despite the parallelism it provides, incurs

a large communication overhead. Specifically, inputs needed

by Volume, Flux and Integrate kernels need to be fetched

repeatedly from main memory. Additionally, the contributions

computed by the Volume and Flux kernels must be stored in

main memory and fetched again later when the Integrator runs.

B. Kernel fusion optimization

We apply a kernel fusion optimization to improve data

locality and avoid repeated loading and storing of data from/to

main memory. We fuse all three kernels into a larger one that

fully processes each element, such that any information needed

to process an element can be fetched once and used by all

three internal kernels. The intermediate contributions c
e can

be stored in separate locations c
e

vol and c
e

f for the Volume

and Flux, respectively, and locally exchanged between kernels.

The Volume computations can then run in parallel to the Flux

kernels, where each updates their own sets of contributions. As

before, when Flux runs, it also updates the contributions on the

neighbor’s face. A flag can be used to indicate that a neighbor

does not re-run the Flux kernel on a face that has already

been computed. Note that fusing introduces a write-after-read

Flux

Volume
Flux

Volume

Integrate Integrate

Element e e Neighbor for e N(e)

Other face flux
contributions

ue

ue

ce
vol

ce
f

ue

ue

ce
vol

ce
f

Fig. 2: Dataflow graph of Alg. 1.

hazard on variable updates between Flux and Integrate kernels

of neighboring elements. Not re-running already computed

faces avoids this dependency. With this, three Flux kernels are

run on average per element when using hexahedral elements.

C. Element scheduling

Kernel fusion increases locality and maintains a massive

degree of parallelism, as multiple elements can be invoked in

parallel. However, the pseudo-dependency and race condition

mentioned earlier remains exposed if two elements concur-

rently try to update nodes on shared edges and/or corners of

a common neighbor. This can be resolved by using and later

aggregating different sets of Flux contributions for each face.

Another race condition occurs if two neighboring elements

try to update each other’s Flux face contributions concurrently.

Scheduling elements such that no elements processed in paral-

lel are neighbors or share neighbors resolves these issues. We

will discuss our element scheduling approach in Section V-C.

V. SYSTEM ARCHITECTURE

We propose a generic, scalable architecture for the nu-

merical solution of wave simulations using dG methods. Our

architecture executes a complete wave simulation (Alg. 1) in

the FPGA. To perform a simulation, the host CPU generates

an element mesh, downloads it into FPGA DRAM and then

triggers the FPGA to start. Upon completion, the FPGA noti-

fies the host, which then reads results from FPGA DRAM. As

shown in Fig. 3, our architecture is comprised of a configurable

number of instances of compute engines that implement the

fused kernel, called Element Processors (EPs). Internally, each

EP contains a Volume, a Flux and an Integrate kernel. The

element mesh is stored in DRAM. Load and Store units are

responsible for reading and writing inputs and outputs from/to

DRAM into local SRAMs used as scratchpad memories within

each EP. Local SRAMs store the variable u
e, auxiliary a

e,

contribution c
e and mass inverse (M−1) vectors, as well as

the required neighbor data. They are also used to cache some

constant values that are specific to each element and take

part in the Volume and Flux computations. These SRAMs are

used to forward data between kernels in the EP and load/store

units. The system has a main controller that enforces a proper

scheduling of communications and computations.

78

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 01,2023 at 15:10:01 UTC from IEEE Xplore. Restrictions apply.

Element Processor
1

Element Processor
1

On-board DRAM

Element Processor

Main
Controller

Load
Unit

Store
Unit

Host
start

Simulation
done

Variables

Auxiliary Volume Contributions Flux Contributions

Neighbor Variables

Integrator Kernel

Neighbors' Contributions

Volume
Kernel

Mass inverse

Flux
Kernel

Fig. 3: FAWS architecture.

Algorithm 2: Volume kernel V(ue)

Inputs: Variable vector of 3D tensors u
e and constant

differential vectors const dx, const dy, const dz
Outputs: Contribution vector of 3D tensors c

e
vol

1 for all N3 nodes (i,j,k) do

2 for offset o = 0, . . . , N − 1 do

3 for variable r = 0, . . . , R do some of

4
∂ue

r,i,j,k

∂x
+= ue

r,(i+o)%N,j,k
∗ const dxo

5
∂ue

r,i,j,k

∂y
+= ue

r,i,(j+o)%N,k
∗ const dyo

6
∂ue

r,i,j,k

∂z
+= ue

r,i,j,(k+o)%N
∗ const dzo

7 end

8 end

9 ∀r : cevol,r,i,j,k = f(∇ue
0,i,j,k, . . . ,∇ue

R,i,j,k)

10 end

A. Element Processor Design

We further detail the EP-internal design. Through modifica-

tions of the computation kernels and the memory structure,

our EP micro-architecture is general in supporting a wide

range of applications of wave simulations. In the following,

we present a design space exploration of each kernel that goes

into designing an application-specific EP.

Volume: There is a large degree of fine-grain parallelism

within a typical Volume kernel, the general structure of which

is shown in Alg. 2. This kernel calculates the vector c
e

vol

of 3D tensors with the Volume contributions for element e.

The outer-most loop iterates over all the N3 nodes in the

3D element. The inner loops calculate the variable derivatives

in each direction (x, y, z) as the dot products between the

variable vectors and the constant differential vectors mentioned

in Section III. Not all three derivatives are needed for all

the variables, which introduces some conditional executions

within this loop. Finally, the Volume contributions of a node

are computed as a simple function of the calculated derivatives.

Our goal is to maximize computational throughput while

minimizing area and energy. We explore different options for

exploiting Volume parallelism. Each variable’s dot products in

the inner-most loop can be processed in parallel by fully un-

rolling the loop. Doing so removes any conditional statements.

The result is an outer loop that iterates over nodes and one

Fig. 4: Volume kernel’s design space.

inner loop that iterates over N to calculate every dot product

for all the variables. This was found to always be efficient in

terms of the performance-area trade-off, so we consider it as

a baseline design. To further improve throughput, we can also

unroll the inner loop, implementing the dot products as a set

of multipliers and adder trees, or we can unroll both the inner

and the outer loop as the nodes are also independent. Finally,

parallelism can be attained by instantiating multiple Volume

kernels that run on different elements concurrently. All design

options are pipelined with an initiation interval (II) of 1 in

their inner-most loops.

Fig. 4 shows the area-performance design space of the

Volume kernel’s baseline design for our elastic wave example,

with N = 8. Similar behavior is observed for different values

of N. To measure area, we use the total number of DSP

blocks used for floating-point operations on our FPGA. The

design options also affect the number of BRAMs and Look-

Up-Tables (LUTs), but similar conclusions can be drawn for

these resources. Overall, we see that the design with the

optimal area-performance trade-off is the one with the inner

loop fully unrolled. In other words, when designing EP micro-

architectures, it is always more efficient to exploit fine-grain

operation-level parallelism compared to instantiating multiple

simpler kernel-level processors. At the same time, exposing

too much parallelism when unrolling the outer loop offers

diminishing returns, due to the initial depth of the kernel’s

datapath. To evaluate such effects in the full system context,

we implemented two designs for our example application that

have a single Volume kernel per EP with the inner loop rolled

and fully unrolled, respectively.

79

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 01,2023 at 15:10:01 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Flux kernel F(ue,ue
′

)

Inputs: ue(f1),ue′(f2): 2D variable tensors of element

e and neighbor e′ ∈ N (e) on faces f1 and f2

Outputs: Flux vectors of 2D tensors c
e(f1)
f , c

e′(f2)
f

1 for all N2 face nodes (i,j) do

2 for variable r = 0, . . . , R do

3 c
e(f1)
f,r,i,j , c

e′(f2)
f,r,i,j = g(u

e(f1)
w,i,j , u

e′(f2)
w,i,j , w = 0, . . . , R)

4 end

5 end

Flux: The Flux kernel calculates the flux contribution

vectors of 2D tensors c
e

f and c
e
′

f for elements e and e’ on

one shared face. Its general structure is shown in Alg. 3. The

outer loop iterates over all the N2 face nodes, while the inner

loop iterates over the variables to calculate the contributions of

both elements. As discussed in Section III, the actual face Flux

computation uses vector additions and scaling as a function

of the face node variables of both elements. The inner loop

can be fully unrolled, as each variable can be processed in

parallel, resulting in a single loop that iterates over the face

nodes. To increase throughput, one option is to unroll this loop

as well. An alternative is to have multiple kernels processing

separate faces concurrently. As mentioned in Section IV, for

hexahedral elements, Flux runs three times on average per

element. Crucially, it does not make sense for the Flux kernels

to be much faster than the Volume. In an optimal design, Flux

and Volume computations are balanced to run in parallel for

the same amount of time. In our example application, a single

Flux kernel with the outer loop rolled and the inner loop fully

unrolled was found to be enough to achieve this balance. This

leads to a single pipelined loop with II = 1.

Integrate: The Integrate kernel consists of a single

pipelined loop (II = 1) that iterates over all nodes in an

element and updates all unknown variables u
e and auxiliaries

a
e based on the contributions c

e. It can be accelerated by

unrolling the loop, offering diminishing returns due to the

latency of the datapath, so we chose not to in our designs.

Memory Structure: The variable (ue), auxiliary (ae),

contribution (ce) and mass inverse (M−1) quantities for the

element nodes, as well as the neighbor data and element

constants, are each stored in their own SRAMs. Each SRAM is

implemented by grouping together multiple BRAMs. As some

of the variable arrays are accessed multiple times per clock

cycle, depending on BRAM limitations in the target FPGA,

such arrays need to be replicated to provide more access ports.

Table I shows the replication factor of the nine variables in

our setup for the elastic wave problem (six for stress and three

for velocity) depending on whether the Volume kernel’s inner

loop is unrolled or not. Loop unrolling increases the BRAM

accesses per clock cycle and hence the replication factor.

B. Load/Store Units

Load/Store units are responsible for transferring data be-

tween the EP scratchpad memories and DRAM. To efficiently

Q0,0,0 ... Q0,0,511 ...Q0,1,0 Q0,1,511 ... Q0,27,511

Quantity 0: 512 values Quantity 1: 512 values

Q0,0,0 ... Q0,27,0 ...Q0,0,1 Q0,27,1 ... Q0,27,511

Node 0: 28 values Node 1: 28 values

Fig. 5: Original (Top) and modified (Bottom) DRAM layout.

TABLE I: Stress (S) and velocity (V) replication in memory.

Variables Non-unrolled Volume Unrolled Volume

S0, S1, S2 1 5

S3, S4, S5 2 9

V0, V1, V2 2 13

utilize available DRAM bandwidth, careful design of memory

transactions and the data layout in DRAM is required. In our

FPGA, the logic operates at a 4 ns clock period and the port

width is up to 1024 bits, which translates to a peak bandwidth

of 29.8GB/s per interface. Additionally, with a 512-bit wide

interface, we have a total of 16 floating-point values available

every time the DRAM controller responds with data. In order

to not stall before issuing following transactions, these values

need to be stored in the SRAMs at a speed that is at least

equal to that of the DRAM.

Fig. 5 (Top) shows the original data layout for our example

application, which has 512 nodes per element and 28 quantities

(32-bit long each) per node (variables, auxiliaries, contribu-

tions and mass inverse). We use the notation Qe,q,n to refer to

element e, quantity q and node n. In this layout, the element

data is stored variable by variable. When using this DRAM

data layout and a single 512-bit wide DRAM port, all 16 values

that are fetched from a DRAM transaction must be stored on

the same SRAM, as they all belong to the same quantity. As a

result, each individual SRAM must be designed to have 512-

bit wide ports, which increases FPGA BRAM usage. Finally,

in a naive baseline design, the constants of an element (10

in total) are fetched to a local SRAM prior to each element’s

execution, neighbor data is fetched even for faces that have

already been computed, and all of each neighbor’s nodes are

always fetched. In the following, we describe optimizations

that we applied to improve memory performance, bandwidth

utilization and resource usage.

Memory optimizations: We first optimize the load/store

units to skip loading/storing neighbors for faces that are

already computed, and we only fetch the one face of each

neighbor that we need. This increases the irregularity of the

DRAM access patterns, as the nodes of a face are not always

stored consecutively in DRAM. To increase regularity, we

further rearrange the memory layout. As shown in Fig. 5

(Bottom), in the optimized layout, we store data per node

rather than per variable. With a single 1024-bit wide interface,

we can then issue all 28 transactions in one cycle. Each of

the 28 values goes to a different SRAM, which reduces the

bit-width of the ports to 32, significantly lowering BRAM

and LUT usage. In addition, neighbor face node accesses

80

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 01,2023 at 15:10:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Node IDs of each face.

also have better regularity, since all the quantities of a face

node are consecutive. Finally, the constants of all the elements

are prefetched prior to execution and cached in a dedicated

SRAM, improving regularity and reducing memory traffic.

Multi-channel DRAM: We extend our Load/Store units to

utilize multiple memory channels (4 in our FPGA board) and

increase bandwidth. We assume that each channel accesses

its own DRAM address space (e.g., a dedicated DIMM per

channel) and that all element data is equally partitioned across

channels. However, access patterns using the aforementioned

DRAM layouts do not guarantee that all channels will be

equally used when fetching different neighbor faces. Figure

6 shows the node IDs that belong to each face of an element.

Using the original mapping of nodes, as shown in Figure 7

(top), all the nodes of faces 0 (red) and 1 (green) belong

exclusively to DIMMs 0 and 3, respectively. This problem

would lead to poor bandwidth utilization when fetching neigh-

bor data, as well as introduce a complex control mechanism

on the Load/Store units. To avoid this issue, we implement

a skewing mechanism similar to [31] for interleaving nodes

across different DIMMs, as shown in Figure 7 (bottom) for

our example of 4 DIMMs. In this example with N = 8, node

j is mapped to DIMM (j+�j/8�)%C, where C is the number

of DRAM channels. This skewing formula can be applied to

any number of channels that is a power of 2 and less than or

equal to 8. For 16 and 32 channels, the formula changes to

(j+2∗ �j/16�)%16 and (j+4∗ �j/32�)%32, respectively. If

the number of channels is not a power of 2, the mapping will

be unbalanced. This mapping enables equal utilization of all

memory channels, leading to higher bandwidth and a simpler

control logic. The Load/Store units and compute kernels are

modified to utilize a flexible mapping table to access the

correct node in the SRAMs, where different mapping schemes

can be realized by changing mapping tables.

C. Main Controller

The main controller implements a dataflow-driven schedule

of computations, which keeps track of proper kernel ordering

and handles dependencies on shared data. We apply optimiza-

tions, such as prefetching, pipelining and dependency-aware

element scheduling.

Pipelining: The system controller realizes a dynamic, data-

driven schedule that allows for inherently flexible, self-

arranged pipelining and overlapping of computation and com-

munication by launching computation kernels and load/store

operations as soon as their data is ready. Fig. 8 shows a

resulting memory-bound schedule in which prefetching and

loading of the next element, as well as storing back of

Fig. 7: Mapping of nodes across different DIMMs using the

original layout (top) and skewing (bottom).

Vn-1

In-2 In

Fn

Vn

Fn+1

In+1

Vn+1

Fn-1

In-1

Ln+2SnLn+1Sn-1LnSn-2Ln-1

Events

Load/Store

Volume

Flux

Integrate

Time

Fig. 8: System dataflow schedule.

the previous element are overlapped with Volume, Flux and

Integrate kernels. Such a dynamic scheduler also allows the

Integrate kernel to be overlapped with Volume and Flux in

compute-bound cases. A similar pipelined schedule can be

used when multiple EPs are running in parallel by extending

Load/Store units to fetch and write back multiple elements at

a time. To allow for such pipelining, any quantities that sit on

the interface between the Load/Store units and the EPs need

to be duplicated (double-buffering).

Element scheduling: A proper ordering of elements is

needed to avoid the data dependencies across subsequent

elements mentioned in Section IV. For example, in Fig. 8,

Load n+1 must not start before Store n−1 finishes if element

n+1 is a neighbor of element n− 1. In this case, Load n+1
needs to stall until Store n− 1 updates the Flux contributions

of n+ 1 on the face they share. In fact, subsequent elements

should also not share neighbors, as they may both try to update

the Flux contributions on the same edge and/or vertex nodes.

In our case, we implemented a simple static schedule that

satisfies this requirement and avoids all dependencies.

VI. EXPERIMENTS AND RESULTS

We evaluated FAWS on the DE10-Pro board with an Intel

Stratix 10 SX 2800 FPGA running the elastic wave equation

problem for different problem sizes that fit in DRAM. We

compare our designs against a 24-core Intel Xeon Platinum

8160 implementation that realizes a baseline and optimized

dataflow, and a GPU baseline implementation running on a

Nvidia P100 with 56 SMs. No further optimizations (such as

vectorization) are applied to the CPU. These platforms were

chosen because they were released around the same time (with

Stratix being the oldest) and they have similar technology

81

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 01,2023 at 15:10:01 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Hardware platform configurations.

CPU FPGA GPU

Device Xeon 8160 Stratix 10 SX2800 Nvidia P100

Peak Freq. 3.7GHz 1GHz 1.33GHz

On-chip memory 59.5MB 28.625MB 23.22MB

Peak FLOPS 1.4T 9.2T 9.3T

DRAM DDR4–2667 DDR4–2667 HBM2

Peak BW 119GBps 19.2GBps/DIMM 734GBps

Technology node 14nm 14nm 16nm

Released 2017 2013 2016

TABLE III: Resource usage of system variants.

Designs DSPs BRAMs ALMs

B
a

se

EP 173 (3%) 4304 (36.72%) 44974 (4.82%)

L/S 0 (0%) 240 (2.04%) 50386 (5.4%)

I/C 0 (0%) 0 (0%) 41934 (4.5%)

M

EP 173 (3%) 349 (2.9%) 19655 (2%)

L/S 0 (0%) 128 (1%) 23049 (2.4%)

I/C 0 (0%) 0 (0%) 6220 (0.6%)

M
U

EP 320 (5.5%) 651 (5.5%) 32045 (3.43%)

L/S 0 (0%) 143 (1.22%) 27143 (2.9%)

I/C 0 (0%) 0 (0%) 7385 (0.79%)

M
U

4

EP 320 (5.5%) 1160 (9.9%) 36312 (3.89%)

L/S 0 (0%) 468 (3.99%) 81790 (8.76%)

I/C 0 (0%) 0 (0%) 17562 (1.88%)

Controller 0 (0%) 0 (0%) 95 (∼0%)

Other 0 (0%) 1170 (10%) 76316 (8.18%)

nodes as our FPGA. Table II summarizes the hardware spec-

ifications of our FPGA, CPU and GPU platforms.

Elastic wave application: The element mesh is partitioned

into a number of elements with 512 nodes each (N=8) and

nine variables per node. Also, there are nine corresponding

auxiliaries and contributions, and one mass inverse value for

each node. Single-precision (32-bit) floating-point format was

used for all the values. This results in a ∼56kB element size.

We tested for problem sizes of 512, 4096 and 32768 elements.

All designs use p4est [16] to generate the mesh.

System variants: We compare a baseline load/store design

with a rolled Volume kernel (Base) against variants with mem-

ory optimizations (M), Volume loop unrolling (U) and multi-

channel (4) optimizations in MU and MU4 combinations.

Hardware design: We used Intel Quartus High-Level-

Synthesis (HLS) to design the EP’s kernels and load/store

units. The main controller was designed in Verilog. Our

implemented system instantiates a single EP. In this work,

we target a system with 1 and 4 DIMMs, each with its

own memory channel. The peak bandwidth of the 3 of the

4 DIMMs is 19.2GB/s, while the fourth DIMM has a peak

bandwidth of 15.35GB/s. Since data is equally balanced across

all 4 DIMMs and all 4 are accessed in parallel, frequency

is limited by the slowest DIMM, leading to a total peak

bandwidth of 61.4GB/s. Up to 2 EPs were found to be enough

to saturate the attainable bandwidth for all designs.

FPGA synthesis: We used Intel Quartus Prime 2019.3 to

synthesize all designs. Floating-point operations are mapped

on hard DSP blocks with floating point capabilities. The local

TABLE IV: DRAM traffic and bandwidth of each variant.

Variant Base M MU MU4

Traffic (kB/El.) 434 130 130 130

BW (GB/s) 4.52 7.8 10.6 21.2

TABLE V: Average latency (in cycles) of compute kernels.

Kernel FAWS-MU FAWS-M/FAWS-Base

Volume 772 4240

Flux 365 365

Integrate 610 610

EP SRAMs are implemented using M20K Memory Blocks as

BRAMs. We use a 250MHz clock for our designs.

Power measurements: We used the Quartus Power Ana-

lyzer to measure the FPGA’s core dynamic and static power,

RAPL counters with the linux perf system for the CPU’s entire

package power, which includes the 24 cores and the cache, and

the nvidia-smi dmon tool for GPU power.

A. Resource Utilization

Table III summarizes the resource utilization of the system

for Base, M, MU and MU4 designs. Resources are broken

down into EP (including the three kernels and the SRAMs),

load/store (L/S) units, interconnect (I/C) and main controller

usage. ”Other” indicates the total resources required for fixed

components, such as PCIe, DRAM controllers, clock-crossing

bridges and the element constant SRAM for a 32,768-element

problem size. Overall, M requires significantly fewer BRAMs

and ALMs for the EPs and the interconnects than the Base

design. Unrolling the Volume inner loop increases EP DSP

and BRAM usage by 85% and 86%. Multi-channel parallelism

increases the logic required by the L/S units and the intercon-

nects. BRAM usage is also increased since we need 64-bit

wide SRAM ports to store all 4 values fetched per transaction

in one cycle and simplify the control logic of the L/S units.

B. Performance and Efficiency

Memory performance: Table IV shows the total amount

of data transferred from/to DRAM per element and the

bandwidth achieved by each of the variants. Memory layout

optimizations increase the achieved bandwidth by 72% and

reduce memory traffic by ∼70% compared to Base. However,

FAWS-M is compute-bound, which limits achievable memory

performance. FAWS-MU renders the design memory-bound

again, where bandwidth is increased by 134% over Base.

Channel parallelism further increases bandwidth by 2x. As

mentioned before, the maximum bandwidth increase when

using all 4 DIMMs is ∼3.2x compared to a single DIMM. Our

4 DIMM design yields less speedup (2x) than the theoretical

maximum (3.2x) since the transaction size per channel is

reduced. To mitigate this issue, we plan to implement an

approach that loads elements in larger batches in the future.

Performance: Table V shows the execution time of each

kernel in clock cycles for all designs. Since the Flux kernel’s

runtime depends on the number of faces it will process, we

show its 3-face average runtime. Fig. 9 shows performance

comparison between FAWS variants and the CPU (left), as well

82

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 01,2023 at 15:10:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: FAWS performance comparison to Xeon (left) and P100 (right).

Fig. 10: FAWS variants energy efficiency comparison to Xeon (left) and P100 (right).

as the GPU (right). We used a performance model to estimate

performance for designs with more than 1 EP and FPGA

bandwidth that matches peak CPU or GPU bandwidth, assum-

ing the same attainable percentage for regular and irregular

accesses. CPU measurements include the original and kernel-

fusion implementations with up to 24 cores. Measurements

correspond to a 32768-element problem size, but a similar

behavior is observed for other sizes. A single FAWS-M EP

achieves the same performance as 16 CPU cores, but is

compute-bound. A single FAWS-MU EP is 36% faster than

a FAWS-M EP and outperforms the 8- and 24-core CPU by

136% and 10%, respectively. Memory channel parallelism

further increases performance by 100%, outperforming the

24-core CPU by 120%. 2 FAWS-MU4 cores are enough

to achieve 327% higher performance than 24 CPU cores.

Due to the imperfect DRAM channel scaling, we observe

that FAWS-MU4 achieves lower performance than an ideally

scaled FAWS-MU when scaling for iso-CPU/-GPU bandwidth.

Compared to the GPU, 11 FAWS-MU4 cores are needed to

saturate bandwidth and outperform the P100 by 96%.

Efficiency: Fig. 10 compares the energy efficiency of

LAWS variants to the CPU (left), and the GPU (right). Results

are shown for the achieved and scaled-up efficiency when

increasing EP counts and matching the CPU’s and GPU’s peak

DRAM bandwidths. We use a proportional power model to

scale FAWS power with the number of EPs. Peak efficiency of

a FAWS design is reached at EP counts that saturate bandwidth

when the communication and computation times are equal.

Higher EP counts are memory-bound and hence need to

stall, which limits efficiency. Lower EP counts do not utilize

available resources efficiently. As can be seen from Table III,

one EP uses a very small portion of the FPGA’s resources.

This leads to high leakage power, which would be reduced

if a smaller FPGA was used. Overall, a single-EP FAWS-MU

design achieves 16.8x and 10.48x higher energy efficiency than

8 and 24 CPU cores, respectively. A single-EP FAWS-MU4

design achieves 29.88x and 18.64x higher energy efficiency

than the 8- and 24-core CPU, respectively. Savings increase

to 31.33x over the 24-core CPU with 2 FAWS-MU4 EPs when

scaling to iso CPU bandwidth. Compared to the P100, a FAWS-

MU4 with 11 EPs achieves 5.3x better efficiency when scaled

to the same bandwidth. As observed before, FAWS-MU4 does

not scale perfectly, causing its best possible energy efficiency

to be slightly lower than that of FAWS-MU with ideal scaling

for peak bandwidth.

VII. SUMMARY AND CONCLUSIONS

In this work, we presented FAWS, an efficient, scalable

and configurable FPGA architecture for accelerating wave

simulations using the discontinuous Galerkin method. Our

architecture consists of a scalable array of custom element

processors (EPs) and incorporates a range of novel dataflow

and memory optimizations. Results of applying our design

to elastic wave simulations show that with 1.94x less peak

DRAM bandwidth than the CPU, a single EP achieves 2.2x

higher performance than 24 CPU cores at 18.64x higher energy

efficiency. When scaling to equivalent peak bandwidth, 2 and

11 EPs can outperform a 24-core CPU and a 56-SM GPU

by 4.27x and 1.96x with 31.33x and 5.29x higher efficiency,

respectively. In the future, we aim to explore additional

memory optimizations, such as tiling, using High-Bandwidth-

Memory (HBM) and multi-FPGA implementations.

83

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 01,2023 at 15:10:01 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

This research was supported by ExxonMobil Technology

and Engineering Company, agreement no. EM10480.36. Any

opinions, findings, conclusions or recommendations are those

of the authors and not of the sponsors.

REFERENCES

[1] B. Poursartip, A. Fathi, and J. L. Tassoulas, “Large-scale simulation
of seismic wave motion: A review,” Soil Dynamics and Earthquake

Engineering, vol. 129, p. 105909, 2020.

[2] A. Fathi, B. Poursartip, K. H. Stokoe II, and L. F. Kallivokas, “Three-
dimensional P- and S-wave velocity profiling of geotechnical sites
using full-waveform inversion driven by field data,” Soil Dynamics and

Earthquake Engineering, vol. 87, pp. 63–81, 2016.

[3] L. Kallivokas, A. Fathi, S. Kucukcoban, K. Stokoe, J. Bielak, and
O. Ghattas, “Site characterization using full waveform inversion,” Soil

Dynamics and Earthquake Engineering, vol. 47, pp. 62–82, 2013.

[4] M.-D. Lacasse, L. White, H. Denli, and L. Qiu, “Full-wavefield in-
version: An extreme-scale PDE-constrained optimization problem,” in
Frontiers in PDE-Constrained Optimization, H. Antil, D. P. Kouri, M.-
D. Lacasse, and D. Ridzal, Eds. Springer, 2018, pp. 205–255.

[5] L. Guasch, O. C. Agudo, M.-X. Tang, P. Nachev, and M. Warner, “Full-
waveform inversion imaging of the human brain,” npj Digital Medicine,
vol. 3, pp. 1 – 12, 2020.

[6] H. Chen, M. Zhou, S. Gan, X. Nie, B. Xu, and Y. Mo, “Review of
wave method-based non-destructive testing for steel-concrete composite
structures: Multiscale simulation and multi-physics coupling analysis,”
Construction and Building Materials, vol. 302, p. 123832, 2021.

[7] T. Duda, J. Bonnel, E. Coelho, and K. Heaney, “Computational Acous-
tics in Oceanography: The Research Roles of Sound Field Simulations,”
Acoustics Today, vol. 15, pp. 28–37, 2019.

[8] S. Hong, N. Vlahopoulos, R. M. Mantey Jr, and D. J. Gorsich, “A com-
putational approach for evaluating the probability of acoustic detection
of a military vehicle,” in Targets and Backgrounds X: Characterization

and Representation, 2004.

[9] K.-H. Barth, “The politics of seismology: Nuclear testing, arms control,
and the transformation of a discipline,” Social Studies of Science, vol. 33,
pp. 743–781, 2003.

[10] J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods:

Algorithms, Analysis, and Applications. Springer, 2010.

[11] D. Arndt, N. Fehn, G. Kanschat, K. Kormann, M. Kronbichler, P. Munch,
W. A. Wall, and J. Witte, “ExaDG: High-order discontinuous Galerkin
for the exa-scale,” in Software for exascale computing-SPPEXA 2016-

2019, H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, and W. E.
Nagel, Eds. Springer, 2020, pp. 189–224.

[12] L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas, “A high-order
discontinuous Galerkin method for wave propagation through coupled
elastic–acoustic media,” Journal of Computational Physics, vol. 229, pp.
9373–9396, 2010.

[13] T. Kenter, G. Mahale, S. Alhaddad, Y. Grynko, C. Schmitt, A. Afzal,
F. Hannig, J. Förstner, and C. Plessl, “OpenCL-based FPGA design
to accelerate the nodal discontinuous Galerkin method for unstructured
meshes,” in International Symposium on Field-Programmable Custom

Computing Machines (FCCM), 2018.

[14] T. Kenter, A. Shambhu, S. Faghih-Naini, and V. Aizinger, “Algorithm-
hardware co-design of a discontinuous Galerkin shallow-water model for
a dataflow architecture on FPGA,” in Platform for Advanced Scientific

Computing Conference (PASC), 2021.

[15] F. Rathgeber, G. R. Markall, L. Mitchell, N. Loriant, D. A. Ham,
C. Bertolli, and P. H. Kelly, “PyOP2: A high-level framework for
performance-portable simulations on unstructured meshes,” in SC Com-

panion: High Performance Computing, Networking Storage and Analysis

(SCC), 2012.

[16] C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est: Scalable algorithms
for parallel adaptive mesh refinement on forests of octrees,” SIAM

Journal on Scientific Computing, vol. 33, pp. 1103–1133, 2011.

[17] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil compu-
tations to maximize parallelism,” in The International Conference for

High Performance Computing, Networking, Storage, and Analysis (SC),
2012.

[18] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Effective Automatic Parallelization
of Stencil Computations,” in Programming Language Design and Im-

plementation (PLDI), 2007.

[19] A. Heinecke, A. Breuer, S. Rettenberger, M. Bader, A.-A. Gabriel,
C. Pelties, A. Bode, W. Barth, X.-K. Liao, K. Vaidyanathan et al.,
“Petascale high order dynamic rupture earthquake simulations on het-
erogeneous supercomputers,” in International Conference for High Per-

formance Computing, Networking, Storage and Analysis (SC), 2014.

[20] R. Gandham, D. Medina, and T. Warburton, “GPU accelerated discontin-
uous Galerkin methods for shallow water equations,” Communications

in Computational Physics, vol. 18, pp. 37–64, 2015.

[21] J. Krueger, D. Donofrio, J. Shalf, M. Mohiyuddin, S. Williams, L. Oliker,
and F.-J. Pfreund, “Hardware/software co-design for energy-efficient
seismic modeling,” in International Conference for High Performance

Computing, Networking, Storage and Analysis (SC), 2011.

[22] B. Hanindhito, D. Gourounas, A. Fathi, D. Trenev, A. Gerstlauer, and
L. K. John, “GAPS: GPU-acceleration of PDE solvers for wave simu-
lation,” in International Conference on Supercomputing (ICS), 2022.

[23] B. Hanindhito, R. Li, D. Gourounas, A. Fathi, K. Govil, D. Trenev,
A. Gerstlauer, and L. John, “Wave-PIM: Accelerating Wave Simulation
Using Processing-in-Memory,” in International Conference on Parallel

Processing (ICPP), 2021.

[24] R. Cattaneo, G. Natale, C. Sicignano, D. Sciuto, and M. D. San-
tambrogio, “On how to accelerate iterative stencil loops: a scalable
streaming-based approach,” ACM Transactions on Architecture and Code

Optimization, vol. 12, pp. 1–26, 2015.

[25] V. Rana, I. Beretta, F. Bruschi, A. A. Nacci, D. Atienza, and D. Sciuto,
“Efficient hardware design of iterative stencil loops,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
pp. 2018–2031, 2016.

[26] M. Koraei, O. Fatemi, and M. Jahre, “DCMI: A scalable strategy for
accelerating iterative stencil loops on FPGAs,” ACM Transactions on

Architecture and Code Optimization, vol. 16, pp. 1–24, 2019.

[27] C. He, “Numerical solutions of differential equations on FPGA-enhanced
computers,” Ph.D. dissertation, Texas A & M University, 2010.

[28] M. Karp, A. Podobas, N. Jansson, T. Kenter, C. Plessl, P. Schlatter,
and S. Markidis, “High-performance spectral element methods on field-
programmable gate arrays: implementation, evaluation, and future pro-
jection,” in International Parallel and Distributed Processing Symposium

(IPDPS), 2021.

[29] T. Tomczak, M. Księżyk, M. Marek, J. Hanke, and M. Kostur, “Parallel
Accelerator for Discontinuous Galerkin Method for Navier-Stokes Equa-
tions,” in International Conference on Systems Engineering, (ICSEng),
2021.

[30] A. Fathi, B. Poursartip, and L. F. Kallivokas, “Time-domain hybrid
formulations for wave simulations in three-dimensional PML-truncated
heterogeneous media,” International Journal for Numerical Methods in

Engineering, vol. 101, pp. 165–198, 2015.

[31] D. H. Lawrie, “Access and alignment of data in an array processor,”
IEEE Transactions on Computers, vol. 100, pp. 1145–1155, 1975.

84

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 01,2023 at 15:10:01 UTC from IEEE Xplore. Restrictions apply.

